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On the inverse optimality of a class of PWA functions through liftings

Songlin Yang1, Sorin Olaru1, and Pedro Rodriguez-Ayerbe1

Abstract— This paper focuses on the (re-)construction of
the optimal solution for the multi-parameter quadratic pro-
gramming (mpQP) problems. Optimization problems of this
nature are widely employed in the formulation of model-
based predictive controllers (MPC) for discrete linear systems,
wherein input and state constraints are imposed. This study
examines the geometric characteristics of the explicit solution
of an mpQP problem and introduces a novel convex-concave
lifting technique to synthesize an equivalent mpQP problem.
Whenever the solution corresponds to a PWA function, the
present approach maintains the structure and control laws for
the original systems. A new (less complex) cost function and a
corresponding feasible domain are constructed through lifting
for the equivalent optimization problem. The effectiveness of
this strategy is demonstrated through an illustrative example.

I. INTRODUCTION

Parametric convex programming (PCP) is a mathematical
framework that has gained considerable attention in the fields
of computational geometry, operational research, and control
theory [1] through the parametrization of the optimal choice
with respect to context parameters or updated measurements.
In control theory, researchers employ PCP for controller
design, such as model-based predictive control (MPC), and
to analyze system dynamics across different scenarios [2].
MPC can handle process constraints and multi-variable in-
teractions in a unified formulation. Various researchers have
recently studied MPC and their alternatives [3] from different
optimization-related angles [4]. The present paper focuses on
the geometric characteristics of MPC [5] and aims to propose
inverse optimal solutions for a class of predictive controllers.

Explicit MPC (EMPC) emerged as a method to simplify
online control computation by converting it into evaluating
a piecewise affine (PWA) function over polyhedral critical
regions [6]. The geometrical properties of the optimal solu-
tion were exploited during the construction, but the EMPC
implementation was restricted by the memory required for
online evaluation. In [7], the authors reduce storage and
evaluation time by assuming the initial state is contained in
a given set, omitting irrelevant predictive trajectory regions.
In [8], the authors proposed a novel approach for solving
an mpQP problem. Their method employed an implicit
representation of the Karush-Kuhn-Tucker conditions uti-
lizing ramp functions. The effectiveness of the proposed
strategy was verified through a straightforward computer
code implementation with modest memory demands. In
[9], a parametrized polyhedra approach in the combined

1Université Paris-Saclay, CNRS, CentraleSupélec,
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(input+parameter) space is used to analyse the solution
of EMPC. In [5], the authors construct the unconstrained
critical region and then enumerate the others based on the
combinations of active constraints.

Once the pros/cons of implicit and explicit MPC have been
documented, the research moved its focus [10] to prove that
explicit PWA control functions could be seen as input data
for inverse optimal QP formulations with lower computation
footprint. Remarkably, inverse-optimal formulations have
been constructed with only one supplementary dimension
of the vector of arguments [1], thus offering a particularly
compact QP for the PWA controller originated by the MPC
formulation.

As a contribution to the existing literature (e.g., [1] and
[11]), the present study proposes a new approach for inverse
optimal solutions for a particular class of PWA feedback
functions. The main contribution of this context is listed in
the following:

• We propose constructing an mpQP problem for each
PWA function of a scalar parameter. Furthermore,
whenever the PWA function is a solution of an mpQP,
the novel mpQP problem is shown to maintain the
same geometric structure as the optimal solution of the
original mpQP problem.

• Drawing inspiration from the concept of convex lifting
[12], we introduce a novel approach called convex-
concave lifting to guarantee the geometric structure of
the PWA feedback control.

The paper is structured as follows. Section II introduces
the preliminaries and presents the problem formulation for
reconstructing an mpQP problem. Section III defines and
analyzes convex-concave lifting, followed by a two-step
approach for reconstructing an mpQP problem: constructing
a feasible domain and proposing an appropriate cost function.
Section IV provides a numerical example, and Section V
concludes the paper.

Notation: In this paper, Rn and N denote the set of real
numbers in n-dimensional space, the set of nonnegative
integers, and IN = [1, N ] ∩ N. The symbols 0m×n and Im
represent a matrix of size m× n with all elements equal to
zero and an m-dimensional identity matrix, respectively. If
P ⊂ Rn is a polyhedral set, then int(P) denotes the set of
interior points of P and bd(P) denotes the set of boundary
points of P , ProjRm P represents the orthogonal projection
of P onto the subspace Rm. The convex hull of a set {∗} is
denoted by conv{∗}. Bn = {x ∈ Rn : ∥x∥∞ ≤ 1}.



II. PRELIMINARIES

A. A PWA control based on MPC

Consider a discrete-time linear system:

xk+1 = Axk +Buk, (1)

where the states xk ∈ Rn, and the inputs uk ∈ Rm at time
k are bounded by polyhedral sets:

X = {x ∈ Rn|Hxx ≤ bx},U = {u ∈ Rm|Huu ≤ bu},

where bx, bu, Hx, and Hu are known constant matrices, such
that 0 ∈ int(X ) and 0 ∈ int(U).

An N-steps receding horizon finite-time optimal control
problem for the system (1) with initial state x0 = x:

κ∗
u(x) = argmin

κu

N−1∑
k=0

uT
kRuk +

N∑
k=1

xT
kQxk (2a)

s. t. xk+1 = Axk +Buk, (2b)
uk ∈ U , xk ∈ X , xN ∈ Ω (2c)

where κ∗
u(x) = [uT

0 , · · · , uT
N−1]

T denotes the control se-
quence, R ≻ 0, Q ⪰ 0, and Ω ⊆ Rn is a control invariant
set with 0 ∈ int(Ω). Without loss of generality, the problems
to be solved at each sampling instant can be written:

κ∗
u(x) = arg min

κu

κT
uHκu + xTFκu, (3a)

s.t. [xT , κT
u ] ∈ P, (3b)

where x ∈ X = ProjRn P ⊆ X is the current state playing
the role of a parameter, κu(x) ∈ RmN is the optimization
vector and H ≻ 0. The set P is the parameterized feasible
domain with the formulation

P = {[xT , κT
u ]

T |Gκu ≤ W + Ex, x ∈ X},

where G,W,E are constructed from the mpQP problem (2).
From the above notations it follows ∀x ∈ X ,P ≠ ∅.

In [6], the solution of problem (2) was expressed as a
continuous PWA function of x, denoted as κ∗

u(x):

κ∗
u(x) = fi(x), x ∈ Xi,

where fi : Rn → RmN is piecewise affine and Xi is a
polyhedron of polyhedral partition.

Definition 1. A collection of polyhedral sets {X1, . . . ,XN}
is called a polyhedral partition of X if ∀i, j ∈ IN , i ̸= j,

1. X = ∪N
i=1Xi;

2. int(Xi) ∩ int(Xj) = ∅.

Such a polyhedral partition is next denoted as {Xi}IN
.

B. Geometric structure

Similar to the literature on the geometric structure of MPC
[5]- [9], the relationship between the unconstrained optimum
and the feasible domain is privileged in the present work.

Proposition 1. If 0 ∈ int(X ), 0 ∈ int(U) and 0 ∈ int(Ω)
in (2) then with respect to the solution of (3):

X1 = {x ∈ X |κ∗
u(x) = −H−1Fx}

is a non-empty polyhedron set, denoted as the unconstrained
critical region. And additionally,

∀x ∈ int(X1), [x
T , κ∗

u(x)
T ] ∈ int(P),

∀x ∈ X \ X1, [x
T , κ∗

u(x)
T ] ∈ bd(P).

Proof. At the origin, the optimal argument is κ∗
u(0) = 0,

corresponding to a feasible interior point of the constraint
set 0 ∈ P . Moreover, the unconstrained optimum is given by
κ∗
u(x) = −H−1Fx and there exists a non-empty region R ⊆

X such that (A − BH−1F )x ∈ X ,∀x ∈ R. Once the non-
emptiness of X1 is ensured, its boundaries are given by the
KKT conditions represented by affine inequality constraints
[6], which proves its polyhedral structure.

Additionally, suppose by contradiction that it exists x ∈
int(X1) such that [xT , (−H−1Fx)T ] /∈ int(P). It means
that [xT , (−H−1Fx)T ] ∈ bd(P). and thus either κ∗

u(x) ̸=
−H−1Fx} or 0 ∈ bd(P). The first case contradicts the
definition of set X1 and the second with the assumption that
both X ,Ω and U contain the origin in their strict interior.

Suppose again by contradiction that it exists x ∈ X \
X1 with [xT , κ∗

u(x)
T ] ∈ int(P). From this second fact,

it follows that the unconstrained optimum is feasible, i.e.
κ∗
u(x)

T = −H−1Fx, which leads to a contradiction as long
as the optimality conditions should hold only for x ∈ X1.

Remark 1. The optimal solution κ∗
u(x) consists of two parts:

the unconstrained optimum for x ∈ X1, and the boundary
solution for x ∈ Xi where i ∈ IN \ {1}.

As a solution of an N-steps receding horizon optimal
problem, only the first component of the sequence κ∗

u(x)
is used by MPC control action κpwa(x), denoted as

κpwa(x) =
[
Im,0m×(mN−m)

]
κ∗
u(x),

or explicitly as

κpwa(x) = Fix+ gi, x ∈ Xi,

where Fi ∈ Rm×n, gi ∈ Rm. Because Xi is the uncon-
strained region, the following equations hold:

F1 = −
[
Im,0m×(mN−m)

]
H−1F, g1 = 0. (4)

Corollary 1. If 0 ∈ int(X ) and 0 ∈ int(U) then

∀x ∈ int(X1),
[
xT , κpwa(x)

T
]T ∈ int(Pu),

where

Pu := conv
{
[xT , κpwa(x)

T ]T : x ∈ X
}
. (5)

C. General problem formulation

To simplify the mpQP problem (3), one is interested
in formulating an equivalent optimization problem using
the geometric structure of problem (3) as pointed out in
Proposition 1.

The objective here is to construct an equivalent mpQP
problem with the new formulation:

κ∗
y(x) = arg min

y
J(x, y), (6a)

s.t. [xT , yT ] ∈ Py, (6b)



where the relevant parameters satisfy:
Prop 1: Py is a polytope, and it satisfies:

ProjRn Py = X .

Prop 2: κ∗
y(x) : Rn → Rm+ny subject to:

κpwa(x) =
[
Im,0m×ny

]
κ∗
y(x). (7)

Prop 3: ∀x ∈ int(X1), [x
T , (κ∗

y(x))
T ]T ∈ int(Py).

Prop 4: ∀x ∈ X \ int(X1), [x
T , (κ∗

y(x))
T ]T ∈ bd(Py).

D. A particular class of feedback laws

In the present paper, we will concentrate on the specific
class of feedback laws:

κpwa : Rn → Rm (8)

κpwa(x) =

 κ1
pwa(xi1)

...
κm
pwa(xim)

 (9)

where i1, . . . , im ∈ N[1,m] are indices pointing to the
dependence of each function κi

pwa(x) on one and only one
of the components of the state vector x. As such the general
problem can be reduced to the construction of a m scalar
PWA functions κi

pwa : R → R. For the sake of simplicity,
in the remainder of the paper, we will use the notation κpwa

for functions from R to R.
Fig. 1 depicts such a PWA function κpwa : R → R defined

over a partition {Xi}I5 with 5 regions. The same figure
depicts a pair (Py, κy), with to following properties

Py ⊂ R3 : ProjR P = ∪5
i=1Xi,

κ∗
y : R → R2 : κpwa(x) = [1, 0]κ∗

y(x),∀x ∈ ∪5
i=1Xi.

which represent the relevant elements for the construction of
an mpQP problem, which is able to retrieve as the optimal
solution the original PWA function.

Fig. 1. Example of the solution sought for the pair (Py , κy) based on an
initial PWA function κpwa(x).

III. MAIN RESULT

The construction of an equivalent mpQP (6) with Prop
1− 4 can be divided into two steps. Firstly, a pair (Py, κy)
satisfying Prop 1, 3, 4 is constructed. Secondly, leveraging
(Py, κy), a cost function (6a) and a set of constraints (6b)
are proposed to ensure Prop 2.

A. Convex-concave lifting

1) Basic notions and definitions: Prior to the effective
construction procedure, a novel convex-concave lifting tech-
nique is introduced to ensure the fulfilment of Prop 3 and 4
in the mpQP (6).

Lemma 1. [12] Given a polyhedral partition {Xi}IN
of a

polyhedron X ⊂ Rn, l(x) : X → R is called a piecewise
affine convex lifting if the following conditions hold:

• l(x) = aTi x+ bi for x ∈ Xi;
• l(x) is continuous over X ;
• l(x) > aTj x+ bj for all x ∈ Xi \Xj with i, j ∈ IN and

i ̸= j.

Definition 2. A PWA function g : Rn → R, defined as
g(x) = aTi x+ bi for x ∈ Xi with i ∈ IN , is categorized as a
convex-concave lifting if it satisfies the following conditions:

• The index set IN is partitioned into two groups:
1) Ivex

N and Icave
N , containing the convex items and the

concave items, respectively. They fulfill that

Ivex
N ∪ Icave

N = IN and Ivex
N ∩ Icave

N = {1}.

• For all i ∈ Ivex
N , the following conditions are satisfied:

2) g(x) > aTj x + bj for all x ∈ Xi \ Xj and all j ̸=
i, j ∈ Ivex

N ;
3) g(x) < aTj x+ bj , ∀x ∈ Xi and ∀j ∈ Icave

N \ {1}.
• For all i ∈ Icave

N , the following conditions are satisfied:
4) g(x) < aTj x + bj for all x ∈ Xi \ Xj and all j ̸=

i, j ∈ Icave
N ;

5) g(x) > aTj x+ bj , ∀x ∈ Xi and ∀j ∈ Ivex
N \ {1}.

• For all i, j ∈ IN , i ̸= j, the following condition holds:
6) aTi x+ bi = aTj x+ bj , x ∈ Xi ∩ Xj .

Remark 2. The proposed convex-concave lifting has the
following properties:

• A convex-concave lifting is a convex lifting if

Icave
N = {1}.

• The collection {Xi}IN
is convex-concave liftable is

∀i ∈ IN ,Xi ⊂ R.

Assumption 1. The polyhedral partition {Xi}IN
, it is

convex-concave liftable.

Remark 3. Assumption 1 guarantees the existence of a PWA
function g(x) defined over {Xi}IN

. Remark 2 highlights that
if {Xi}IN

is defined in a one-dimensional space, Assumption
1 is satisfied. In this study, our focus is on a polyhedral
partition {Xi}IN

that satisfies Assumption 1.



Based on the analysis of Definition 2, we present Algo-
rithm 1 for constructing a convex-concave lifting applicable
to a liftable polyhedral partition {Xi}IN

.

Algorithm 1 Construction a convex-concave lifting for a
given collection {Xi}IN

of a polytope X ⊂ Rn

Input: {Xi}IN
and a given constant ϵ > 0.

Output: Parameter pairs (ai, bi),∀i ∈ IN .
1: Partition the set of indindices IN into Ivex

N and Icave
N .

2: Register all neighboring regions in {Xi}IN
, {Xi}Ivex

N
,

and {Xi}Icave
N

, and store them in a set of pairs E .
3: For each (i, j) ∈ E and i, j ∈ IN

∀v ∈ V(Xi ∩ Xj), a
T
i v + bi = aTj v + bj . (10a)

4: For each (i, j) ∈ E with i, j ∈ Ivex
N , add convexity

conditions, ∀v ∈ V(Xi), v /∈ V(Xj):

aTi v + bi ≥ aTj v + bj + ϵ. (10b)

5: For each (i, j) ∈ E i, j ∈ Icave
N , add concavity condi-

tions, ∀v ∈ V(Xi), v /∈ V(Xj):

aTi v + bi + ϵ ≤ aTj v + bj . (10c)

6: For i ∈ Ivex
N \ {1},∀j ∈ Icave

N \ {1}, add boundary
conditions, ∀v ∈ V(Xi):

aTi v + bi + ϵ ≤ aTj v + bj . (10d)

7: For i ∈ Icave
N \ {1},∀j ∈ Ivex

N \ {1}, add boundary
conditions, ∀v ∈ V(Xi):

aTi v + bi ≥ aTj v + bj + ϵ. (10e)

8: Solve a linear quadratic problem with variables
ai, bi,∀i ∈ IN :

min
ai,bi

∑
∀i∈IN

(aTi ai + bTi bi) subject to (10). (11)

2) Application of a convex-concave lifting: Let us con-
sider a given polyhedral partition {Xi}IN

consisting of
an unconstrained region indexed by 1, a convex index set
denoted as Ivex

N , and a concave index set denoted as Icave
N .

We define a PWA function as follows:

g(x) = aTi x+ bi,∀x ∈ Xi, i ∈ IN

where a1 = 0 and b1 = 0. This function serves as a convex-
concave lifting defined over the polyhedral partition {Xi}IN

.
Subsequently, we can define a series of polytopes:

Γ[xT z]T := conv
{[

vT , g(v)
]T

: v ∈ ∪N
i=1V(Xi)

}
, (12a)

F i
[xT z]T := conv

{[
vT , g(v)

]T
: v ∈ V(Xi)

}
, i ∈ IN .

(12b)

In accordance with Definition 2, sets Xi, X , Γ[xT z]T and
F i

[xT z]T exhibit the following relationships:

• ProjRm Γ[xT z]T = X ,ProjRm F i
[xT z]T = Xi.

• ∀i ∈ IN \ {1} , F i
[xT z]T is a facet of Γ[xT z]T .

• int(F1
[xT z]T ) ⊂ int(Γ[xT z]T ).

Using the aforementioned properties as conditions, we
retrieve the convex-concave lifting g(x) from the set Γ[xT z]T

by means of the following proposition.

Proposition 2. The given PWA function g(x) is the optimal
solution to the optimization problem below:

min
z

zT z s.t. [xT , z]T ∈ Γ[xT z]T . (13)

Proof. The unconstrained solution of mpQP (13) is

zun = 0.

Combing with the group of polytopes F i
[xT z]T , we prove the

proposition by dividing Γ[xT z]T into three subsets:

Γ[xT z]T = Γvex
[xT z]T ∪ Γun

[xT z]T ∪ Γcave
[xT z]T

with

Γvex
[xT z]T = S (Ivex

N \ {1}),Γun
[xT z]T = S ({1}),

Γcave
[xT z]T = S (Icave

N \ {1}),
S : N → Rm+1,

S (S) = conv
{[

vT , z
]T

: v ∈ ∪
i∈S

V(Xi), z ∈ R
}
,

where Figure 2 illustrates these sets. In Figure 2, the sets
Ivex
N \ {1}, {1} and Icave

N \ {1} are denoted as S1, S2 and
S3, respectively.
Case 1: [xT , z]T ∈ Γun

[xT z]T For Γun
[xT z]T , the following

relation holds:

int(F1
[xT z]T ) ⊂ int(Γun

[xT z]T ),

and g(x) = 0 in the mean time. Thus, the subsequent relation
is valid:

[xT z]T ∈ Γun
[xT ,z]T ⇒ g(x) = zun = 0.

Case 2: [xT , z]T ∈ Γvex
[xT z]T

In this case, i ∈ Ivex
N \{1}, g(x) degenerates into a convex

lifting of {Xi}Ivex
N \{1}, and mpQP (13) can convert to:

min
z

z s.t. [xT , z]T ∈ Γvex
[xT z]T .

According to the definition of convex lifting, we get:

[xT z]T ∈ Γvex
[xT z]T ⇒ g(x) = z∗ = aTi x+ bi, x ∈ Xi

with i ∈ Ivex
N \ {1}.

Case 3: [xT , z]T ∈ Γcave
[xT z]T

The analysis procedure follows a similar approach as
shown in case 2. Notably, the mpQP (13) is converted as:

max
z

z s.t. [xT , z]T ∈ Γcave
[xT z]T .

Thus, the proposition is proved.

Remark 4. Proposition 2 outlines a procedure to retrieve a
convex-concave lifting g(x) using a polytope Γ[xT :z]T . This
insight will guide us in constructing an equivalent problem
(6) following a similar approach.



S (S1) S (S2) S (S3)

z

x

Γvex
[xT z]T

Γun
[xT z]T

Γcave
[xT z]T

g(x)

Fig. 2. A convex-concave lifting g(x) and its relevant sets

B. Step 1: Constructing of parameter feasible set Py and
feasible solution κy(x)

First, let us refer to the dimensional expansion lemma
proposed in [1].

Lemma 2. [1] Let Γs ⊂ Rds be a full-dimensional polytope
with the set of vertices V(Γs) = {s(1), · · · , s(q)}. For any
finite set of points {s(1), · · · , s(q)} ⊂ Rdt defining a full-
dimensional polytope, an extension of the family V(Γs)
can be obtained in higher-dimensional space Rds+dt for the
concatenated vectors [sT , tT ]T defining the set:

Vs,t :=

{[
s(1)

t(1)

]
, · · · ,

[
s(q)

t(q)

]}
.

The polytope Γs,t = conv(Vs,t) satisfies: Vs,t = V(Γs,t).

Remark 5. For two sets Γs and Γs,t, the following holds:

ProjRds Γs,t = Γs.

Corollary 2. If V(Γs) and Vs,t are rearranged such that{[
s
(1)
1

s
(1)
2

]
, . . . ,

[
s
(q)
1

s
(q)
2

]}
,


s(1)1

t(1)

s
(1)
2

 , . . . ,

s(q)1

t(q)

s
(q)
2


 ,

then the result in Lemma 2 holds:

Γs,t = conv(Vs,t) ⇒ Vs,t = V(Γs,t).

Based on the Assumption 1, let the convex-concave liftable
collection of polyhedra {Xi}IN

and g(x) : ∪
∀i∈IN

Xi → R

be a PWA function defined as g(x) = aTi x + bi, xi ∈ Xi,
representing such a convex-concave lifting of {Xi}IN

.

Proposition 3. Let Ivex
N and Icave

N be the subsets indices of
IN corresponding to the convex and concave liftings. There
exist a polytope Py ⊂ Rn+m+1 and a PWA function κy :
Rn → Rm+1 satisfying Prop 1–4 in II-C. Moreover, they
can explicitly be constructed as:

Py :=conv
{
[vT , yT ]T : v ∈ ∪N

i=1V(Xi), y = κy(v)
}
,

κy(x) :=[κpwa(x)
T , g(x)]T , x ∈ X ,

where g(x) is a convex-concave lifting over the given poly-
hedral partition {Xi}IN

.

Proof. To prove Prop 1 in II-C, one has:

X = conv ∪N
i=1 V(Xi) ⇒ ProjRn Py = X .

Also, with respect to Prop 2 in II-C, it is clear that

κpwa(x) =
[
Im,0m×1

]
κy(x).

To validate Prop 3-4 in II-C, one can use Pu and Γ[xT :z]T ,
as defined in (5) and (12a) respectively. From the definitions,
we derive that:

ProjRn+m Py = Pu,ProjRn Pu = X ,

ProjR[1:n,n+m+1] Py = Γ[xT z]T ,ProjRn Γ[xT z]T = X .

If x ∈ int(X1), since set X1 is the uncontrained region, we
have [xT , κpwa(x)

T ]T ∈ int(Pu). It follows the existence
of ϵ1 > 0 such that [xT , κT

pwa(x)]
T + ϵ1Bn+m ⊂ Pu.

Based on the design procedure of convex-concave lifting,
if x ∈ int(X1), then [xT , g(x)]T ∈ int(Γ[xT z]T ) holds true.
Similarly, there is ϵ2 > 0 such that [xT , g(x)]T + ϵ2Bn+1 ⊂
Γ[xT z]T . Thus, we can choose ϵ3 = min{ϵ1, ϵ2} so that
[xT , κT

pwa(x), g(x)]
T + ϵ3Bn+m+1 ⊂ Py .

If x ∈ Xi with i ∈ IN \ {1}, one can not find
ϵ > 0, [xT , g(x)]T + ϵBn+1 ⊂ Γ[xT z]T , which also means
∄ϵ > 0, [xT , κT

pwa(x), g(x)]
T + ϵBn+m+1 ⊂ Py and

[xT , κT
pwa(x), gc(x)]

T ∈ bd(Py).
Thus, Prop 3 and 4 in II-C are verified.

C. Step 2: Constructing an equivalent mpQP with a cost
function J(x, [uT , z]T )

Proposition 4. Consider the mpQP problem (6) with the
parameter feasible set Py and a PWA function κy(x) defined
according to the Proposition 3. The optimal solution to the
mpQP problem (6) satisfies the following equation:

κ∗
y(x) ≡ κy(x),∀x ∈ X ,

if the cost function is synthesised as

J(x, [uT , z]T ) = αzT z + 0.5uTu− uTF1x

with α ∈ R a large enough positive constant.

Proof. By utilizing the cost function, we obtain the uncon-
strained optimal solution κun

y (x), expressed as:

κun
y (x) =

[
F1

0

]
x.

Additionally, as x serves as a parameter in the optimization
problem, the cost function J(x, [uT , z]T ) can be equivalently
transformed into:

⇒ αzT z + 0.5(u− F1x)
T (u− F1x)

⇒
([

u
z

]
− κun

y (x)

)T [
Im 0
0 2α

]([
u
z

]
− κun

y (x)

)
. (15)

In the subsequent analysis, we will establish the proposi-
tion by considering the cases where x belongs to different
regions.
Case 1: x ∈ X1



As shown in Proposition 3, when x ∈ X1, there are:

κy(x) = [FT
1 , 0]Tx ⇒ κ∗

y(x) = κun
y (x) = κy(x).

Case 2: x /∈ X1

When x /∈ X1, there are:

z ̸= 0 ⇒ [xT , (κun
y (x))T ]T /∈ int(Py).

In this situation, the optimization problem can be equiva-
lently converted as

min
[uT ,z]T

J(x, [uT , z]T ) in type (15),

s.t. [xT , uT , z]T ∈ bd(Py).

For sufficiently large positive constant α, in conjunction with
formulation (15), the factor influencing the cost function
will converge to the term zT z. According to Proposition
3, the optimal trajectory on the boundary, minimizing zT z,
satisfies:

z∗ = g(x).

In the same time, with the help of the construction process
of Py ,

u∗ = κpwa(x)

when z sets to the boundary value. Thus, we have

κ∗
y(x) =

[
u∗

z∗

]
=

[
κpwa(x)
g(x)

]
= κy(x).

Thus, ∀x ∈ X , κ∗
y(x) ≡ κy(x) is proved.

IV. ILLUSTRATION

Consider a scalar PWA function:

κpwa(x) =


−1.5x− 4.75, x ∈ X2 = {x : −4 < x ≤ −2}
2x+ 2.25, x ∈ X3 = {x : −2 < x ≤ −1}
−0.25x, x ∈ X1 = {x : −1 < x ≤ 3}
1.5x− 5.25, x ∈ X4 = {x : 3 < x ≤ 5}
−5x+ 27.25, x ∈ X5 = {x : 5 < x ≤ 6}

By following the steps outlined in Algorithm 1, we have
obtained a convex-concave lifting function g : R → R
defined as g(x) = aix + bi. To simplify without loss of
generality, we apply linear mapping, represented as:

ai = 10000a∗i , bi = 10000bi,

where a∗i and b∗i represent the optimal solutions of the con-
strained optimization problem (11), subject to the constraints
a1 = 0 and b1 = 0. The resulting lifting parameters, ai and
bi, are obtained by assigning the i-th elements of the vectors
as follows:[

−2.0000 −1.0000 0 −0.8571 −1.8571
]
,[

−3.0000 −1.0000 0 2.5714 7.5714
]
.

Finally, we formulate an mpQP problem (6) by incorpo-
rating the cost function and parameter feasible set as follows:

J(x, [u, z]T ) = 0.5u2 + 0.25xu+ 100z2,

Py = {[x, u, z]T ∈ RT : Ht[x, u, z]
T ≤ bt}

with

Ht =


−0.3353 0.7115 −0.3435
−0.3195 0.2452 −0.8323
−0.6286 0.1143 −0.4000
−0.4583 −0.1549 −0.7681
0.2966 0.0322 0.4023
0.2947 −0.0417 0.2709
0.1626 −0.4182 0.3950
0.1610 −0.4295 0.3758

 , bt =


0.5132
0.3808
0.6571
0.4195
0.8655
0.9154
0.8016
0.8052

 .

For clarity, separate identical translation operations are
applied to {Xi}I5

, Proj[x,u]T κ∗
y(x), Γ[x,z]T , Py and κ∗

y(x)
in Fig. 3. κ∗

y(x) is the optimal solution of the mpQP problem,
and only when x ∈ int(X1), the curve remains inside Py .
Furthermore, the equations Proj[x,u]T κ∗

y(x) = κpwa(x), as
depicted in Fig. 3.

Fig. 3. Example of the solution sought for the pair (Py , κ∗
y).

V. CONCLUSIONS

After delineating the geometric structure of the optimal
solution for an mpQP problem, a polyhedral partition was
implemented to partition the regions into the boundary (sat-
urated) and interior components. To preserve the boundary-
interior structure in a lifting space, a convex-concave lifting
technique was introduced. By leveraging a high-dimensional
parametric feasible set and a relevant cost function, an
equivalent mpQP problem was constructed, considering the
characteristics of convex-concave lifting. It should be noted
that the current convex-concave liftability conditions can
be regarded as conservative. However, it has been pointed
out that it covers at least the class of systems with PWA
control laws that can be decoupled to dependency on scalar
components of the state space. Additional endeavours will be
dedicated to addressing the conservativeness of the proposed
strategy and extending its applicability to complex systems.
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