Bathymetric LiDAR Waveform Decomposition with Temporal Attentive Encoder-Decoders - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Bathymetric LiDAR Waveform Decomposition with Temporal Attentive Encoder-Decoders

Résumé

This paper is concerned with the decomposition of bathymetric lidar waveforms. Because of the presence of water, processing such data remains a challenge since water impacts their shape and signal-to-noise ratio, depending in particular on the associated turbidity. In this paper, we explore the use of attentive autoencoders to decompose bathymetric waveforms and recover their air/water interface, water column, and water bottom components simultaneously, without relying on assumptions about the impulse or target surface nature. On simulated waveforms, the method achieves lower decomposition error than existing approaches, handling overlapping echoes of very shallow waters and weak returns in deeper water. This opens to attractive strategies to process real bathymetric waveforms.
Fichier principal
Vignette du fichier
IGARSS_2023_Letard_et_al.pdf (440.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04310710 , version 1 (27-11-2023)

Identifiants

Citer

Mathilde Letard, Thomas Corpetti, Dimitri Lague. Bathymetric LiDAR Waveform Decomposition with Temporal Attentive Encoder-Decoders. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Jul 2023, Pasadena, United States. pp.4435-4438, ⟨10.1109/IGARSS52108.2023.10281841⟩. ⟨hal-04310710⟩
49 Consultations
78 Téléchargements

Altmetric

Partager

More