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ABSTRACT 
 
This paper is concerned with the decomposition of 
bathymetric lidar waveforms. Because of the presence of 
water, processing such data remains a challenge since water 
impacts their shape and signal-to-noise ratio, depending in 
particular on the associated turbidity. In this paper, we 
explore the use of attentive autoencoders to decompose 
bathymetric waveforms and recover their air/water interface, 
water column, and water bottom components simultaneously, 
without relying on assumptions about the impulse or target 
surface nature. On simulated waveforms, the method 
achieves lower decomposition error than existing approaches, 
handling overlapping echoes of very shallow waters and 
weak returns in deeper water. This opens to attractive 
strategies to process real bathymetric waveforms. 
 

Index Terms— full-waveform lidar, bathymetric lidar, 
signal decomposition, waveform decomposition, attention 
UTime 
 

1. INTRODUCTION  
 
Though airborne LiDAR data are mainly used as 2D products 
or 3D point clouds, their origin lies in the processing of 
backscattered laser signals and their conversion into spatial 
information. The precise extraction of the various signal 
components linked to the hit targets is thus crucial to 
interpreting with precision the observed scene. However, this 
extraction entirely relies on the ability both to process the 
noise efficiently and to remain sensitive enough to subtle 
variations denoting low-reflective or vertically close targets. 
Research on full-waveform lidar data processing revealed the 
potential of finer analysis to retrieve additional targets and 
increase the resulting point clouds’ density [1]–[3]. However, 
handling large datasets while minimizing the level of false 
detections – which produce noise in the point clouds and 
complexify their interpretation – is still a challenge, namely 
for airborne bathymetric lidar (ALB). ALB uses green lasers 
to penetrate water and produce bathymetric data. The 
resulting waveforms have two main peaks: one generated by 
the water surface and another occurring when, and if, the 
water bottom is hit [4], [5]. ALB signals have to compose 
with additional sources of noise due to the optical scattering 

of the laser beams in the water column, which 1) 
exponentially attenuates the reflected intensity of the water 
bottom and 2) reflects a portion of the signal towards the 
receptor without signifying a solid target, resulting in a third 
waveform component that elongates the surface peak [4], [5]. 
In addition, extracting meaningful information from 
waveforms is not trivial because of the noise that disrupts the 
signal and gets mixed up with weak information, which is 
often lost during processing. In this paper, instead of a 
deconvolution by inversion of the pulse response function 
that can be challenging due to the noise in the signal, we 
explore the use of deep neural networks to tackle these 
problems and perform bathymetric waveform decomposition. 
We use a temporal attentive autoencoder to reconstruct the 
three main components of the bathymetric lidar signal 
simultaneously: the water surface, the water column, and the 
bottom. Our method targets three main limitations of existing 
waveform processing methods: (1) it does not rely on an 
iterative process, and (2) it simultaneously recovers the three 
main bathymetric waveform components. 
 

2. WAVEFORM PROCESSING METHODS 
 
The collected waveform is a sum of sub-signals that each 
result from a convolution between the emitted pulse and the 
target surface function [6]. Traditionally, waveform 
processing is thus made either with deconvolution methods 
[7], [8] or decomposition procedures relying on the fitting of 
mathematical functions to previously detect peaks in the 
signal [6], [9]. These approaches rely on various assumptions 
about the components’ impulse function or nature. In [10] and 
[11], the authros show that waveforms can be considered as a 
sum of Gaussians corresponding to the objects in the 
illuminated cone. The emitted pulse and the target functions 
are thus often approximated with Gaussian functions of fixed 
width or more asymmetric shapes to fit the empirical sensor 
impulses [6], [12], [13]. When using the decomposition 
approach, Gaussian mixture models are often used to estimate 
iteratively the parameters of these Gaussian or other 
predefined functions, which are then used as proxies on the 
nature of the targets [14]. Deconvolution procedures include, 
among others, the Richardson-Lucy deconvolution and the 
Wiener filter deconvolution. Several comparative studies [8], 
[15], [16] show the superiority of Richardson-Lucy 



deconvolution in retrieving weak returns and recovering the 
amplitude of the different components but underline its costly 
iterative process. Several limitations appear with these 
classical approaches: 

(1) Decomposition methods relying on the fitting of 
mathematical functions are not always adapted to 
the presence of the water column component, which 
has an entirely different shape;  

(2) Target surface functions may not always be 
similar/gaussian, and returns may be poorly 
approximated or mixed; 

(3) The denoising methods or post-processing 
procedures used with these approaches to avoid 
false detections may lead to loss of information. 

 
3. PROPOSED DECOMPOSITION NETWORK 

 
We adapt U-Time, the 1D version of U-Net introduced in [17] 
and applied to bathymetric lidar waveforms in [18]. We use 
the resulting encoder-decoder structure to output three 
waveform components, as illustrated in Figure 1. 
The encoder is a stack of 4 identical blocks comprising two 
series of 1D convolution, rectified linear unit activation, and 
batch normalization. Each block is followed by a max pooling 
operation of size 2, thereby reducing by half the length of the 
feature vector passed on to the next step. In addition, at each 
step, the number of convolution filters, initially set to 16, is 
doubled to increase the network’s abstraction ability. 
The decoder is a stack of four blocks with a different 
structure. Each block starts with a cross-attention mechanism, 
followed by up-sampling of size 2, a typical U-Net skip 
connection, and two series of 1D convolution, rectified linear 
unit activation, and batch normalization. Contrary to the 
encoder, the number of filters at each block is reduced by half, 
thus returning to 16 in the last convolution layers. 
Additive attention, as introduced in [19], is used to better 
pass information about the waveform across the network and 
allow the model to focus on features from different 
representation spaces in the decoder, thereby reconstructing 
waveform components more effectively. Using this setup, 
each sample of the decoder layer attends to each sample of 
the corresponding encoder layer. 

Between the encoder and the decoder, two series of 128 
convolution filters with ReLu activation and batch 
normalization are applied to the 16 samples-long embedding 
of the input waveform. 
At the end of the decoder, three dense layers with sigmoid 
activation allow the network to output three sequences 
corresponding to the three waveform components. 
 
To constrain the network to learn both amplitude and shape 
relevance when reconstructing the waveform components, 
we designed a custom loss function, relying on the Mean 
Absolute Error (MAE) and the Bhattacharyya distance. 
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where 𝑁 is the number of samples in the waveform, 𝑝𝑟𝑒𝑑 is 
the predicted sequence, and 𝑡𝑟𝑢𝑒 is the true sequence. 
Roughly, the idea of the first term is to ensure global 
consistency in the estimations, this consistency being 
balanced by the waveform intensity (more weight is applied 
for locations with high intensities); the second term rather 
focuses on shapes of the decomposed waveforms. Training is 
performed on batches of 100 waveforms using an Adam 
optimizer with a constant learning rate of 0.0001. The model 
was trained for 500 epochs. One training epoch took, on 
average, 32 seconds on an Nvidia Quadro RTX 5000 GPU. 
 

4. BATHYMETRIC WAVEFORMS SIMULATION 
 
To simplify the training process (that requires pairs of input 
waveforms and associated decompositions), to evaluate the 
approach, and to fully control the physical conditions and 
their output, we use simulated data obtained with a 
bathymetric waveform simulator [20]. For training, 
validation and testing, we simulated three sets of 15000, 
3700, and 10000 waveforms, respectively. In each dataset, 
five types of environments were simulated by varying the 
simulation parameters (the water body’s depth and turbidity). 
Different impulse functions were used to generalize the 
method to different sensors and a systematic noise is added. 
The parameters used are summarized in Table 1. 
 
Parameter Value(s) Parameter Value(s) 
Depth (m) [0.15, 20] Pulse amplitude [0.05, 1] 
Kd (m-1) [0.08, 0.85] Pulse width [0.1, 1] 
Bottom 
reflectance 

[0.03, 0.85] Pulse type (Generalized) 
extreme value  

Incidence on 
surface (rad) 

[0, 0.8] Incidence on 
bottom (rad) 

[0, 1.35] 

Vertical 
resolution (m) 

0.0626   

Table 1. Parameters used to simulate lidar waveforms. 
 

Figure 1. Illustration of the proposed waveform 
decomposition network architecture. 



 
5. EVALUATION METRICS AND COMPARISON 

 
To evaluate the performance of our method, we compare each 
retrieved component to its simulated equivalent.  
For each of the three components, three metrics are 
computed. They are defined in equations (2) – (4), where 𝑁 
is the waveform length, 𝑝𝑟𝑒𝑑 the predicted sequence, 𝑡𝑟𝑢𝑒 
the true sequence, and 𝐾𝐿 the Kullback-Leibler divergence. 
 
The weighted MAE, quantifies the mean element-wise 
amplitude error: 

 
The Kullback-Leibler divergence measures the relative 
entropy, or difference in information that two distributions 
contain. As it is not symmetric, we use a custom metric: 

 
The Bhattacharyya distance quantifies how far two samples 
of two distributions are from each other in time and 
amplitude. For consistency purposes, we used the metric B’: 

 
These three metrics range between 0 and 1, where 0 indicates 
high similarity and 1 indicates high dissimilarity. 
 
We compare our results to Gaussian Mixture Model (GMM) 
decompositions with two components – as the water column 
is not Gaussian, and as in [15]  – and a Lucy-Richardson (RL) 
deconvolution. Other methods will be tested in the future.  
 

Table 3. Results obtained with state-of-the-art approaches 
5. RESULTS 

 
Results obtained with the best model and with the classical 
approaches on the test data are presented in Tables 2 and 3. 
 
Overall, the autoencoder reaches lower wMAEs than the 
GMM and RL methods, although it has higher amplitude 
errors than distribution distances, which shows that it tends 
to estimate component shapes better than their amplitude. 
Analyzing the metrics more deeply shows that there is no 
relationship between the value of wMAE, mKL and B’ and 
the turbidity of the simulated water body. It also highlights 
the higher decomposition errors when processing waveforms 
at depth below 0.5 m. Qualitative results, presented in Figure 
2 illustrate these observations: in Figure 2.a), which 
illustrates very shallow waters, the gap between the 
prediction and the simulation is broader than in Figures 2.b) 
and 2.c), and the amplitude error is noticeable, while the 
peaks appear close to their true locations. Figure 2.c) shows 
the ability of the network to recover very weak returns in 
deeper waters. Visual analysis of the corresponding GMM 
and RL results show that RL misses the bottom return in the 
cases presented in Figure 2.a) and mistakes noise for returns 
in the 2.c) one, while GMM with two components retrieves 
two returns in the first case, and falsely decomposes the 
surface return into two echoes in the second. 
 

6. DISCUSSION AND CONCLUSION 
 
Our results outline the potential of temporal attentive 
convolutional neural networks for lidar waveform 
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a) b) c)  
Figure 2. Examples of waveform decomposition results in a) very shallow, b) shallow and c) deep water. 
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Waveform 
component 

Median 
wMAE 

Median 
mKL 

Median 
B’ 

Total 0.00333 0.00056 0.00028 
Surface 0.00420 0.00040 0.00020 
Column 0.00302 0.00056 0.00028 
Bottom 0.00333 0.00074 0.00037 

Waveform component GMM  RL 
Total 0.235 0.122 

Surface 0.147 / 
Column / / 
Bottom 0.098 / 

Table 2. Results obtained with the proposed approach. 



decomposition. Using deep neural networks has the 
advantage of not necessitating setting fixed parameters. 
Compared to GMM and RL it is possible to reconstruct the 
three components of bathymetric waveforms simultaneously. 
Amplitude errors are lower than with these two traditional 
methods, and overlapping or weak echoes not captured with 
GMM and RL are detected.  
Considering the correlation between the physical 
characteristics of the targets and their response functions, 
decomposing lidar waveforms into a sum of surface functions 
is of great potential to derive information on the nature or the 
structure of the objects detected. In the case of bathymetric 
lidar, it offers the potential to retrieve more information about 
the bathymetry. In addition, it may pave the way for water 
column turbidity assessments relying on remotely sensed 
rather than field measurements. Further developments to add 
physical constraints in the loss function and better estimate 
the maximum signal-to-noise ratio supported by the approach 
are being conducted. Application to real data should also give 
further information on the usability of attentive autoencoders 
to process large sets of bathymetric waveforms. 
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