Fractal properties of the frontier in Poissonian coloring - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Fractal properties of the frontier in Poissonian coloring

Résumé

We study a model of random partitioning by nearest-neighbor coloring from Poisson rain, introduced independently by Aldous and Preater. Given two initial points in $[0,1]^d$ respectively colored in red and blue, we let independent uniformly random points fall in $[0,1]^d$, and upon arrival, each point takes the color of the nearest point fallen so far. We prove that the colored regions converge in the Hausdorff sense towards two random closed subsets whose intersection, the frontier, has Hausdorff dimension strictly between $(d-1)$ and $d$, thus answering a conjecture raised by Aldous. However, several topological properties of the frontier remain elusive.
Fichier principal
Vignette du fichier
FrontierPoisson2.pdf (9.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04299534 , version 1 (22-11-2023)

Identifiants

Citer

Anne-Laure Basdevant, Guillaume Blanc, Nicolas Curien, Arvind Singh. Fractal properties of the frontier in Poissonian coloring. 2023. ⟨hal-04299534⟩
21 Consultations
16 Téléchargements

Altmetric

Partager

More