Trend to equilibrium and diffusion limit for the inertial Kuramoto-Sakaguchi equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Trend to equilibrium and diffusion limit for the inertial Kuramoto-Sakaguchi equation

Résumé

In this paper, we study the inertial Kuramoto-Sakaguchi equation for interacting oscillatory systems. On the one hand, we prove the convergence toward corresponding phase-homogeneous stationary states in weighted Lebesgue norm sense when the coupling strength is small enough. In [10], it is proved that when the noise intensity is sufficiently large, equilibrium of the inertial Kuramoto-Sakaguchi equation is asymptotically stable. For generic initial data, every solutions converges to equilibrium in weighted Sobolev norm sense. We improve this previous result by showing the convergence for a larger class of functions and by providing a simpler proof. On the other hand, we investigate the diffusion limit when all oscillators are identical. In [19], authors studied the same problem using an energy estimate on renormalized solutions and a compactness method, through which error estimates could not be discussed. Here we provide error estimates for the diffusion limit with respect to the mass m ≪ 1 using a simple proof by imposing slightly more regularity on the solution.
Fichier principal
Vignette du fichier
paper.pdf (256.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04263367 , version 1 (28-10-2023)
hal-04263367 , version 2 (02-11-2023)

Identifiants

Citer

Francis Filbet, Myeongju Kang. Trend to equilibrium and diffusion limit for the inertial Kuramoto-Sakaguchi equation. 2023. ⟨hal-04263367v2⟩
137 Consultations
91 Téléchargements

Altmetric

Partager

More