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TREND TO EQUILIBRIUM AND DIFFUSION LIMIT FOR THE INERTIAL

KURAMOTO-SAKAGUCHI EQUATION

FRANCIS FILBET AND MYEONGJU KANG

Abstract. In this paper, we study the inertial Kuramoto-Sakaguchi equation for interacting
oscillatory systems. On the one hand, we prove the convergence toward corresponding phase-
homogeneous stationary states in weighted Lebesgue norm sense when the coupling strength is
small enough. In [10], it is proved that when the noise intensity is sufficiently large, equilibrium of
the inertial Kuramoto-Sakaguchi equation is asymptotically stable. For generic initial data, every
solutions converges to equilibrium in weighted Sobolev norm sense. We improve this previous result
by showing the convergence for a larger class of functions and by providing a simpler proof. On
the other hand, we investigate the diffusion limit when all oscillators are identical. In [19], authors
studied the same problem using an energy estimate on renormalized solutions and a compactness
method, through which error estimates could not be discussed. Here we provide error estimates for
the diffusion limit with respect to the mass m ≪ 1 using a simple proof by imposing slightly more
regularity on the solution.
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1. Introduction and main results

Synchronous behavior of a large but loosely organized group of agents is ubiquitously found
in various social and biological phenomena, for example, flashing of fireflies, beating of cardiac
cells, and hand clapping in opera, etc [1, 6, 15, 26, 28, 31, 30]. Recently, collective dynamics of an

Date: November 2, 2023.
2020 Mathematics Subject Classification. 35B35, 35Q70, 92B25.
Key words and phrases. Kinetic Kuramoto model · Kuramoto–Sakaguchi–Fokker–Plank model · hypocoercive

method · Synchronization.
Acknowledgment. Both authors are grateful to Prof. S. Y. Ha for discussions on the inertial Kuramoto-

Sakaguchi equation. F. Filbet would like to thank Seoul National University for hosting a very successful visit.

1



2 FRANCIS FILBET AND MYEONGJU KANG

interacting oscillatory system has received more attention due to its diverse applications in research
areas of control theory, physics, neuroscience [1].

Systematic studies on synchronization were invoked by the pioneer works of A. Winfree [31,
30] and Y. Kuramoto [23, 24, 22]. More precisely, these models consider a collection of N ∈ N

oscillators, represented by their phase-frequency pair (θi, ωi) ∈ T×R and by their natural frequency
νi. In the presence of inertia and stochastic noise effect, the dynamics of stochastic Kuramoto
oscillators is governed by the following set of globally coupled ODEs [1, 22, 27]:





dθit = ωi
t dt,

m dωi
t =

(
−ωi

t + νi +
κ

N

N∑

k=1

sin
(
θkt − θit

))
dt +

√
2σ dBi

t,

(1.1)

where nonnegative coefficients m, κ, and σ represent mass, coupling strength, and noise intensity,
respectively, and Bi

t’s are independent one-dimensional Brownian motions. We refer to [8, 11, 9,
17, 18] for the emergent behavior of the Kuramoto model (1.1) including zero inertia case (m = 0)
or noiseless case (σ = 0).

The continuum approximation assumes that populations at the thermodynamic limit N → +∞
are described by a continuous distribution f = f(t, θ, ω, ν) at time t ∈ R

+, phase θ ∈ T, frequency
ω ∈ R, and natural frequency ν ∈ R. Under this assumption, the time evolution is governed by the
following Vlasov-Fokker-Planck-type equation [1, 17]:





∂tf + ω ∂θf + ∂ω(f T [f ]) =
σ

m2
∂2
ωf,

T [f ](t,z) = − ω

m
+

ν

m
+

κ

m

∫

T×R2

sin(θ∗ − θ)f(t,z∗) dz∗,

f(t = 0) = fin ≥ 0 ,

(1.2)

where z = (θ, ω, ν) ∈ T × R
2. Observe that since the ν variable only appears as a parameter we

have the following invariant
∫

T×R

f(t,z) dωdθ =

∫

T×R

fin(z) dωdθ =: g(ν).

In order to highlight important parameters, we introduce rescaled coupling strength and noise
intensity κ̃ and σ̃ as 




κ̃ =
κ

m
,

σ̃ =
σ

m
and define the macroscopic quantity as

ρ(t, θ) =

∫

R2

f(t,z) dω dν .

Hence we simplify T [f ] as

T [f ](t,z) = − ω

m
+

ν

m
+ κ̃ (sin ∗ρ(t))(θ).

and system (1.2) can be written as




∂tf + ω ∂θf + κ̃ (sin ∗ρ) ∂ωf = LFP[f ] ,

f(t = 0) = fin ≥ 0 ,
(1.3)
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with

(1.4) LFP[f ] :=
1

m
∂ω

(
σ̃ ∂ωf + (ω − ν) f

)
.

For the existence and uniqueness theory on (1.2), we refer to [10, 19], in which global nonnegative
weak solutions are constructed in weighted Sobolev spaces.

The goal of this paper is twofold. On the one hand, we study the long time behavior of the
solution to (1.2), when the coupling strength κ̃ > 0 is small compared to the noise intensity σ̃ > 0.
In that case, the global equilibrium is characterized by a space homogeneous distribution and we
prove that the solution of (1.2) converges exponentially fast to this equilibrium with an explicit
rate of convergence. On the other hand, we consider the case of identical oscillators and investigate
the limit when mass ε := m goes to zero. Hence, we prove that the local density ρε converges to the
solution of the drift-diffusion equation. Our methods provides directly error estimates with respect
to ε.

In the next subsections, we describe more precisely our main results and the state of the art.

1.1. Long time asymptotics. First, note that nonnegative phase-homogeneous state feq = feq(ω, ν)
becomes stationary solution of (1.3)-(1.4) if and only if

LFP[feq] = 0 and 2π

∫

T×R

feq(ω, ν) dω = g(ν) .

Thus we denote by N∞(ν) = ρ∞ g(ν) with ρ∞ = ‖fin‖L1/(2π) and

M(ω, ν) :=
1√
2πσ̃

exp

(
−(ω − ν)2

2 σ̃

)
,

hence one can check that

f∞(ω, ν) := N∞(ν)M(ω, ν)

becomes phase-homogeneous stationary solution to (1.3)-(1.4).
Recently, the asymptotic stability of f∞ has been studied in [10], where it has been shown that

the solution f of (1.3)-(1.4) converges to f∞ exponentially fast for sufficiently large σ̃ > 0. More
precisely, suppose there exists h such that f = f∞ +

√
f∞ h and

∫

R

‖h(t, ν)‖2Hs(T×R) dν < ∞, ∀ t ≥ 0,

for s ≥ 1, hence for σ̃ > 0 satisfying

max

(
1

m2
, κ̃, m2κ̃2

)
≪ σ̃,

there exists C1 > 0 such that∫

R

‖h(t, ν)‖2Hs dν . e−C1t

∫

R

‖h(0, ν)‖2Hs dν .

Here our aim is twofold. On the one hand, we give an explicit condition on the intensity of
collision σ̃ and the coupling strength κ̃ to get the convergence to the homogeneous stationary state
f∞. This condition requires that κ̃ is sufficiently small compared to σ̃. On the other hand, we
provide a simpler proof of convergence than the one presented in [10]. We apply the hypocoercivity
method with a micro-macro decomposition, developed in [29, 20, 14], to get quantitative estimates
on the convergence to equilibrium. The advantage of this approach is that it is simply based on
a natural weighted L2 estimate. The key tool of our method is a modified energy functional E [f ],
whose square root is a norm equivalent to the weighted L2 norm, such that

dE [f ]
dt

≤ −C E [f ],
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for an explicitly computable positive constant C. It is worth to mention that this functional
framework is well adapted to the development of structure preserving numerical schemes [5, 4] and
will be the purpose of a forthcoming work [16]. Furthermore, this technique has also been applied
for the asymptotic stabilty of related models [12, 13, 25].

Before we present our first main result, we introduce macroscopic quantities N , J , and P defined
as

(1.5)





N(t, θ, ν) :=

∫

R

f(t,z) dω (density) ,

J(t, θ, ν) :=

∫

R

f(t,z) (ω − ν) dω (first moment) ,

P (t, θ, ν) :=

∫

R

f(t,z) (ω − ν)2 dω (second moment) ,

which will be used throughout this paper. One can multiply the equation (1.3)-(1.4) by (1, ω − ν)
and integrating in ω ∈ R to get following system of balance laws:

(1.6)





∂tN + ∂θ (J + νN) = 0,

∂tJ + ∂θ (P + νJ) − κ̃ (sin ∗ρ)N = − J

m
.

Next, we introduce a weighted Lebesgue space by considering a weight function γ̄ : R 7→ R
+ such

that γ̄(ν) > 0, for all ν ∈ R,

(1.7)

∫

R

dν

γ̄(ν)
= 1 and

∫

R

|g(ν)|2 γ̄(ν) dν < ∞.

Then we set
γ(ω, ν) := γ̄(ν)M−1(ω, ν),

and define the weighted L2
γ(T× R

2) norm as

‖h‖L2
γ
=

(∫

T×R2

|h|2 γ(ω, ν) dz
)1/2

,

and the corresponding weighted L2
γ̄ norm for the macroscopic quantity R : T× R 7→ R as

‖R‖L2
γ̄

=

(∫

T×R

|R(θ, ν)|2 γ̄(ν) dν dθ
)1/2

.

Under these setting, we have exponential relaxation of the solution of (1.3)-(1.4) toward a phase-
homogeneous stationary state.

Theorem 1.1. Consider an initial data fin ≥ 0 such that
∫∫

T×R2

|fin|2γ(ω, ν) dz < +∞.

Then there exists a constant C∞ > 0, only depending on ‖N∞‖L1 and ‖N∞‖L2
γ̄

, such that if the

coupling strength κ̃ > 0 and the noise intensity σ̃ > 0 satisfy

C∞ max

(√
κ̃

m
, κ̃, mκ̃

)
≤ σ̃,(1.8)

hence the solution f to (1.3)-(1.4) converges to a phase-homogeneous stationary state f∞ exponen-

tially fast

‖f(t)− f∞‖L2
γ
≤ 3 ‖f(0) − f∞‖L2

γ
e−C t, ∀ t ≥ 0,

where C > 0 only depends on C∞ and max
(√

κ̃/m, κ̃, mκ̃
)
.
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The proof of this result is provided in Section 2. The key idea is to get advantage of the dissipation
corresponding to the Fokker-Planck operator for the weighted L2 norm. Then the main difficulty
consists in proving the convergence of the macroscopic quantity

N(t, θ, ν) :=

∫

R

f(t,z) dω,

toward the equilibrium N∞. We adapt the hypocoercivity method developed in [29, 14] to the
present model (1.3)-(1.4). Instead of estimating directly the quantities of interest, we introduce
modified energy functionals in order to recover dissipation and thus a convergence rate on N . Our
approach is related to the one developed in [14] and [7, 21, 3, 2] for the Vlasov-Poisson-Fokker-
Planck system. Even if the natural energy corresponding to the system (1.3)-(1.4) does not provide
an estimate, the key point here is to exploit the regularity of the nonlocal term sin ∗ρ.

Let us now make some comments how our results compares with the one presented in [10].

Remark 1.1. In [10], it is required that κ̃ > 0 and σ̃ > 0 satisfy

C̃max

(
1

m2
, κ̃, m2κ̃2

)
≤ σ̃,(1.9)

for some sufficiently large C̃ > 0. Note that as κ > 0 goes to zero, left hand side of (1.9) does

not converges to zero, whereas left hand side of (1.8) converges to zero. Moreover, as κ̃ > 0 goes

to infinity, left hand side of (1.9) diverges to infinity with growth rate O(m2κ̃2), whereas left hand

side of (1.8) diverges to infinity with growth rate O(mκ̃).

1.2. Diffusion limit for identical oscillators. We now present our second main result on the
diffusion limit of (1.3)-(1.4) for identical oscillators, i.e., g(ν) = δ0(ν). We consider the following
rescaling t 7→ ε t and ε = m in (1.3)-(1.4), which yields :





ε ∂tf
ε + ω ∂θf

ε + κ̃ (sin ∗ρε) ∂ωf ε = LFP[f
ε] ,

f ε(t = 0) = f ε
in ≥ 0 ,

(1.10)

with

(1.11) LFP[f
ε] :=

1

ε
∂ω

(
σ̃ ∂ωf

ε + ωf ε

)

and ρε is given by

ρε(t, θ) =

∫

R

f ε(t, θ, ω) dω, ∀ (t, θ) ∈ R
+ × T.

We remind (1.6) that ρε and the first moment Jε are given by




∂tρ
ε +

1

ε
∂θJ

ε = 0,

ε ∂tJ
ε + ∂θP

ε − κ̃ (sin ∗ρε) ρε = −Jε

ε
,

hence differentiating the last equation with respect to θ and combining it with the the former, it
yields that

(1.12) ∂t (ρ
ε − ε∂θJ

ε)− ∂θ

(
∂θP

ε − κ̃ (sin ∗ρε) ρε
)

= 0.

In the limit ε → 0, it is expected that (f ε)ε>0 converges to ρM, that is,

P ε =

∫

R

f εω2dω → σ̃ ρ, as ε → 0.
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Therefore, we formally get that the limit ρ is solution to the following drift-diffusion equation

(1.13)

{
∂tρ− σ̃ ∂2

θρ + κ̃ ∂θ ((sin ∗ρ) ρ) = 0 ,

ρ(0) = ρin.

Since the ν variable now cancels, we consider the weighted L2 space where the weight is now given
by invert of the centred Gaussian distribution M

M(ω) =
1√
2π σ̃

exp

(
−ω2

2σ̃

)
.

Thus, we prove the following result.

Theorem 1.2. Suppose that the initial data (f ε
in)ε>0 in (1.10)-(1.11), satisfy the following assump-

tions

(1.14) ‖f ε
in‖L2

M−1

+ ‖∂θf ε
in‖L2

M−1

< +∞,

uniformly with respect to ε and the initial datum ρin in (1.13) verifies

‖ρin‖L2 < +∞.

Moreover, we suppose that

‖f ε
in‖L1 = ‖ρin‖L1 = M0.

Let f ε be the solution to (1.10)-(1.11) and ρ be the solution to (1.13). Then the following statements

hold true uniformly with respect to ε

‖f ε(t)− ρε(t)M‖L2

M−1

≤ ‖f ε
in − ρεinM‖L2

M−1

e−σ̃ t/(4ε2) + C ε
(
‖∂θf ε

in‖L2

M−1

+ ‖f ε
in‖L2

M−1

)
eC t ,

and

(1.15) ‖ρε(t)− ρ(t)‖H−1 ≤ C
(
‖ρεin − ρin‖H−1 + ε

(
‖f ε

in‖L2

M−1

+ ‖∂θf ε
in‖L2

M−1

))
eC t ,

where C is a positive constant only depending on σ̃, κ̃ and M0.

Remark 1.2. In [19], the authors also investigated the same problem using a compactness method

and an energy estimate, they proved that

ρε → ρ, inL1 ((0, T ) × T) , when ε → 0 ,

considering the notion of renormalized solution. Our method is simpler than the former but requires

more regularity. Moreover, it allows us to prove error estimates with respect to ε thanks to the

propagation of regularity θ uniformly in with respect to ε.
Recently, A. Blaustein provided error estimates for the diffusive limit of the Vlasov-Poisson-Fokker-

Planck system by proving propagation of regularity in weighted Lp spaces [3].

The rest of the paper is organized as follows. On the one hand, in the next section (Section 2),
we establish some basic properties of (1.3)-(1.4), hence we study the propagation of the modified
energy functional E [f ] and prove Theorem 1.1 on the exponential relaxation of f toward the phase
homogeneous stationary state f∞. On the other hand, in Section 3, we consider the particular case
when all oscillators are identical and study the diffusion limt to prove our second result (Theorem
1.2) on error estimates in the diffusion limit for identical oscillators. Finally, Section 4 is devoted
to a brief summary and possible future works.

2. Long time behavior for small coupling strength

In this section, we present a priori estimates which aim at describing the long time behavior of
(1.3)-(1.4) when collisions dominate. Then, we focus on macroscopic quantities and provide a free
energy estimate, which is the starting point of our analysis.
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2.1. Basic properties. In this section, we study some basic properties of the inertial equation
(1.3)-(1.4) showing the propagation of the weighted L2

γ norm and estimate some macroscopic quan-
tities for latter use. First we remind the estimate provided in [10, 19].

Proposition 2.1. Let f = f(t, θ, ω, ν) be a classical solution to (1.3)-(1.4) with a nonnegative

initial data fin ∈ L1(T× R
2). Then, for all time t ≥ 0, we have that f(t) is also nonnegative and
∫

T×R2

f(t,z) dz =

∫

T×R2

fin(z) dz,

∫

T×R

f(t,z) dω dθ =

∫

T×R

fin(z) dω dθ = g(ν).

We aim to study the propagation of the weighted L2
γ norm and first prove the following prelim-

inary result.

Lemma 2.1. Let f = f(t, θ, ω, ν) be a classical solution to (1.3)-(1.4). Then for all time t ≥ 0, we
have

‖f(t)− f∞‖2L2
γ

≤ I[f ](t) + ‖N(t)−N∞‖2L2
γ̄

,

where I[f ](t) corresponds to the dissipation of the Fokker-Planck operator and is defined as

I[f ](t) :=

∫

T×R2

∣∣∣∣∂ω
(
f(t)

M

)∣∣∣∣
2

γ̄(ν)M(ω, ν) dz ≥ 0.(2.1)

Proof. It follows

‖f − f∞‖2L2
γ

= ‖f −N M‖2L2
γ

+ ‖(N −N∞)M‖2L2
γ

,

= ‖f −N M‖2L2
γ

+ ‖N −N∞‖2L2
γ̄

.

We use the Gaussian-Poincaré inequality with respect to probability measure Mdω to obtain

‖f −NM‖2L2
γ

=

∫

T×R

(∫

R

|f −N M|2M−1(ω, ν) dω

)
γ̄(ν) dνdθ ,

≤
∫

T×R

(∫

R

∣∣∣∣∂ω
(

f

M

)∣∣∣∣
2

M(ω, ν) dω

)
γ̄(ν) dνdθ ,

hence we have

‖f(t)− f∞‖2L2
γ

≤ I[f ](t) + ‖N(t)−N∞‖2L2
γ̄

.

�

From this latter lemma, we can prove the key estimate on the dissipation of the weighted L2

norm.

Proposition 2.2. Let f = f(t, θ, ω, ν) be a classical solution to (1.3)-(1.4). Then for all time

t ≥ 0, we have

1

2

d

dt
‖f(t)− f∞‖2L2

γ

≤ −
[
σ̃

m
− κ̃

2

(
3 ‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
I[f ](t)

+
κ̃

2

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
‖N(t)−N∞‖2L2

γ̄

,

where the dissipation I[f ](t) is defined in (2.1).
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Proof. We use conservation of mass (see Proposition 2.1) to have

1

2

d

dt

∫

T×R2

|f − f∞|2 γ dz =

∫

T×R2

∂tf (f − f∞) γ dz .

From the definition of the weight γ = M−1 γ̄, it follows

1

2

d

dt
‖f − f∞‖2L2

γ

=

∫

T×R2

f

M (−ω∂θf − κ̃ (sin ∗ρ)∂ωf + LFP[f ]) γ̄ dz

= −
∫

T×R2

∂θ

(
ωf2

2M

)
γ̄ dz − κ̃

∫

T×R2

f

M (sin ∗ρ) ∂ωf γ̄ dz

+

∫

T×R2

f

M LFP[f ] γ̄ dz

= κ̃

∫

T×R2

(sin ∗ρ) f ∂ω

(
f

M

)
γ̄ dz +

∫

T×R2

f

M LFP[f ] γ̄ dz.

We substitute

∂ωM = −ω − ν

σ̃
M

into LFP to observe
∫

T×R2

f

M LFP[f ] γ̄ dz =
σ̃

m

∫

T×R2

f

M ∂ω

(
∂ωf − ∂ωM

M f

)
γ̄ dz

= − σ̃

m

∫

T×R2

(
∂ω

(
f

M M
)
− f

M∂ωM
)

∂ω

(
f

M

)
γ̄ dz

= − σ̃

m

∫

T×R2

∣∣∣∣∂ω
(

f

M

)∣∣∣∣
2

M γ̄ dz = − σ̃

m
I[f ] .

We combine the latter results to obtain

1

2

d

dt
‖f(t)− f∞‖2L2

γ

= κ̃

∫

T×R2

(sin ∗ρ(t)) f(t) ∂ω
(
f(t)

M

)
γ̄ dz − σ̃

m
I[f ](t) .

It is left to estimate the first term of the right hand side. Using that

sin ∗ρ = sin ∗ (ρ− ρ∞) ,

and since f∞ = N∞M, we have
∫

T×R2

(sin ∗ρ) f ∂ω

(
f

M

)
γ̄ dz =

∫

T×R2

sin ∗ρ f√
M

√
M ∂ω

(
f

M

)
γ̄ dz

=

∫

T×R2

sin ∗ρ f − f∞√
M

√
M∂ω

(
f

M

)
γ̄ dz

+

∫

T×R2

(sin ∗ (ρ− ρ∞)) N∞

√
M

√
M ∂ω

(
f

M

)
γ̄ dz .

Then we get
∣∣∣∣κ̃
∫∫

T×R2

(sin ∗ρ) f ∂ω

(
f

M

)
γ̄ dz

∣∣∣∣

≤ κ̃
(
‖ sin ∗ρ‖L∞‖f − f∞‖L2

γ
+ ‖ sin ∗(ρ− ρ∞)‖L∞‖N∞‖L2

γ̄

) √
I[f ](t).
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It follows from Young’s convolution inequality that
{ ‖ sin ∗ρ‖L∞ ≤ ‖ρ‖L1 = ‖f‖L1 = ‖N∞‖L1 ,

‖ sin ∗ (ρ− ρ∞) ‖L∞ ≤
√
π ‖ρ− ρ∞‖L2 .

On the other hand, using (1.7) and

ρ− ρ∞ =

∫

R

(N −N∞) dν =

∫

R

1

γ̄1/2
(N −N∞) γ̄1/2 dν

≤
(∫

R

(N −N∞)2 γ̄ dν

)1/2

,

we get that

‖ρ− ρ∞‖L2 ≤ ‖N −N∞‖L2
γ̄

.

Therefore, it yields the following estimate
∣∣∣∣κ̃
∫∫

T×R2

sin ∗ρ f ∂ω

(
f

M

)
γ̄ dz

∣∣∣∣

≤ κ̃
(
‖N∞‖L1‖f − f∞‖L2

γ
+

√
π ‖N∞‖L2

γ̄

‖N −N∞‖L2
γ̄

) √
I[f ](t).

Now using Lemma 2.1, we get that




‖f(t)− f∞‖L2
γ
≤
√

I[f ](t) + ‖N(t)−N∞‖L2
γ̄

,

√
I[f ](t) ‖N(t) −N∞‖L2

γ̄

≤ 1

2

(
I[f ](t) + ‖N(t)−N∞‖2L2

γ̄

)
,

and gathering the latter results, it gives the desired inequality

1

2

d

dt
‖f(t)− f∞‖2L2

γ

≤ −
[
σ̃

m
− κ̃

2

(
3 ‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
I[f ](t)

+
κ̃

2

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
‖N(t)−N∞‖2L2

γ̄

.

�

Next, we remind the macroscopic quantities N , J , and P defined in (1.6), which satisfy




∂tN + ∂θ (J + νN) = 0,

∂tJ + ∂θ (P + νJ) − κ̃ (sin ∗ρ)N = − J

m
.

This will be used later to define a modified energy functional E [f ] to prove convergence to equilib-
rium. Before to do that, we prove the following estimates on the macroscopic moments.

Lemma 2.2 (Moments estimates). Let J and P be the moments given by (1.5). Then it holds for

all time t ≥ 0 that 



‖J(t)‖2L2
γ̄

≤ σ̃ I[f ](t) ,

‖P (t)− σ̃ N(t)‖2L2
γ̄

≤ 3 σ̃2 I[f ](t) .
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Proof. For the first estimate, we observe that J reads as follows

J =

∫

R

(ω − ν)M1/2 f M−1/2 dω

=

∫

R

(ω − ν)M1/2 (f −N M)M−1/2 dω.

Hence, using that ∫

R

(ω − ν)2Mdω = σ̃

and applying the Cauchy-Schwarz inequality, we obtain

‖J(t)‖2L2
γ̄

≤ σ̃ ‖f(t)−N(t)M‖2L2
γ

, ∀ t ≥ 0 .

As in the proof of Lemma 2.1, from the Gaussian Poincaré inequality we have

‖J(t)‖2L2
γ̄

≤ σ̃ I[f ](t), ∀ t ≥ 0 .

Finally, we also have

P − σ̃N =

∫

R

(ω − ν)2 f dω −
∫

R

(ω − ν)2N Mdω,

=

∫

R

(ω − ν)2M1/2 (f − N M)M−1/2 dω .

We proceed as before using that
∫

R

(ω − ν)4Mdω = 3 σ̃2,

hence we get for any t ≥ 0,

‖P (t) − σ̃N(t)‖2L2
γ̄

≤ 3 σ̃2 ‖f(t)−N(t)M‖2L2
γ

≤ 3 σ̃2 I[f ](t) .
�

Now, we study the asymptotic stability of f∞ when σ̃ ≫ κ̃. The goal is first to modify ‖f−f∞‖L2
γ

to define a monotonically decreasing energy functional E [f ] which is equivalent to ‖f−f∞‖L2
γ
. Then

we show exponential decaying directly on the new functional E [f ] to prove Theorem 1.1.

2.2. Toward the modified energy E [f ]. We aim to modify the functional ‖f−f∞‖2L2
γ

in order to

construct a monotonically decreasing energy functional E [f ] . The first step is to characterize the
lack of coercivity on the estimate provided in Proposition 2.2. Indeed, thanks to the Fokker-Planck
operator, we get a dissipation with respect to quantity I(t). Hence, the goal is now to modify the
functional ‖f(t) − f∞‖2L2

γ

to get a dissipation with respect to quantity ‖N(t) − N∞‖2
L2
γ̄

. To this

aim, we begin with a preliminary result by considering the following elliptic equation for a given
function S ∈ L2(T × R) such that

(2.2)

∫

T

S(θ, ν) dθ = 0 .

We consider

(2.3)





∂2
θv = S ,

∫

T

v dθ = 0

and provide some intermediate results on the solutions v to (2.3).
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Lemma 2.3. Consider any S ∈ L2
γ̄(T × R) which meets condition (2.2) and v the corresponding

solution to (2.3). Then, v satisfies the following estimate

(2.4) ‖∂θ v‖L2
γ̄

≤ CP ‖S‖L2
γ̄

,

and

(2.5) ‖∂2
θ v‖L2

γ̄

= ‖S‖L2
γ̄

,

where CP is the Poincaré-Wirtinger constant in

‖v‖L2
γ̄

≤ CP ‖∂θv‖L2
γ̄

.

Moreover, considering now v the solution to (2.3) with source term S = N∞−N , where N is given

by (1.5). Then it holds for all time t ≥ 0 that

(2.6) ∂t∂θv + ν ∂2
θv = J − 1

2π

∫

T

Jdθ .

Proof. The first estimate (2.4) is obtained by testing the elliptic equation (2.3) against v and after
an integration by part

‖∂θv‖2L2
γ̄

≤ ‖S‖L2
γ̄

‖v‖L2
γ̄

,

from which the Wirtinger-Poincaré inequality yields

‖∂θ v‖L2
γ̄

≤ CP ‖S‖L2
γ̄

.

The second estimates (2.5) directly follows from the equation on v (2.3) and using that S ∈ L2
γ̄ .

Now let us consider that N is given by (1.5) and S = N∞ − N . We differentiate in time the
elliptic equation (2.3) and use the equation (1.6) on N to get

∂2
θ∂tv = ∂θ (J + νN) .

Using again (2.3) and since N∞ does not depend on θ, it follows that

∂θ
(
∂t∂θv + ν ∂2

θv
)
= ∂θJ,

hence, there exists C(t, ν) such that

∂t∂θv + ν ∂2
θv = J + C(t, ν) .

Integrating the latter equation in θ ∈ T and using periodic boundary condition, we obtain that

C(t, ν) = − 1

2π

∫

T

J(t, θ, ν) dθ,

and the result follows. �

Now, we are ready to modify the functional ‖f(t)− f∞‖2L2
γ

and define a new functional E [f ] as

E [f ](t) :=
1

2
‖f(t)− f∞‖2L2

γ

+ αA(t) ,

where α is a small parameter to be determined later and A is given by

A(t) =

∫

T×R

J(t) ∂θv(t) γ̄ dνdθ .

Here, v is the solution to (2.3) with source term S = N∞ −N .
The last step consist in showing that this modified functional E [f ] is equivalent to ‖f(t)−f∞‖2L2

γ

as long as α > 0 is sufficiently small.
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Lemma 2.4. Suppose that α > 0 satisfies

(2.7) α
√
σ̃ CP ≤ 1

2
.

Then we have

1

4
‖f(t)− f∞‖2L2

γ

≤ E [f ](t) ≤ 3

4
‖f(t)− f∞‖2L2

γ

.

Proof. We use the Cauchy-Schwarz inequality and Lemma 2.3 to have

|αA| ≤ α ‖J‖L2
γ̄

‖∂θ v‖L2
γ̄

≤ αCp ‖J‖L2
γ̄

‖N(t)−N∞‖L2
γ̄

,

and from the proof of Lemma 2.2 we obtain

|αA| ≤ α
√
σ̃ CP ‖f(t)−N(t)M‖L2

γ
‖N(t) −N∞‖L2

γ̄

≤ α

2

√
σ̃ CP

(
‖f(t)−N(t)M‖2L2

γ

+ ‖N(t)−N∞‖2L2
γ̄

)

=
α

2

√
σ̃ CP ‖f(t)− f∞‖2L2

γ

.

Hence when α > 0 satisfies (2.7), we get the expected estimate. �

2.3. Proof of Theorem 1.1. The goal is now to show that when α is sufficiently small, energy
functional E [f ] is dissipated, which will give the asymptotic behavior of ‖f(t)− f∞‖L2

γ
. We have

dA
dt

(t) = I1(t) + I2(t) ,

with 



I1(t) =

∫

T×R

∂tJ(t) ∂θv(t) γ̄ dνdθ ,

I2(t) =

∫

T×R

J(t) ∂θ∂tv(t) γ̄ dνdθ .

We first compute the term I1 using (1.6) which gives

I1 = −
∫

T×R

∂θ (P + ν J) ∂θv γ̄ dνdθ

+ κ̃

∫

T×R

(sin ∗ρ)N ∂θv γ̄ dνdθ − 1

m

∫

T×R

J ∂θv γ̄ dνdθ .

On the one hand, integrating by part and using the equation (2.3) on v, the first term on the right
hand side can be written as

∫

T×R

∂θ (P + ν J) ∂θv γ̄ dνdθ =

∫

T×R

∂θ (P − σ̃ N + σ̃ (N −N∞) + νJ) ∂θv γ̄ dνdθ

= −
∫

T×R

(P − σ̃ N) (N∞ −N) γ̄ dνdθ

+ σ̃ ‖N −N∞‖2L2
γ̄

−
∫

T×R

ν J ∂2
θv γ̄ dνdθ ,
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where the desired dissipation in ‖N −N∞‖2
L2
γ̄

now appears. On the other hand, the second term is

estimated as in the proof of Proposition 2.2, which yields

κ̃

∫

T×R

(sin ∗ρ)N ∂θv γ̄ dν dθ = κ̃

∫

T×R

(sin ∗ρ) (N −N∞) ∂θv γ̄ dν dθ

+ κ̃

∫

T×R

(sin ∗(ρ− ρ∞)) N∞ ∂θv γ̄ dν dθ

≤ CP κ̃
(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
‖N −N∞‖2L2

γ̄

.

Therefore, gathering the latter computations and applying Lemmas 2.2 and 2.3, we estimate the
term I1 as

I1 ≤ −
[
σ̃ − CP κ̃

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
‖N −N∞‖2L2

+
√
σ̃

[
CP

m
+

√
3 σ̃

]
‖N −N∞‖L2

√
I[f ](t) +

∫

T×R

ν J ∂2
θv γ̄ dν dθ .

Now we use the term I2 to remove the last term on the right hand side of the latter equation.
Indeed, using the equation (2.6) in Lemma 2.3, we have

I2 =

∫

T×R

J

(
J − 1

2π

∫

T

J(θ′) dθ′ − ν ∂2
θv

)
γ̄ dν dθ ,

≤ 2 ‖J‖2L2
γ̄

−
∫

T×R

ν J∂2
θv γ̄ dν dθ ,

≤ 2 σ̃ I[f ] −
∫

T×R

ν J∂2
θv γ̄ dν dθ ,

Gathering the latter results, we obtain

dA
dt

(t) ≤ 2 σ̃ I[f ](t) −
[
σ̃ − CP κ̃

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
‖N(t)−N∞‖2L2

+
√
σ̃

[
CP

m
+

√
3 σ̃

]
‖N(t)−N∞‖L2

√
I[f ](t) .

Applying the Young inequality to the last term with η > 0 such that

η

[
CP

m
+

√
3 σ̃

]2
= 1,

or equivalently,

η

2
σ̃

[
CP

m
+

√
3 σ̃

]2
=

σ̃

2
,

it yields that

dA
dt

(t) ≤
[
2 +

1

2

(
CP

m
√
σ̃
+

√
3

)2
]
σ̃ I[f ](t)

−
[
σ̃

2
− CP κ̃

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
‖N(t)−N∞‖2L2 .
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Finally, from the definition of E [f ] and applying Proposition 2.2 with the latter inequality, we get
that for any α > 0,

dE [f ]
dt

(t) ≤ −
[
σ̃

m
− κ̃

2

(
3 ‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
I[f ](t)

−α

[
σ̃

2
− CP κ̃

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
‖N(t)−N∞‖2L2

+
κ̃

2

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
‖N(t)−N∞‖2L2

γ̄

+α

[
2 +

1

2

(
CP

m
√
σ̃
+

√
3

)2
]
σ̃ I[f ](t) .

We choose α > 0 such that the last term in the previous inequality becomes sufficiently small to
be absorbed by the first term, that is, taking α > 0 such that

αm

[
2 +

1

2

(
CP

m
√
σ̃
+

√
3

)2
]

≤ 1

2
,

for instance

α = min

(
1

2Cp
,

m σ̃

2
(
5m2 σ̃ + C2

P

)
)
,(2.8)

we have

dE [f ]
dt

(t) ≤ −
[

σ̃

2m
− κ̃

2

(
3 ‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
I[f ](t)

−α

[
σ̃

2
− CP κ̃

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
‖N(t)−N∞‖2L2

+
κ̃

2

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
‖N(t)−N∞‖2L2

γ̄

≤ −
[

σ̃

2m
− κ̃

2

(
3 ‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
I[f ](t)

−α

[
σ̃

2
− κ̃

α

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)]
‖N(t)−N∞‖2L2 .

Finally, when σ̃ > 0 is sufficiently large, that is,




κ̃

α

(
‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
≤ σ̃

4
,

κ̃
(
3 ‖N∞‖L1 +

√
π ‖N∞‖L2

γ̄

)
≤ σ̃

2m
,

(2.9)

then the right hand side of the latter estimate corresponds to a dissipation of both I[f ](t) and
‖N(t) − N∞‖2

L2
γ̄

. With (2.8), diffusive regime (2.9) can be reformulated as follows: there exists a
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constant C∞ > 0, only depending on ‖N∞‖L1 and ‖N∞‖L2
γ̄

, such that κ > 0 and σ > 0 satisfy

C∞ max

(√
κ̃

m
, κ̃, mκ̃

)
≤ σ̃.

Hence by applying Lemma 2.4, we have

dE [f ]
dt

(t) ≤ −C E [f ],

where C > 0 only depends on C∞ and max
(√

κ̃/m, κ̃, mκ̃
)
. Again since E [f ] and ‖f − f∞‖L2

γ

are equivalent (Lemma 2.4), we get the expected results using the Gronwall’s inequality, which
completes our proof.

3. Diffusion limit when g = δ0

We now suppose that all oscillators are identical, that is, take g = δ0. It allows to remove the ν
variable in the previous system, which now becomes (1.10)-(1.11). Thus, we consider the diffusion
limit to prove Theorem 1.2 by propagating some regularity in θ.

3.1. Basic estimates. First, we aim to study the propagation of the weighted L2
M−1 norm for f ε

and ∂θf
ε uniformly with respect to ε. We prove the following preliminary result.

Proposition 3.1. Let f ε = f ε(t, θ, ω) be a classical solution to (1.10)-(1.11) such that the initial

data satisfy (1.14). Then, we have

(3.1)
1

2

d

dt
‖f ε(t)‖2L2

M−1

≤ (κ̃M0)
2

2 σ̃
‖f ε(t)‖2L2

M−1

− σ̃

2 ε2
I[f ε](t) .

Moreover, for all time t ≥ 0

(3.2) ‖f ε(t)‖L2

M−1

+ ‖∂θf ε(t)‖L2

M−1

≤
(
‖∂θf ε

in‖L2

M−1

+ 3 ‖f ε
in‖L2

M−1

)
eC t ,

where C = (κ̃M0)
2/σ̃.

Proof. We first proceed as in Proposition 3.1, but combine the terms in a different way to get
uniform estimates with respect to ε. We consider the centred Gaussian distributionM and multiply
(1.10) by f εM−1, then we integrate with respect to z := (θ, ω) ∈ T× R, it yields

1

2

d

dt
‖f ε(t)‖2L2

M−1

=
κ̃

ε

∫

T×R

(sin ∗ρε(t)) f ε(t) ∂ω

(
f ε(t)

M

)
dz − σ̃

ε2
I[f ε](t) ,

where the dissipation I[f ε](t) is defined in (2.1).

It is left to estimate the first term of the right hand side as

κ̃

ε

∫

T×R

(sin ∗ρε) f ε ∂ω

(
f ε

M

)
dz ≤ κ̃2

2 η
‖ sin ∗ρε‖2L∞ ‖f ε‖2L2

M−1

+
η

2 ε2
I[f ε] ,

where η > 0 is a free parameter to be defined later. Using the Young’s convolution inequality and
the conservation of mass, we have

‖ sin ∗ρε(t)‖L∞ ≤ ‖ρε(t)‖L1 = ‖f ε(t)‖L1 = M0

and choosing η = σ̃, it gives the first estimate (3.1)

1

2

d

dt
‖f ε(t)‖2L2

M−1

≤ (κ̃M0)
2

2 σ̃
‖f ε(t)‖2L2

M−1

− σ̃

2 ε2
I[f ε](t).

Finally from the Gronwall’s inequality, we get that

(3.3) ‖f ε(t)‖L2

M−1

≤ ‖f ε
in‖L2

M−1

eC0 t ,
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with C0 = (κ̃M0)
2/(2 σ̃).

Then we set hε = ∂θf
ε and differentiate (1.10)-(1.11) with respect to θ, it yields the following

equation
ε ∂th

ε + ω ∂θh
ε + κ̃ (sin ∗ρε) ∂ωhε = LFP[h

ε] − κ̃ (cos ∗ρε) ∂ωf ε ,

which has the same structure as the equation on f ε with the additional source term−κ̃ (cos ∗ρε) ∂ωf ε.
Hence, proceeding as previously, we now obtain

1

2

d

dt
‖hε(t)‖2L2

M−1

≤ (κ̃M0)
2

σ̃

(
‖hε(t)‖2L2

M−1

+ ‖f ε(t)‖2L2

M−1

)
− σ̃

2 ε2
I[hε](t).

Then, using (3.3), we get the second estimate

(3.4) ‖hε(t)‖L2

M−1

≤
(
‖∂θf ε

in‖L2

M−1

+
√
2 ‖f ε

in‖L2

M−1

)
e2C0 t ,

Gathering the latter estimates (3.3) and (3.4), we obtain (3.2). �

3.2. Proof of Theorem 1.2. From Proposition 3.1, we may now prove our second main result.
On the one hand, we evaluate a kind of relative entropy in the weighted L2 space,

1

2

d

dt
‖f ε − ρεM‖2L2

M−1

=
1

2

d

dt
‖f ε‖2L2

M−1

− 1

2

d

dt
‖ρε‖2L2

≤ − σ̃

2 ε2
I[f ε] +

(κ̃M0)
2

2 σ̃
‖f ε‖2L2

M−1

+
1

ε

∫

T

ρε ∂θJ
εdθ .

Hence, after integrating by part and applying the Young inequality on the last term on the right
hand side of the latter inequality, we apply Lemma 2.2, which yields

1

2

d

dt
‖f ε − ρεM‖2L2

M−1

≤ − σ̃

4 ε2
I[f ε] +

(κ̃M0)
2

2 σ̃
‖f ε‖2L2

M−1

+ ‖∂θρε‖2L2 .

Moreover, observing that
‖∂θρε‖L2 ≤ ‖∂θf ε‖L2

M−1

,

using again the Gaussian-Poincaré inequality with respect to probability measure Mdω to have

‖f ε − ρεM‖2L2

M−1

≤ I[f ε],

and the H1 estimate (3.2) of Proposition 3.1, we obtain

1

2

d

dt
‖f ε − ρεM‖2L2

M−1

≤ − σ̃

4 ε2
‖f ε − ρεM‖2L2

M−1

+ max

(
C

2
, 1

) (
‖∂θf ε

in‖L2

M−1

+ 3 ‖f ε
in‖L2

M−1

)2
e2C t ,

hence from the Gronwall’s lemma, we get the first estimate of Theorem 1.2

‖f ε − ρεM‖L2

M−1

≤ ‖f ε
in − ρεinM‖L2

M−1

e−σ̃ t/(4ε2)(3.5)

+
√
2 ε max

(
κ̃M0

σ̃
,

√
2

σ̃

) (
‖∂θf ε

in‖L2

M−1

+ 3 ‖f ε
in‖L2

M−1

)
eC t .

On the other hand to prove the convergence of ρε to its limit ρ given by (1.13), we define A(t) as

(3.6) A(t) =
1

2
‖∂θvε(t) ‖2L2 ,

where v is now solution to (2.3) with source term

S = ρ− ρε + ε ∂θJ
ε .
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First let us observe that vε is well defined since the compatibility condition (2.2) on S is well
satisfied. Before proving the second estimate of Theorem 1.2, let us show that A(t) gives a H−1

estimate on ρε − ρ. Indeed, the following Lemma ensures that A(t) is controlled by the squares of
the weighted L2

M−1 norm of ∂θf
ε and the H−1 norm of ρε − ρ.

Lemma 3.1. We consider A(t) defined by (3.6). It holds uniformly with respect to ε

A(t) ≤ ‖ρε(t)− ρ(t)‖2H−1 + σ̃ C2
P ε2 ‖∂θf ε(t)‖2L2

M−1

,

and
1

4
‖ρε(t)− ρ(t)‖2H−1 − σ̃ C2

P

ε2

2
‖∂θf ε(t)‖2L2

M−1

≤ A(t) .

Proof. Defining wε and uε as the respective solutions to (2.3) with source term S = − ∂θJ
ε and

ρ− ρε, it holds
vε = uε − εwε .

We apply operator ∂θ to the latter relation, take the L2 norm, and apply the triangular inequality,
it yields √

2A ≤ ‖∂θuε‖L2 + ε ‖∂θwε‖L2 ,

and
‖∂θuε‖L2 − ε ‖∂θwε‖L2 ≤

√
2A .

We estimate ‖∂θwε‖L2 by applying (2.4) in Lemma 2.3 with source term S = − ∂θJ
ε and using

that
‖∂θJε‖L2 ≤

√
σ̃ ‖∂θf ε‖L2 ,

which yields √
2A ≤ ‖ρε − ρ‖H−1 + εCP

√
σ̃ ‖∂θf ε‖L2

M−1

,

and
‖ρε − ρ‖H−1 − εCP

√
σ̃ ‖∂θf ε‖L2

M−1

≤
√
2A .

We obtain the result taking the square of the latter inequalities and applying Young’s inequality. �

Now let us evaluate A(t) observing that

dA
dt

(t) = 〈∂t∂θvε(t), ∂θvε(t)〉 = 〈∂t (ρε(t) − ε ∂θJ
ε(t) − ρ(t)) , vε(t)〉 .

Therefore, relying on equations (2.2) and (1.13), we deduce

(3.7)
dA
dt

(t) = − σ̃ ‖ρε(t)− ε ∂θJ
ε(t)− ρ(t)‖2L2 + E1(t) + E2(t) ,

where 



E1(t) = −〈P ε(t)− σ̃ (ρε(t) − ε ∂θJ
ε(t)) , ρε(t) − ε ∂θJ

ε(t)− ρ(t)〉 ,

E2(t) = κ̃ 〈sin ∗ρε(t) ρε(t)− sin ∗ρ(t) ρ(t), ∂θvε(t)〉 .
First observing that

‖P ε − σ̃ ρε‖L2 ≤
(∫

R

|ω|4M(ω)dω

)1/2

‖f ε − ρεM‖L2

M−1

=
√
3 σ̃ ‖f ε − ρεM‖L2

M−1

,

we have for any η1 > 0

E1(t) ≤
3 σ̃2

η1
‖f ε(t)− ρε(t)M‖2L2

M−1

+
ε2 σ̃2

η1
‖∂θJε(t)‖2L2 +

η1
2
‖ρε(t)− ε ∂θJ

ε(t)− ρ(t)‖2L2 .

Then we evaluate the term E2 as follows

E2(t) = E21(t) + E22(t) ,



18 FRANCIS FILBET AND MYEONGJU KANG

where 



E21(t) = κ̃ 〈sin ∗ρ (ρε − ρ) (t), ∂θv
ε(t)〉 ,

E22(t) = κ̃ 〈sin ∗ (ρε − ρ) (t) ρε(t), ∂θv
ε(t)〉 .

Again applying the Young’s inequality, we have for any η21 > 0,

E21(t) ≤ κ̃ ‖ρin‖L1

(
‖ρε(t) − ρ(t) − ε ∂θJ

ε(t)‖L2 + ε ‖∂θJε(t)‖L2

)
‖∂θvε(t)‖L2 ,

≤ η21
2

(
‖ρε(t) − ρ(t) − ε ∂θJ

ε(t)‖2L2 + ε2 ‖∂θJε(t)‖2L2

)
+

2 (κ̃M0)
2

η21
A(t) ,

whereas the second term E22(t) is evaluated as

E22(t) ≤ κ̃ ‖ρεin‖L1 ‖∂θvε(t)‖L∞

(
‖ sin ∗ (ρε − ρ − ε ∂θJ

ε) (t)‖L∞ + ε ‖ sin ∗∂θJε(t)‖L∞

)
,

≤ κ̃M0 ‖∂θvε(t)‖L∞

(
‖ sin ∗ (ρε − ρ − ε ∂θJ

ε) (t)‖L∞ + ε
√
π ‖∂θJε(t)‖L2

)
.

Hence, using that H1(T) ⊂ L∞(T), we have

‖∂θvε‖L∞ ≤ CS,1 ‖∂θvε‖H1 ≤ CS,2 ‖ρε − ρ − ε ∂θJ
ε‖L2 ,

where CS,j, for j = 1, 2 are two positive constants. Therefore, applying the Young’s convolution
inequality,

‖ sin ∗ (ρε − ρ − ε ∂θJ
ε) ‖L∞ = ‖ sin ∗∂2

θv
ε‖L∞ = ‖ cos ∗∂θvε‖L∞ ≤

√
π ‖∂θvε‖L2 ,

It yields that for any η22 > 0,

E22(t) ≤ η22
2

‖ρε(t) − ρ(t) − ε ∂θJ
ε(t)‖2L2 +

π (κ̃M0 CS,2)
2

η22

(
2A(t) + ε2 ‖∂θJε(t)‖2L2

)
.

Gathering the latter estimates on E21 and E22, it gives

E2(t) ≤ η21 + η22
2

‖ρε(t) − ρ(t) − ε ∂θJ
ε(t)‖2L2 +

(
η21
2

+
π (κ̃M0 CS,2)

2

η22

)
ε2 ‖∂θJε(t)‖2L2

+ 2 (κ̃M0)
2

(
1

η21
+

π C2
S,2

η22

)
A(t) .

Choosing η1 = η21 = η22 = σ̃/3 on the estimates of E1 and E2, we get that there exists a constant
C > 0, only depending on κ̃, σ̃ and M0, such that

E1(t) + E2(t) ≤ +
σ̃

2
‖ρε(t) − ρ(t) − ε ∂θJ

ε(t)‖2L2

+C
(
A(t) + ε2 ‖∂θJε‖2L2 + ‖f ε − ρεM‖2L2

M−1

)
.

Substituting this latter estimate in (3.7) and using the estimates in (3.5) and

‖∂θJε‖L2 ≤
√
σ̃ ‖∂θf ε‖L2

M−1

,

with (3.2), we deduce that there exists a constant C > 0, only depending on κ̃, σ̃ and M0, such
that,

dA
dt

(t) ≤ C
(
A(t) + ‖f ε

in − ρεinM‖2L2

M−1

e−σ̃ t/(2 ε2) + ε2
(
‖∂θf ε

in‖2L2

M−1

+ ‖f ε
in‖2L2

M−1

)
eC t
)
.



TREND TO EQUILIBRIUM AND DIFFUSION LIMIT FOR K-S 19

Integrating this differential inequality, it yields that there exists a constant C > 0, only depending
on κ̃, σ̃ and M0 such that,

A(t) ≤
(
A(0) + C

(
‖f ε

in‖2L2

M−1

+ ‖∂θf ε
in‖2L2

M−1

)
ε2
)
eC t .

Applying Lemma 3.1, we get the second estimate (1.15) of Theorem 1.2.

‖ρε − ρ‖H−1 ≤ C
(
‖ρεin − ρin‖H−1 + ε

(
‖f ε

in‖L2

M−1

+ ‖∂θf ε
in‖L2

M−1

))
eC t .

4. Conclusion

In this paper, we first studied the stability of a phase-homogeneous stationary state to the inertial
Kuramoto-Sakaguchi equation. We showed that when the noise intensity is sufficiently and rela-
tively larger than the coupling strength, the solutions of the inertial Kuramoto-Sakaguchi equation
(1.3)-(1.4) converge to the corresponding phase-homogeneous stationary state exponentially fast in
weighted L2

γ norm sense. To achieve this, we employed an energy functional which is equivalent to

the weighted L2
γ norm and proved the exponential decaying of it. Note that there is no smallness

assumption on the initial data. Furthermore, it is notable that we improved the existing results
in [10]. Indeed, we proved the convergence for a larger class of functions. In addition, for the
case of sufficiently small or large coupling strength, that is when coupling strength is near zero
or infinity, we provided smaller lower bound for noise intensity. Finally when all oscillators are
identical, we investigate a particular regime corresponding to the long time behavior and the mass
m of the single oscillator converges to zero. This corresponds to the diffusive limit of the inertial
Kuramoto-Sakaguchi equation for which we prove error estimate with respect to m.

It is worth to mention that the present contribution proposes a simple proof of two results
already given in [10] and [19]. The advantage of our approach is to present a continuous framework
which will be useful for the design and analysis of a fully discrete finite volume scheme for the
inertial Kuramoto-Sakaguchi equation (1.3)-(1.4) written as an hyperbolic system using Hermite
polynomials in velocity [5, 4]. This approach should allow to preserve the stationary solution and
the weighted L2 relative energy.
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