Deep hyperspectral and multispectral image fusion with inter-image variability - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Geoscience and Remote Sensing Année : 2023

Deep hyperspectral and multispectral image fusion with inter-image variability

Xiuheng Wang
Cédric Richard
Jie Chen

Résumé

Hyperspectral image (HI) and multispectral image (MI) fusion allows us to overcome the hardware limitations of hyperspectral imaging systems inherent to their lower spatial resolution. Nevertheless, existing algorithms usually fail to consider realistic image acquisition conditions. This article presents a general imaging model that considers inter-image variability of data from heterogeneous sources and flexible image priors. The fusion problem is stated as an optimization problem in the maximum a posteriori framework. We introduce an original image fusion method that, on one hand, solves the optimization problem accounting for inter-image variability with an iteratively reweighted scheme and, on the other hand, that leverages lightweight convolutional neural network (CNN)-based networks to learn realistic image priors from data. In addition, we propose a zero-shot strategy to directly learn the image-specific prior of the latent images in an unsupervised manner. The performance of the algorithm is illustrated with real data subject to inter-image variability.
Fichier principal
Vignette du fichier
wang2023deep.pdf (29.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04242324 , version 1 (14-10-2023)

Identifiants

Citer

Xiuheng Wang, Ricardo Augusto Borsoi, Cédric Richard, Jie Chen. Deep hyperspectral and multispectral image fusion with inter-image variability. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, pp.5510915. ⟨10.1109/TGRS.2023.3273118⟩. ⟨hal-04242324⟩
51 Consultations
16 Téléchargements

Altmetric

Partager

More