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Deep Hyperspectral and Multispectral Image
Fusion with Inter-image Variability

Xiuheng Wang, Student Member, IEEE, Ricardo Augusto Borsoi, Member, IEEE,
Cédric Richard, Senior Member, IEEE, and Jie Chen, Senior Member, IEEE.

Abstract—Hyperspectral and multispectral image fusion allows
us to overcome the hardware limitations of hyperspectral imaging
systems inherent to their lower spatial resolution. Nevertheless,
existing algorithms usually fail to consider realistic image acqui-
sition conditions. This paper presents a general imaging model
that considers inter-image variability of data from heterogeneous
sources and flexible image priors. The fusion problem is stated
as an optimization problem in the maximum a posteriori frame-
work. We introduce an original image fusion method that, on the
one hand, solves the optimization problem accounting for inter-
image variability with an iteratively reweighted scheme and, on
the other hand, that leverages lightweight CNN-based networks
to learn realistic image priors from data. In addition, we propose
a zero-shot strategy to directly learn the image-specific prior of
the latent images in an unsupervised manner. The performance of
the algorithm is illustrated with real data subject to inter-image
variability.

Index Terms—Hyperspectral data, multispectral data, inter-
image variability, image fusion, deep learning, zero-shot.

I. INTRODUCTION

Hyperspectral imaging systems acquire scenes by record-
ing hundreds of narrow, contiguous spectral bands ranging
from visible up to infrared wavelengths. Their rich spec-
tral information has attracted interest in many applications
such as remote sensing for mineral exploration, vegetation
monitoring, and land cover analysis [1]. Nevertheless, the
high spectral resolution of hyperspectral images (HIs) limits
their spatial resolution because of hardware limitations [2].
In contrast, multispectral cameras can achieve a much higher
spatial resolution but over a small number of spectral bands.
Consequently, a strategy to improve the spatial resolution of
HIs is to fuse them with multispectral images (Mls) of the
same scene. This results in the hyperspectral and multispectral
image fusion (HMIF) problem.

Several strategies have been proposed to solve the HMIF
problem. These strategies can be roughly divided into compo-
nent substitution or multiresolution analysis methods, matrix
or tensor factorization methods, and deep learning approaches.
Component substitution or multiresolution analysis methods
aim to substitute some patterns of the HI, high-frequency ones
in particular, by information extracted from the MI [3], [4],
[5]. These techniques employ different representations of the
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images, e.g., in the wavelet domain, which are also used for
pansharpening [6], [7].

Subspace-based formulations have become very popular to
address HMIF problems since they significantly reduce their
dimensionality [3], [8]. They also have a close connection
with the widely used linear mixing model [9], [10], which
represents each pixel of an HI as a linear combination of
a small number of spectral signatures. Several subspace-
based formulations have been proposed, often employing prior
information about the basis vectors or their contributions in
the decomposition, to improve the results. Examples include
sparse dictionary learning [11], [12] or matrix factorization [3]
approaches, which can use, e.g., spatial [8] and sparse [13],
[14] regularizers or patch-level processing [15]. Efficient al-
gorithms also convert this problem into solving a Sylvester
equation [16]. Some approaches have considered the mani-
fold structure of the image patches [17]. Other approaches
have explored the representation of HIs and Mls as three
dimensional tensors [18], [19], [20]. Low-rank tensor mod-
els have been used to represent the high-resolution images
(HRIs), such as the canonical polyadic decomposition [18],
the Tucker decomposition [19], [20], [21], and the block term
decomposition [22].

Deep learning approaches have recently become very pop-
ular for HMIF [23], [24], [25]. These approaches leverage the
capability of neural networks to represent complex signals and
images. Early supervised approaches were based upon classi-
cal neural network architectures used in image processing such
as 3D convolutional neural networks (CNN) [26], while more
recent methods explore physical acquisition models to design
architectures with improved interpretability [27], e.g., incorpo-
rating CNN results as priors in model-based frameworks [28],
[29] or using architectures inspired by unrolling principle [30].
However, the scarcity of training data with ground truth has
motivated the development of unsupervised approaches, that
depend only on the observed HI and MI. Examples include
the use of autoencoders with shared weights [31], [32], [33],
and approaches based on deep image priors [34], which pa-
rameterize the HRI as the output of a neural network and train
the latter using different options for the network inputs [35],
[36].

Although different strategies have been investigated to solve
the HMIF problem, these methods assume that the observed
HI and MI are acquired at the same time instant and under the
same conditions. However, platforms carrying both hyperspec-
tral and multispectral imaging systems are still limited [37].
On the contrary, due to the wider availability of satellites



with multispectral sensors, e.g., the Sentinel, Landsat and
Quickbird missions, it has become of great interest to fuse
HIs and MIs acquired at different time instants by different
instruments [38]. When applied in these realistic conditions,
most existing methods suffer from severe limitations as they
ignore variability between the HI and MI. Inter-image vari-
ability includes localized spatial and spectral changes and can
occur due to differences in acquisition conditions caused by,
e.g., atmospheric, illumination or seasonal variations [39], as
well as abrupt changes [40].

To tackle this issue, several HMIF frameworks addressing
inter-image variability have been recently proposed [37], [21],
[41], [42], [43], [44], [45]. A detailed review of these methods
is provided in Section II. These methods formulate the HMIF
problem with a key difference when compared to the original
approaches: the HI and the MI are assumed to be generated
from distinct HRIs, which are allowed to be different because
of spatially homogeneous variations [37], [41] or spatially lo-
calized ones [21]. However, considering inter-image variability
renders the HMIF problem significantly more ill-posed, which
makes the use of appropriate prior information about the HRIs
very important in order to achieve good performance.

Existing HMIF works that consider inter-image variability
rely on handcrafted priors, such as low-rank matrix [37] or
tensor [21], [41] decompositions. However, these priors are
not adequate to model complex contents embedded in real Hls.
Without considering inter-image variability, this issue has been
addressed in the HMIF problem by exploring the powerful
representation capability of deep learning methods, as noted
by various recent works on this topic. Nevertheless, devising
learning-based approaches to address inter-image variability
in HMIF incurs additional challenges, first because very lit-
tle data is available for training. Indeed, since inter-image
variability originates from complex physical phenomena, it
is difficult to generate realistic synthetic data to be used for
training even if HIs of a single scene are available. This makes
learning an end-to-end mapping from an HI and an MI to the
HRIs unfeasible.

Recently, deep image priors [34] and plug-and-play strate-
gies [46] have been used to introduce prior information with
either pre-trained or unsupervised neural networks. However,
adequately addressing inter-image variability requires consid-
ering two different HRIs, underlying the HI and the MI, re-
spectively. Thus, directly exploiting such strategies to address
inter-image variability in HMIF is not very effective since: 1)
existing strategies in this category would fail to account for the
joint prior information between the two HRIs, and 2) each of
the images can have distinct statistical properties, which makes
obtaining adequate priors more difficult. Moreover, although
deep image priors are unsupervised [34], they require careful
setup of the network architecture and the number of stochastic
gradient iterations to produce reasonable results. It must be
noted that these challenges related to the lack of training data
and the corresponding difficulty in learning priors of the scene
of interest are also encountered more generally in HMIF, i.e.,
even when inter-image variability is not present.

In this paper, we propose a new image fusion method
accounting for inter-image variability between HlIs and MIs

which addresses the aforementioned challenges. First, to ade-
quately represent the image-specific information as well as the
joint prior information between the two HRIs, we propose a
mixture distribution that accounts for the leptokurtic nature of
the inter-image variations while, at the same time, represents
complex image content by implicitly exploiting learning-
based image priors. An iteratively reweighted optimization
strategy is then proposed, and the regularization by denoising
(RED) [47] framework is employed to implicitly introduce
prior information about the HRIs by means of denoising
engines, one for each latent HRI. The denoisers are trained
using a zero-shot strategy [48] and adapted during the opti-
mization process, which allows them to account for the content
of each individual HRI. The proposed algorithm is called
Deep hyperspectral and multispectral Image Fusion with Inter-
image Variability (DIFIV). Experiments on data with real
inter-image variability demonstrate the superiority of DIFIV
compared to other state-of-the-art methods. The contributions
of the paper are summarized as follows.

« A general imaging model is formulated, where the inter-
image variations of the HRIs are modeled by a hyper-
Laplacian distribution to account for the joint image
content, while the image content specific to each HRI
is learned by two distinct deep CNNs.

« To solve the non-convex, non-smooth HMIF optimization
problem, a variable splitting strategy is combined with
an iteratively reweighted scheme to tackle the difficulties
introduced by both the hyper-Laplacian and deep priors,
which are defined implicitly based on CNN denoisers
under the RED framework.

« We use a zero-shot strategy inspired by [48] to learn the
CNN denoisers based only on the observed HI and MI.
Moreover, unlike the original use of zero-shot methods
for single image restoration, the denoisers are trained
iteratively during the optimization process based on the
currently estimated HRIs. This allows the learned priors
to represent the individual information in each of the
HRIs adaptively while incorporating at the same time in-
formation from both low resolution images as the method
converges. Furthermore, the architecture of CNNs is made
lightweight by considering separable convolutions and a
low-rank representation of HIs to yield a small number
of network parameters.

The paper is organized as follows. In Section II, the HI and
MI observation processes are presented, as well as a review
of recent methods considering inter-image variability. Sec-
tion III formulates a new model and introduces the proposed
method. Experimental results with data containing real inter-
image variability are given in Section IV. Finally, Section V
concludes the paper.

II. IMAGE FUSION WITH INTER-IMAGE VARIABILITY

Let us denote an HI with L; bands and N pixels by
Y, € RE#*N and a MI with L,, bands and M pixels by
Y,, € Rim*M where L,, < L, and N < M. These images
are assumed to be degraded versions of a pair of underlying
HRIs Z; € RE»*M and Z,, € RE+*M with high spatial
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Figure 1. Top panel: Overall illustration of the proposed Deep hyperspectral and multispectral Image Fusion with Inter-image Variability (DIFIV) method:
the HRIs underlying the HI and MI (Z}, and Z,,) are initialized (Init.), with interpolations of observed images (Y, and Y7,), and then used to compute
the inter-image variability weighting term W and to update the CNN-based denoisers; afterwards, these are used to re-compute the HRIs using a conjugate-
gradient based algorithm; this process is repeated iteratively until convergence. Bottom panel: The neural network architecture of our CNN-based denoising
engine (S-Conv, BN, and ReLU stand for separable convolution, batch normalization and rectified linear unit layers, respectively).

and spectral resolutions, which are related according to the
following model:

Y,.=Z,FD + E,,

1
Y,.=RZ,+E,,

in which matrices F' € RM*M and D € RM*¥ represent
optical blurring and spatial downsampling occurring at the
hyperspectral sensor, respectively; matrix R € RLm*Lr con-
tains the spectral response functions (SRF) of the multispectral
instrument, and E; € RLr*N and E,, € REm*M denote
additive noise.

In this setting, the image fusion problem consists of recover-
ing the HRIs Z}, and Z,, given the observations Y}, and Y,,.
Most of the previous methods consider that Y}, and Y, are
degraded from the same source, i.e., Z;, = Z,,, which intrinsi-
cally assumes that they are acquired under the same conditions,
e.g., by sensors on board a single satellite. However, due to
the wider availability of satellites equipped with multispectral
sensors, it is of great interest to fuse HIs and MIs acquired
by different instruments at different time instants [38]. In that
case, by assuming that Z, = Z,,, most existing methods
ignore variabilities between the HI and MI, which can occur
due to differences in acquisition conditions caused by, e.g.,
atmospheric, illumination or seasonal variations [39], or abrupt
changes [40].

Recently, image fusion frameworks addressing inter-image
variability have been proposed in [37], [21], [41], [42], [43],
[44], [45]. Such methods estimate both HRIs Z} and Z,, by
using different assumptions to model both the images and the
inter-image changes. The first method to address this problem
was FuVar [37]. It considers that the HRIs satisfy the linear

mixing model (LMM) [9], but with a distinct set of spectral
basis vectors for each image:

Zp=MpA, Z,=My,A, 2

where M, and M,, € RI»*E denote the set of spectral
basis vectors related to the HI and MI, respectively, and A €
RE*N their corresponding spatial coefficients. Note that M,
and M ,, are associated with the spectral signatures of the pure
materials (i.e., the endmembers) in the HI and MI, respectively.
FuVar considers M, and M,, to be related to one another
through a set of smooth multiplicative scaling factors ® €
REnxE 149]:

My, =M,0®, 3)

where © denotes the Hadamard product. Thus, this model
successfully accounts for changes in the spectral signatures of
the endmembers between the HI and the MI, which can occur
when the materials are affected by seasonal variations or when
the MI is affected by uniform changes caused by, e.g., different
illumination conditions. However, the coefficients A shared by
both images limit the capability of FuVar to represent inter-
image changes in the spatial domain.

This limitation has been addressed by considering spatially
and spectrally localized inter-image variations through an
additive model in a tensor-based framework [21]. This latter
work considers a model of the form:

Zn, Zm=2Zn+V, “4)

where ¥ e RE»*M denotes a set of additive variability
factors. Both the HRI Z}, and the variability ¥ are assumed
to admit a Tucker tensor decomposition with low multilinear
ranks [50]. This reduces the dimensionality of the problem



and allows theoretical identifiability and recovery guarantees
to be obtained [21].

A related work proposes to jointly address the image fusion
and hyperspectral unmixing problems in the presence of inter-
image spectral variability [41]. This consists of the recovery of
both the HRIs and the spectral signatures of the endmembers
and their abundances. An LLI tensor model is considered,
which is closely related to the LMM in (2) but involves
an additional low-rank assumption on the coefficient maps
A that allows theoretical identifiability results to be derived.
Other works propose to consider intra-image variability by
extending the LMM to consider spatial endmember variability,
i.e., variability within a single image [43], [44]. Another work
considers a robust version of the data fidelity term related to
the MI in the cost function to reduce the impact of possible
changes or outliers in the image fusion process [45]. However,
these methods still assume that the HRIs underlying the HI and
the MI are equal.

Despite the success of these approaches in addressing the
inter-image variability problem, they all rely on handcrafted
priors for the HR images Zj; and Zj;, which limits their
capability of representing realistic image content. In this
work, we propose an image fusion method that leverages
the expressive power of CNNs in order to construct accurate
image priors for the HRIs while accounting for inter-image
variability, as detailed in the following section.

III. THE PROPOSED METHOD

The proposed image fusion method is based on three
important axes/contributions: 1) an imaging model that incor-
porates inter-image variability with learned image priors, 2) an
optimization scheme that can handle these flexible penalties,
3) a lightweight unsupervised (zero-shot) scheme to iteratively
learn deep priors of the latent HRIs during the reconstruction
process. The proposed image fusion method is presented
through four steps. First, we present the imaging model in
Subsection III-A and formulate the optimization problem. In
Subsection III-B we describe an iteratively reweighted scheme
to optimize the cost function. The optimization steps, as well
as the integration of deep priors, are described in Subsec-
tion III-C. We then address the design of CNN architecture
and its image-adapted training strategy in Subsection III-D. An
overall illustration of the proposed DIFIV method is shown in
Figure 1.

A. The imaging model

Using a probabilistic framework, the HMIF problem can
be formulated as the recovery of the mean or mode
of the posterior probability distribution function (PDF)
p(Zh, Z:m|Yh,Y,) of both HRIs given the LR observations.
Using Bayes theorem, this PDF can be written as:

p(Zhy Zm|Yh7Ym) o« p(Yh|Zh)p(Ym|Zm)
p(Zma Zh)a (5)

where we assumed the HI and MI to be conditionally inde-
pendent given their high-resolution counterparts.

The likelihoods of the observed images Y} and Y,, can
be written according to their data generation process in (1).
More precisely, assuming the elements of E; and E,, to be
ii.d. Gaussian random variables with variance o7 and o2,

respectively, the conditional distributions of Y, and Y, in (5)
are given by:

p(Y4|Z)) = MN(Z,FD, o3I, ,Iy), 6)
p(Yu|Zm) = MN(RZ,,, 0211, ,Iy), @)

where MN(Y,3X,,X,) denotes the matrix normal distribu-
tion with mean matrix Y and row and column covariance
matrices 3, and X, respectively [16].

The challenging question concerns how to meaningfully de-
fine the joint prior p(Z,,, Z},) for both HRIs. This question is
not trivial when the images differ due to acquisition conditions
or seasonal variations. A simplistic possibility is to consider
the images to be independent and to use priors used for
super-resolution without variability, such as low-rank matrix
and tensor models [3], [18], [51], piecewise-smoothness [§]
or learned deep priors [29], [28], [52]. However, the images
Z,, and Z; are observations of the same scene, and thus
are strongly dependent. Considering this, we can state the
following desirable properties for p(Z,,, Z):

« Apart from possible smooth inter-image variations (such
as, e.g., illumination or atmospheric changes, which tend
to impact the images uniformly [39]), changes between
Z,, and Z} are generally small and sparse; high mag-
nitude changes are concentrated in a relatively small
number of pixels and bands [40].

o The prior should promote images Z,, and Z; which are
statistically similar to real hyperspectral images (e.g., they
can be well represented by learned priors).

To achieve the above desiderata, we consider a mixture
distribution, given by:

A n .
logp(Zm, Z1) oc _71’2}5}26, )_51(75, )‘p

ln

- )\m(bm(zm) - )‘h¢h(Zh) 3 (8)

for 0 < p < 1, where 5,(f’") and 0™ denote the (¢,n)-th
locations of a high-pass spatio-spectral filtered version of Zj,
and Z,,, which are denoted by A; and A,,, respectively.
We assume this filtering to be computed through an operator
G satisfying Ay, = G(Zy), A, = G(Z,,), and in vector
form as vec(Ay) = G vec(Zy) and vec(A,,) = G vec(Z,,)
where G is the matrix form of G. One natural example for
G is the spatio-spectral gradient operator, e.g. Laplacian filter.
Parameters \,, A, and A, are regularization parameters.
The first term in (8) corresponds to an i.i.d. hyper-Laplacian
distribution for the difference between the filtered HRIs [53],
which has also been previously used to represent the gradient
of the HRI in image fusion [54]. This distribution is effective
for modeling leptokurtic (i.e., heavy-tailed) distributions such
as images [53]. This can represent an important characteristic
of the inter-image changes since these can be restricted to a
comparatively small number of pixels and are concentrated at
low-frequency spatial content [55]. The functions ¢, (-) and



®m(-) encode prior knowledge about each HRI, and will be
learned implicitly by using deep CNNs.

Note that the prior in (8) also corresponds to a model for
the inter-image variability, which can be written as:

Zy=2Zp+ ¥, €))

What is distinctive in (9) when compared to the model in (4)
is how prior information is chosen. The prior for the inter-
image variability term WA cannot be written in an analytical
form; instead, its properties follow from the interactions of the
different terms in (8). The first term encourages the inter-image
variability WA to have small and sparse gradients. The last
two terms employ CNNs that can incorporate realistic prior
information about each of the HRIs, and only constrain ¥
indirectly through its effect on Z,,, and Z;,.

Given this model, the image fusion problem then consists
of finding the HRIs Z; and Z,, which maximize the loga-
rithm of the posterior distribution p(Z,, Z,| Y1, Yon) defined
in (5). This corresponds to the following optimization problem:

o1 1
A0 51Yh = ZuFDlg + 5|V — RZn7
+ /\hﬁbh(zh> + )\mqsm(zm)
A
+ 219(Zn) = G(Zn)l (10)

p,p?

where | - |, is the entrywise L, matrix norm, satisfying
1G(Z1) — G(Zw) | = X, |65 — 65" The spatial and
spectral priors of Z,, and Z, are encoded in ¢,(Z}) and
dm(Z ), respectively.

B. An iteratively reweighted update scheme

Optimizing the cost function in (10) is challenging. Apart
from the image priors ¢ () and ¢,,(-) that will be defined
in the sequel, the inter-image prior term (i.e., the last term
in (10)) is, in general, a non-convex and non-smooth function
of both Zj and Z,,, which is not straightforward to optimize.
To address this problem, we consider an iteratively reweighted
optimization strategy [56], [57]. First, note that the last term
in (10) can be written as:

n n n n)|2
PN SR GOl S 1 (GO R (Y
n n
where the weights wy ,, are given by
wen = |87 = 5GP (12)
Since wy,, = 0, (11) can be expressed as:
An)E,  (13)

n n)|2
Mwga |5 — 66 [P = |W o (A, -
ln

where W is a matrix whose (¢,n)-th entry is given by ,/w¢ ,
and ©® denotes the Hadamard product.

When matrix W is fixed, (13) becomes a quadratic function
of the HRIs, which can be effectively optimized. The nonlinear
dependency of W on Z; and Z,, will be resolved by
using an iterative strategy: first the cost function is optimized
considering W fixed to obtain Zj and Z,,, and afterwards
W is updated according to an approximate version of (12)

by using the values of Z; and Z,, computed from previous
iteration [56]. This leads to the following iterative procedure,
which is repeated until convergence:

1) For a fixed W, compute Z; and Z,, by solving the
following optimization problem:

1 1
51Yn = ZyFDI + 5[ Yo — RZ| 7
+ >\h¢h(zh) + )\m(bm(Zm)

min
Zh:ZnnAh;A'm

+2IW O (A - A} (14)
st. Ay =G(Zy), Ay =G(Z).
2) Update the entries of W according to
wen = (187" =880 +¢)" 15)

where € > 0 is a small constant included in (12) to ensure the
numerical stability of the algorithm.

3) Return to step 1) and repeat until convergence.

This strategy is efficient to solve sparsity-regularized op-
timization problems [58]. Moreover, iteratively reweighted
optimization schemes have been shown to converge to a local
stationary point under relatively mild conditions [56].

In the following subsection, we shall focus on the mini-
mization problem (14).

C. The optimization problem

Handcrafting powerful regularizers ¢ (Z},) and ¢,,(Z.,)
along with solving the associated optimization problems ef-
ficiently is not a trivial task. In this subsection, we propose
to learn the image prior directly from the observed data and
incorporate it into the model-based optimization (14) to avoid
designing regularizers analytically.

First, by introducing two auxiliary variables, V};, = Z}, and
Vi = Z,,, problem (14) can be rewritten equivalently as:

1 1
mén iHYh - ZhFD”%* + iHYnL - RZWLHQF

A
+ EPHWQ (Ah - Am)H% + Am¢m(vm) (16)

+ b (Vi)
st. Vp=2,,V,,=2,,,
Ah = g(Zh)» Am = g(Zm)a
where Q = {Z, Z 1, Vi, Vin, Ap, Ay, ). By using the half-
quadratic splitting (HQS) approach [59], we can decouple the

data fidelity and regularization terms in (16) and write this
cost function as:

£y(Z1 2, Vie, Vi) = 51Y — ZuF DI

4 51— RZu [ + 2 |W 0 (6(21) — 6(Z,)
+ 8020 = Vallp + 120~ Vil

+ )\m¢m(Vm) + Ah(;z)h(‘/h) P

with p € R, the penalty parameter. In the following, we con-
sider a block coordinate descent (BCD) strategy and minimize
L, with respect to each variable, one at a time.

A7)



Optimization w.r.t. Z;: This optimization problem can be
written as:

1 A
min oYy — ZuFD[} + W ©(G(2h) ~ 6(Z.0)lF

+ 2120 - Vil3. (1)

By taking the derivative of the cost function in (18), setting
it equal to zero and using the vectorization property of matrix
products, we obtain:

~[(FD)"®1,]" ( vee(Yy) — [(FD)T ®1,] Vec(Zh))
+A,GT diag(vec(W))2G(vec(Z), — Z,))

+pvec(Zy, — Vi) =0. (19)

Using the properties of the Kronecker product, this equation
can be written as:

([(FD)(FD)T ®I] + \,G " diag(vec(W))2G
+ pI) vee(Zy) = [(FD)T @ I] vec(Yy)

+ X\, G diag(vec(W))2G vec(Z,,) + pvec(Vy).  (20)

which is a linear system of equations. However, solving this
system directly is prohibitive due to its large dimension. Since
the matrix on the left-hand side is symmetric positive-definite,
we propose to solve this problem using the conjugate gradient
(CG) algorithm, which requires only matrix-vector products
that can be implemented implicitly and more efficiently.

Optimization w.r.t. Z,,: This optimization problem can be
written as:

o1 A
win S |¥,, — RZ,[5 + Z|W 0 (G(2n) ~ 6(Z))}

+ 21V = Zul. @

Following the same steps as for problem (18), we obtain:
([IN ® RTR] + \,G diag(vec(W))>G + pI> vec(Zm)

=[In® R]T vee(Yy,) + A,G T diag(vec(W))*G vec(Z),)
+ pvec(Viy,) . (22)

Considering that the matrix on the left-hand side is symmet-
ric positive-definite, the CG algorithm is used to solve this
problem.

Optimization w.r.t. V;,: This optimization problem can be
written as:

min 2| Vi = Zn|% + Mon (V). (23)
Vi 2

As discussed above, designing accurate handcrafted regulariz-
ers for ¢, (V}) may be complicated. To address this issue
efficiently, we propose to use a strategy that leverages a
CNN denoiser. Popular strategies are the Plug-and-Play (PnP)
framework [46] and the Regularization by Denoising (RED)
scheme [47]. In this work, we consider the RED strategy since
it is associated with an explicit optimization objective and
because it was experimentally shown in [47] to have more
stable convergence and robustness in relation to the selection
of hyperparameters when compared to PnP methods. Consider

denoising an HI V', we define the CNN denoiser as D(V).
RED framework defines ¢, (-) as the inner product between
an image and its denoising residual:

(V) = SV, V = D(V), e

where (-, -) denotes the inner product. This can be interpreted
as an image-adaptive Laplacian regularizer. Using (24), the
optimization problem (23) becomes
. 14 2 Ak
min *HVh — ZhHF + 7<Vh, Vi — D(Vh)> (25)
Vi 2 2
Taking the derivative of the cost function and setting it to zero,

we obtain:
p(Vi—Zp) + (Vi —D(Vy)) = 0. (26)

To solve this equation, a fixed-point iterative update is used,
leading to the following recursive update equation:

VIEHU _

(0Z1 + MD(V)). 27)

P+ An

where V,Ei) denotes the solution V7, at the i-th iteration.

Optimization w.r.t. V,,: Following the same strategy as
above, we obtain:

_ 1 .
Vit = Z + A D(VD)) .

m P (o (V')

Note that we only use a single step for the fixed point iteration

in (27) and (28) for computational efficiency.

(28)

D. Learning deep priors via image-specific CNNs

Generally, function D( - ) can be any off-the-shelf denoiser.
This offers the opportunity of incorporating a fast CNN
denoising engine with powerful prior learning ability into
physical model-based iterative optimization procedure [27].
However, there are three main challenges in using CNN
denoisers to learn priors for hyperspectral images in RED or
PnP frameworks [28], [60]: First, there is a limited amount of
data available for training; second, there is an even greater
scarcity of labeled training data; third, the noise level of
the HRI to be denoised in (27)-(28) changes over the BCD
iterations as the method converges. To overcome each of these
challenges, we propose a lightweight, unsupervised and image-
specific CNN denoiser, which is detailed in the following.

Lightweight network architecture: To overcome the lim-
ited number of available data to train efficient CNN denoisers,
a lightweight architecture with fewer parameters needs to be
considered in the network design. In this work, two strategies
have been considered to lighten network architecture, namely:
1) dimensionality reduction of the input image, which reduces
the number of CNN filters, and 2) separable convolutions [61],
which reduces the filter volume (i.e., the number of parameters
of each filter).

We considered the DnCNN [62] as a backbone in network
design. For color (i.e., RGB) images, each layer of DnCNN
contains 64 filters. Directly using this network architecture to
denoise an HI V' with L;, channels would approximately lead
to the use of 64 x Ly, /3 filters in each layer, leading to a very



large number of parameters. This increase in the number of
network parameters makes it hard to train since the amount
of training data is usually very limited. Considering that the
spectral channels of V' are highly correlated and contain highly
redundant information, we can assume that there exists a
subspace of dimension much lower than L; which captures
all the information of V. This allows us to write V using a
low-rank representation as:

V=0X, (29)

where Q € RE»*n (I, « L, QTQ = I,) and X € Ri»*M
are the subspace matrix and the representation coefficients,
respectively. Small values of [;, correspond to data description
in a low-dimensional space. Employing such dimensionality
reduction in the CNN denoising engine has a core benefit. It
decreases the number of filters by a ratio of [,/L; in each
layer by removing the burden of learning information that is
redundant across spectral channels.

To reduce filter volume, we use separable convolutions to
further lighten the backbone architecture as in [63]. In partic-
ular, the core idea of separable convolution is decomposing
a convolution filter with 3 x 3 x Depth parameters into a
depth-wise filter with 3 x 3 x 1 parameters and a point-wise
filter with 1 x 1 x Depth parameters, where Depth is the
input depth of this CNN layer. This reduces the number of
parameters by a rate of 1/Depth + 1/(3 x 3). Thus, the
lightweight DnCNN contains three kinds of operators: 3 x 3
separable convolution layers (S-Conv), rectified linear units
(ReLLU) and batch normalization (BN). ReLU is the activation
function while BN is used to accelerate the training speed. In
the network architecture, the first layer is “S-Conv + ReLLU”,
the hidden layer is “S-Conv + BN + ReLU” and the last layer
is “S-Conv”. This network architecture is illustrated in the
bottom panel of Figure 1. Furthermore, we adopt the residual
learning strategy in [62] to predict the residual image before
achieving the estimated clean image.

With these two strategies, the number of network param-
eters can be significantly reduced with a ratio of (I,/Lp) %
(1/Depth+1/(3x3)), which is key to allowing the denoising
engine to learn a powerful prior from a small training set.

Zero-shot training strategy: In many real-world scenarios,
training data with paired noisy and clean images related to the
scene of interest are not available. Moreover, using synthetic
training data or images from different sites may lead to the
so-called domain shift, where the model does not perform
well due to differences between the statistical distribution of
training and test data [28], [60]. Therefore, it is desirable to
consider a training strategy that is zero-shot, that is, which is
unsupervised and uses only the information of the observed
noisy HI and MI pair itself for training.

Thus, we propose to leverage the information inside a
single image to train the CNN denoiser. Natural images have
significant information redundancy across different spatial
positions and scales, which has been successfully exploited in
single image restoration algorithms [64]. Consider the CNN-
based denoiser CNN( - ; ©) with network parameters ©, and an
observed noisy image X generated following the degradation
model X = Z + FE, where F is i.i.d. Gaussian noise with a

Algorithm 1 The Proposed CNN-based denoising engine.
Input: Noisy image V' and subspace dimension [j,.
Output: Denoised image D(V).

Find @Q and X in (29) using the (truncated) SVD of V.
Optimize © by minimizing (30) with back-propagation.
Denoise X with © as CNN(X; ©).

Transform CNN(X;0) to D(V) = Q CNN(X; ©).

standard deviation o. CNN( -; ©). To learn the CNN denoiser
CNN( -;©), we make the important assumption that the set
of parameters © which allow it to recover Z from X, are
the same as those which allow CNN(-;©) to recover X from
X + E. This assumption has been used to learn image-adapted
CNNs for super-resolution in [48]. It allow us to train the
denoising engine CNN( - ; ©) using the image pair (X + E, X)
by minimizing the following ¢;-norm loss function:

(6) = [cNN(X + E;0) — X|; . (30)

Note that the noisy-clean image pair (X + F, X) is generated
by adding Gaussian noise with standard deviation o to the
observation X. We adopted the method described in [65] to
estimate o in each channel of X.

The procedure for learning the proposed CNN-based de-
noising engine is summarized in Algorithm 1. Note that the
training procedure considers the entire image, X. However,
for large images, other learning objectives that decompose
the image into different patches or across multiple scales
can provide ways to parallelize the training procedure, which
might reduce the execution times.

Image-specific prior learning: Since there exist some
inter-image variations between Z; and Z,,, we considered
to train two independent denoising engines CNN(-;©;,) and
CNN(-; O,,) to denoise V}, and V,,, respectively. This leads
to different denoising engines, which can be expressed by
substituting D by Dy, in (27), and by D,,, in (28).

In general, the equivalent noise levels of V; and V,,
decrease over the BCD iterations since the reconstructed
images get closer to the ground truth. Thus, CNN(-;©)
and CNN(-;©,,) should have the ability to tackle multiple
noise levels. To address this issue, we propose a strategy that
adaptively updates network parameters O, and O,, to learn an
image-specific prior at each BCD iteration. This is performed
by re-training CNN(-;©j) and CNN(-;©,,) to denoise the
estimates of the HRIs at the current BCD iteration. To make
the algorithm faster, we consider training CNN(-;©p) and
CNN( - ; O, ) in the first BCD iteration and then fine-tune them
in all the remaining iterations.

Overall, after overcoming the discussed challenges with
the above strategies, the denoising engine in Algorithm 1
is incorporated into the model-based optimization procedure
described in Subsection III-C. The overall DIFIV strategy is
described in Algorithm 2.

IV. EXPERIMENTS

In this section, the effectiveness of the proposed DIFIV
method is illustrated through numerical experiments consid-



Algorithm 2 Deep Hyperspectral and Multispectral Image
Fusion with Inter-image Variability (DIFIV).

Input: Y;,Y,,, F, D, R, paramters p, /\p,)\h,/\m,p

Output: The estimated high-resolution images A hy Z .
Interpolate Y}, and Y, as Y, and Y,,, respectwely
Initialize Z;, =V}, = Yh and Z,, = V,, Ym.
Initialize W using (12).
while stopping criteria are not met do
Calculate Z;, by solving (20) via CG algorithm.
Calculate Z,, by solving (22) via CG algorithm.
Update W using (12).
Learn deep priors via denoising V7, with Algorithm 1.
Update V7, via (27).
Learn deep priors via denoising V,
Update V,,, via (28).

end while

with Algorithm 1.

Lockwood
[
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Figure 2. Visible representation of the hyperspectral (left panels) and
multispectral images (middle panels) with moderate variability used in the
experiments and their inter-image changes maps (right panels).

ering two categories of real data, i.e., observed images with
moderate and significant inter-image variability. The results
provided by the DIFIV are compared with other state-of-
the-art hyperspectral and multispectral image fusion methods
from both quantitative and qualitative perspectives. The code
is made available at https://github.com/xiuheng-wang/DIFIV _
release.

A. Experimental setup

We compared our method to nine other techniques, namely:
the matrix factorization-based methods HySure [8] and
CNMF [3], tensor-based image fusion methods STEREO [18]
and SCOTT [20], the multiresolution analysis-based GLPHS
algorithm [5], and the unsupervised deep learning based al-
gorithm PAR [36]. We also considered approaches accounting
for inter-image variability, including FuVar [37], GSFus [45]
and CB-STAR [21]. In this study, three real data sets with
moderate variability, namely, the Ivanpah Playa, the Lake

Kern River
)
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Figure 3. Visible representation of the hyperspectral (left panels) and
multispectral images (middle panels) with significant variability used in the
experiments and their inter-image changes maps (right panels).

Isabella and the Lookwood, and three real data sets with
significant variability, namely, the Lake Tahoe A and B, and
the Kern River, were used to evaluate the performance of each
method. These data sets contained one reference HRI and an
MI acquired by the AVIRIS and the Sentinel-2A instruments,
respectively, with a pixel of 20m resolution [37]. The HI and
MI contain Ly = 173 and L,, = 10 bands, respectively.
To illustrate the existence of the inter-image variability in
the considered datasets we computed the average absolute
difference images L Z[ Yo (4, :) —R(¢,:) Zy,| (where the
modulus operation | | is applied elementwise), and displayed
them in Figures 2 and 3.

For all acquired HRIs, which have the same spatial resolu-
tion as the MIs, a pre-processing procedure as described in [8]
was performed. Specifically, spectral bands that were overly
noisy or corresponded to water absorption spectral regions
were removed manually, and then all bands of HRIs and
MlIs were normalized such that the 0.999 intensity quantile
corresponded to the value of 1. Moreover, all HRIs were
denoised using the approach described in [66] to obtain a
noiseless reference image Z;,. The observed Hls were gener-
ated according to (1), where F' was an 8 x 8 Gaussian blurring
operator with standard deviation 4 and D a downsampling
operator with the scaling factor 4. The SRF R was acquired
from calibration measurements of the Sentinel-2A instrument
and known a priori. For all experiments, Gaussian noise was
added to both HIs and MIs to obtain a signal-to-noise ratio
(SNR) of 35 dB. To set up all baselines, we used the code
provided by the authors and tuned all parameters to achieve
the best fusion performance.

We implemented the proposed DIFIV method with the
CNN-based denoising engine using the PyTorch framework.
The dimension of subspace [;, was set to 5 and the number
of network layers was set to 8, the first and hidden layers
contained [;, x 4 S-Conv operators while the last layer was
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composed by I, S-Conv operators. The Adam optimizer [67]
with an initial learning rate 0.0002 was used to minimize
the loss function in (30). The number of iterations of DIFIV
(Algorithm 2) was set to 20 which was sufficient to ensure
convergence. The weights were initialized with the method
in [68], trained for 10000 epochs in the first iteration, and
fine-tuned for 2000 epochs in the remaining iterations. We set
p = 1.5,A, = 0.01 and X\,, = A, = 0.1 for the data with
moderate variability. For the data with significant variability,
we set p = 1.8, A, = 0.002 and \,, = A\, = 0.01. For the
other parameters, we set p = 0.1 and € = 10~°. Note that in
the following, the performance of the methods is compared via
Z 1, only since the HRI corresponding to Y, was not available
in the experiments.

B. Quality measure and visual assessment

Four quality metrics were considered to evaluate the quality
of the fusion result Z;, compared to the ground truth Zj. The
first one is the peak signal to noise ratio (PSNR):

Ly
Z 101logy <

=1
where Zj(¢,:) and A n(¢,:) represent the ¢-th channel of Z
and Zj, respectively.
The second metric is the Spectral Angle Mapper (SAM):

| M
SAM = i mzzl arccos < ) ,

where Z(:,m) and zh(:,m) denote the m-th pixel of Z,
and Z n, respectively.

The third metric is the ERGAS [69], which provides a global
statistical measure of the fused image quality, defined as:

M max(Zy(¢,:))?

PSNR = - .
H Zh(‘ga :) - Zh(ev )H

Lh
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This metric is the average of the UIQI [70] across bands.
It evaluates image distortions including correlation loss and
luminance and contrast distortions, and tends to 1 as Z}, tends
to Zy,.

For the visual assessment of the reconstructed images, we
displayed color images at the visual spectrum (with band
image at the wavelength 0.66, 0.56 and 0.45 pm as red,
green and blue channels) and false color images at the infrared
spectrum (with band image at the wavelength 2.20, 1.50 and
0.80 pwm as red, green and blue channels). Due to space
limitations, in the following, we only display the results of the
five methods with the best quantitative performances, namely,
CNMF, FuVar, GSFus, CB-STAR and DIFIV. Note that the
last four algorithms account for inter-image variability.

C. Category 1: Moderate variability

In this category, we evaluated the methods using HI and MI
pairs with moderate variability, including Ivanpah Playa, Lake
Isabella and Lookwood.

The first image pair considered in this category was acquired
over the area surrounding Ivanpah Playa with a resolution of
80 x 128 pixels. The second pair of images, with 80 x 80
pixels, was captured over the Lake Isabella region, while the
third pair of images containing 80 x 100 pixels was acquired
near Lookwood. The visualizations of these three image pairs
and their inter-image variability are shown in Figure 2. In
this category, the HI and MI look visually similar, which
is typical when small differences between acquisition dates
are considered (which is the case for the Lake Isabella and
Lockwood images). Nevertheless, slight variations still exist,
as can be seen in the overall color hue of the Ivanpah Playa
and Lockwood images, and in the up part of the Lake Isabella

image.

Table 1
RESULTS - IVANPAH PLAYA

Algorithm| SAM | ERGAS | PSNR | UIQI
HySure | 2.262| 2.639 |[21.923]0.511
CNMF | 1.532| 2.258 [23.729] 0.73
GLPHS |2.924 | 3.139 |20.949|0.508
STEREO [29.173|1,643.756| 17.744 | 0.49
SCOTT |41.025| 618.314 | 9.388 |0.307
PAR 3.506 2.26 24.011|0.752
FuVar | 1.469 1.804 |25.622|0.868
GSFus 1.72 1.497 |27.264 |0.874
CB-STAR| 1.91 1.517 |27.506 | 0.875
DIFIV |1.358| 1.335 |28.283/0.903

Table II

RESULTS - LAKE [SABELLA

Algorithm| SAM | ERGAS | PSNR | UIQI
HySure | 3.021 5.363 |19.905 | 0.637
CNMF |2.206 | 3.414 |25.611(0.792
GLPHS | 2.755 | 3.572 |25.207|0.793
STEREO |27.859(2,145.707| 19.221 | 0.573
SCOTT |26.281| 282.097 | 8.453 |0.076
PAR 7.482 | 4.044 |25.454 |0.805
FuVar | 2.487| 3.234 |27.213|0.899
GSFus | 2.759 | 3.787 |26.448|0.864
CB-STAR| 3.263 | 3.406 |26.556 |0.864
DIFIV |2.114| 2.323 |29.186|0.923

Table III

RESULTS - LOCKWOOD

Algorithm| SAM |ERGAS | PSNR | UIQI
HySure | 3.384 | 4.384 |22.678|0.881
CNMF |3.243| 3.349 |26.469 | 0.857
GLPHS | 3.706 | 3.971 |24.704 |0.781
STEREO [28.185|883.508| 21.079 | 0.639
SCOTT (20.109(204.538| 9.273 | 0.094
PAR 6.61 | 4.433 |23.634|0.754
FuVar | 3.518 | 3.345 |26.509 | 0.874
GSFus | 3.331 | 3.332 |26.329| 0.87
CB-STAR| 4.137 | 3.867 |25.535|0.805
DIFIV | 3.394 | 2.934 [27.307|0.885

SAM, PSNR, ERGAS and UIQI metrics for all methods
are reported in Table I to III. As shown in Table I and II,
DIFIV outperforms all competing methods in all metrics for
the Ivanpah Playa and Lake Isabella images. Moreover, it can
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Figure 4. Visible (top) and infrared (bottom) representation for the estimated and true versions of the Ivanpah Playa HI.
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Figure 5. Visible (top) and infrared (bottom) representation for the estimated and true versions of the Lake Isabella HI.
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Figure 6. Visible (top) and infrared (bottom) representation for the estimated and true versions of the Lockwood HI.

be seen in Table III that DIFIV achieves overall best results
for the Lookwood data, surpassing the other methods in all
metrics except for SAM, where CNMF yields the best results
for this metric. Figures 4 to 6 illustrate the color and false
color visualization of the fusion results of several algorithms.
Visually, DIFIV provides the best results in recovering details
and spatial reconstructions closest to the ground truth at both
the visual and infrared spectra. Specifically, CNMF and GSFus
introduce artifacts and fail to recover many details while CB-
STAR produces blurry effects and color aberrations. FuVar and
DIFIV give similar visual effects but Fuvar shows more details
that do not match the reference image. This demonstrates the
efficiency of DIFIV in recovering the spatial information of
the latent HRIs in this category.

D. Category 2: Significant variability

This category evaluates the performance of the different
methods when there is significant inter-image variability. We
consider two image pairs acquired over the Lake Tahoe area at
different time instant, namely, Lake Tahoe A and B. Besides,
an image pair captured over the Kern River scene, which
comprises a larger spatial area, was also considered.

The two Lake Tahoe image pairs contain 100 x 80 pixels,
while the Kern River image pair contains 260 x 340 pixels.
The visualization of these HIs and MIs and their corresponding
inter-image changes maps can be seen in Figure 3. Significant
variability between the HI and MI can be easily verified in
these cases. For the two Lake Tahoe image pairs in this
category, the color hue of the ground and the crop circles is
quite different. Moreover, an island on the lake is not visible
in the MI of Lake Tahoe A. For Lake Tahoe B, the lake in
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Figure 7. Visible (top) and infrared (bottom) representation for the estimated and true versions of the Lake Tahoe A HI.
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Figure 8. Visible (top) and infrared (bottom) representation for the estimated and true versions of the Lake Tahoe B HI.
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Figure 9. Visible (top) and infrared (bottom) representation for the estimated and true versions of the Kern River HI.

the MI is much larger than that in the HI. For the Kern River
image pair, the river in the MI is narrower, has an upstream
deposit, and shows a darker color in the water area.

The quantitative metrics are reported in Table IV, V and VI.
As shown in Table IV, DIFIV obtains the best results for most
metrics for Lake Tahoe A and only performs slightly worse
in terms of SAM compared to GSFus. It can be observed in
Table V and VI that the performance of DIFIV for Lake Tahoe
B and Kern River exceeds those of the competing methods
for all metrics. A visual illustration of the fusion results for
Lake Tahoe A and B in color and false color is displayed in
Figure 7 and Figure 8. Figure 9 shows the visualization of
the fusion results for the Kern River dataset. It can be seen
that DIFIV reconstructs more details and produces a color
hue closer to the reference images at both visual and infrared
spectral ranges. In particular, CNMF produced many artifacts
and loses some details. GSFus and FuVar generate results with

blockiness and ghosting effects while the results of CB-STAR
are blurry and have some color distortions. This demonstrates
the superiority of DIFIV in recovering the latent HRIs when
significant variability exists.

Table IV
RESULTS - LAKE TAHOE A
Algorithm| SAM | ERGAS | PSNR | UIQI
HySure |10.643| 7.775 |16.531|0.655
CNMF |12.371| 7.514 |18.102|0.676
GLPHS [10.803| 7.206 |18.303|0.701
STEREO [30.605(2,541.149| 15.991 | 0.575
SCOTT |42.839| 457.101 | 9.243 |0.215
PAR [15.886| 6.065 |20.579|0.811
FuVar |8.373| 6.545 |19.258| 0.78
GSFus |6.628| 4.376 |22.537|0.883
CB-STAR| 7.548 | 3.769 |[24.165|0.917
DIFIV | 6.737| 3.706 [24.174|0.922




Table V
RESULTS - LAKE TAHOE B
Algorithm| SAM | ERGAS | PSNR | UIQI
HySure |13.458| 12.042 |11.9130.235
CNMF | 7.954 | 7.289 |16.387|0.428
GLPHS | 6.662 | 4.786 |19.824|0.665
STEREO [29.877(7,936.808| 15.208 | 0.463
SCOTT |42.427| 491.817 | 7.504 |0.136
PAR [11.787| 6.21 21.405 | 0.728
FuVar | 4.688 | 3.729 21.86 | 0.79
GSFus | 4.182 3.16 23.425 | 0.826
CB-STAR| 3.95 2.597 |25.221(0.881
DIFIV |3.265| 2.396 |25.834/0.899
Table VI
RESULTS - KERN RIVER
Algorithm| SAM |ERGAS | PSNR | UIQI
HySure | 9.094 | 8.933 |21.717|0.442
CNMF | 5.851 | 8.471 |22.853|0.356
GLPHS | 8.231 | 7.279 | 24.19 |0.492
STEREO [30.337(636.136| 22.568 | 0.45
SCOTT |27.652| 220.14 | 13.239 | 0.045
PAR [11.695| 6.742 28 |0.739
FuVar |4.654 | 5.144 |28.335(0.797
GSFus | 5.037 | 4.243 |29.404 | 0.785
CB-STAR| 5.298 | 5.004 | 28.884|0.729
DIFIV |3.412| 3.734 [{31.506|0.852

E. Parameter Sensitivity

In this subsection, we study the sensitivity of DIFIV to
the choice of values for regularization parameters A,, Ap, Am.
Considering the Ivanpah Playa scene as an example, we var-
ied each parameter individually while keeping the remaining
ones fixed at the values described in Subsection IV-A. The
PSNR values of the fusion results as a function of the ratio
logio(A/Aopt) are shown in Figure 10, where A,y is the
empirically selected value of the corresponding parameters.
The PSNR values of two selected competing methods (CB-
STAR and GSFus) are also shown for reference. It can be
observed that varying parameters of DIFIV even by various
orders of magnitude only leads to moderate variations of
PSNR values, which are consistently higher than that of the
competing methods. Moreover, the parameters of GSFus and
CB-STAR were adjusted to provide the best performance in
each example, and their performance would likewise degrade
if their parameters move away from their optimal values, as
discussed in the original works [45], [21]. This indicates the
performance of DIFIV is not overly sensitive to the choice of
regularization parameters.

F. Computational cost

This experiment aims at comparing the computational cost
of the algorithms accounting for inter-image variability. DIFIV
was implemented using Python while the remaining methods
were implemented using MATLAB. We conducted all the
experiments on a computer with an Intel Core i7-10700 CPU,
32-GB random access memory and an NVIDIA Quadro P2200
GPU. The execution times of the algorithms for all the tested
image pairs are shown in Table VII. It can be seen that the
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Figure 10. Sensitivity of the proposed DIFIV method with respect to
regularization parameters Ap, A, Am.

Table VII
EXECUTION TIMES OF THE ALGORITHMS THAT CONSIDER INTER-IMAGE
VARIABILITY (IN SECONDS)

FuVar GSFus CB-STAR DIFIV

Ivanpah Playa 354.6 31.4 11.1 2963.4
Lake Isabella 199.3 17.7 8.8 2928.7
Lockwood 228.8 23.2 30.1 2954.0
Lake Tahoe A 679.5 23.1 7.8 2178.4
Lake Tahoe B 718.9 22.2 7.6 2143.5
Kern River 1762.0 307.3 96.0 5908.4

computation times of DIFIV are substantially higher than those
of the competing methods, which comes as a compromise
for its superior image fusion quality results. Nevertheless, the
computation times of DIFIV scale reasonably with the image
sizes; for instance, comparing the results for the Lake Isabella
and Kern River images, we see that an increase of about ten
times in the number of pixels in the image leads to an increase
of about two times in the computation times. The development
of computationally efficient extensions to the DIFIV method
will be investigated in future work.

V. CONCLUSIONS

This paper presented an unsupervised deep learning-based
HMIF method accounting for inter-image variability. We first
formulated a new imaging model considering both the joint
as well as the image-specific priors related to the two latent
HRIs. The inter-image variations were modeled using a hyper-
Laplacian distribution, while the image-specific priors of the
latent HRIs were defined implicitly by deep denoising engines.
An iteratively reweighted scheme was then investigated to
solve the non-convex cost function and tackle the joint image
prior term. The optimization problem was solved using a
variable splitting strategy, and the deep image priors were
implemented by means of CNN-based denoising operations. A
lightweight, image-specific CNN-based denoiser with a zero-
shot training strategy was designed. The network parameters
were iteratively updated during the optimization procedure in
order to adapt to variations in the statistical properties of
the estimated HRIs as the method converged. The proposed
method achieved superior experimental performance in the
presence of both moderate and significant inter-image vari-
ability when compared to state-of-the-art approaches.
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