Divsets, numerical semigroups and Wilf's conjecture - Archive ouverte HAL
Pré-Publication, Document De Travail (Working Paper) Année : 2023

Divsets, numerical semigroups and Wilf's conjecture

Résumé

Let S ⊆ N be a numerical semigroup with multiplicity m = min(S \ {0}) and conductor c = max(N \ S) + 1. Let P be the set of primitive elements of S, and let L be the set of elements of S which are smaller than c. Wilf's conjecture (1978) states that the inequality |P||L| ≥ c always hold. The conjecture has been shown to hold in case |P| ≥ m/2 by Sammartano in 2012, and subsequently in case |P| ≥ m/3 by the author in 2020. The main result in this paper is that Wilf's conjecture holds in case |P| ≥ m/4 with c ∈ mN. 0 Caution This document is the starting point of a full paper to be gradually completed in successive versions within the next few weeks of Fall 2023.
Fichier principal
Vignette du fichier
divsets v2.pdf (187.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04234167 , version 1 (09-10-2023)
hal-04234167 , version 2 (28-11-2023)
hal-04234167 , version 3 (06-02-2024)
hal-04234167 , version 4 (24-04-2024)
hal-04234167 , version 5 (29-10-2024)

Identifiants

  • HAL Id : hal-04234167 , version 2

Citer

Shalom Eliahou. Divsets, numerical semigroups and Wilf's conjecture. 2023. ⟨hal-04234167v2⟩
328 Consultations
134 Téléchargements

Partager

More