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Divsets, numerical semigroups and Wilf’s conjecture

Shalom Eliahou

Abstract

Let S ⊆N be a numerical semigroup with multiplicity m = min(S\{0}) and conduc-
tor c = max(Z\S)+1. Let P be the set of primitive elements, i.e. minimal generators, of
S, and let L be the set of elements of S which are smaller than c. Wilf’s conjecture (1978)
states that the inequality |P||L| ≥ c holds. The conjecture has been shown to hold in case
|P| ≥ m/2 by Sammartano in 2012, and subsequently in case |P| ≥ m/3 by the author in
2020. The main result in this paper is that Wilf’s conjecture holds in case |P| ≥ m/4 if
m divides c.

0 Caution
This as yet1 incomplete document will be gradually completed in successive versions during
Fall 2023.

1 Introduction
A numerical semigroup is a cofinite submonoid S of N, i.e. a subset containing 0, stable
under addition and with finite complement N \ S. Equivalently, it is a set of the form S =

⟨a1, . . . ,an⟩=Na1+ · · ·+Nan where a1, . . . ,an are positive integers with gcd(a1, . . . ,an) = 1,
called generators of S. The least such n is usually denoted e = e(S) and called the embedding
dimension of S. The multiplicity of S is m = m(S) = minS∗, where S∗ = S\{0}. The Frobe-
nius number of S is F = F(S) = max(Z\S) and the conductor of S is c = c(S) = F +1, satis-
fying c+N⊆ S and minimal with respect to that property. The genus of S is g= g(S)= |N\S|,
its number of gaps. We partition S as S = L⊔R, where L = L(S) = {a ∈ S | a < F(S)} and
R = R(S) = {a ∈ S | a > F(S)}, the left part and right part of S, respectively.

A primitive element of S is an element a ∈ S∗ \ (S∗+ S∗), i.e. an element of S∗ which is
not the sum of two elements of S∗. We denote by P = P(S) the set of primitive elements of S,
and by D = D(S) = S∗+S∗ the set of decomposable elements of S. It is easy to see that P is
contained in [m,c+m−1]∩N and hence is finite, and is the unique minimal generating set
of S. Thus |P|= e(S).
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One of the main open problems on numerical semigroups is the following conjecture, first
raised as a question by Wilf [22].

Conjecture 1.1 (Wilf, 1978). Let S be a numerical semigroup. Then |P(S)||L(S)| ≥ c(S).

See [5] for a survey on the conjecture up to 2018. Among many available partial results,
we shall need here the following ones, grouped for convenience in a single statement.

Theorem 1.2. Let S be a numerical semigroup. Then S satisfies Wilf’s conjecture if either
|P| ≤ 3, or |P| ≥ m/3, or c ≤ 3m.

The solution in case |P| = 2 is due to Sylvester [21]; its extension to |P| ≤ 3 is due to
Fröberg et al. [13]. The solution in case |P| ≥ m/2 is due to Sammartano [20]; its extension
to |P| ≥ m/3 is achieved in [10]. Finally, the case c ≤ 3m is settled in [9].

Notation 1.3. For a,b ∈ Z, we denote by [[a,b]] = [a,b]∩Z the integer interval they span.

1.1 Special numerical semigroups

The main result in this paper extends the above case |P| ≥m/3 in Wilf’s conjecture as follows.

Theorem 1.4. Let S be a numerical semigroup such that |P| ≥ m/4 and c ∈ mN. Then S
satisfies Wilf’s conjecture.

What motivates the added hypothesis c ∈ mN? As it happens, the proofs of Wilf’s conjec-
ture in either case c ≤ 3m [9] or |P| ≥ m/3 [10] can be significantly shortened when c ∈ mN.
Moreover, the first five instances of the very rare “near-misses in Wilf’s conjecture” all be-
long to this case [11]. These facts lead us to consider the case c ∈ mN as a priority in research
on Wilf’s conjecture. Indeed, we believe that if the conjecture fails, then it will already fail
in case c ∈ mN. Whence the following terminology.

Definition 1.5. A numerical semigroup S is special if its conductor c is a multiple of its
multiplicity m.

For instance, the ordinary (or superficial) numerical semigroup Om = {0}∪(m+N) is special
since it satisfies c = m.

1.2 Contents

In Section 2, we introduce divsets as abstract models of Apéry sets. In Section 3, we recall
some needed material about the depth and the functions W (S),W0(S). In Section 4, we start
focusing on special numerical semigroups. In Section 5, we settle Wilf’s conjecture for
special numerical semigroups modeled by a divset of degree 2. In Section 6 – to be completed
– we consider the case of divsets of degree at least 3 and conclude the proof of the main
theorem.
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2 Divsets
In this section, we recall what is the Apéry set of a numerical semigroup and introduce divsets
as abstract models thereof.

2.1 The Apéry set

Let S be a numerical semigroup of multiplicity m and conductor c. Its Apéry set contains key
information on its structure.

Definition 2.1. The Apéry set of S with respect to m is defined as A = Ap(S,m) = S\(m+S).
We denote A∗ = A\{0}.

It is well known that Ap(S,m) has exactly m elements, one for each class mod m. More
precisely, we have

Ap(S,m) = {w0, . . . ,wm−1 | wi = min(S∩ (i+mN))}.

For instance, min(A) = w0 = 0 and max(A) = wc−1 = c+m−1. Hence A ⊆ [[0,c+m−1]].
Moreover, denoting P∗ = P\{m}, it follows from the definition that

(1) P∗ ⊆ A∗.

The set S is completely determined by its Apéry set A via the formula

(2) S =
⊔
a∈A

(a+mN).

2.2 Basic definitions

Throughout this section, for given n ≥ 1, we denote by

M = M (x1, . . . ,xn) = {xa1
1 · · ·xan

n | (a1, . . . ,an) ∈ Nn}

the set of monomials in n commuting variables x1, . . . ,xn.

Notation 2.2. The degree of u = xa1
1 · · ·xan

n ∈ M is the standard one, namely deg(u) = ∑i ai.
For d ∈ N, we denote by Md ⊂ M the subset of monomials of degree d.

Definition 2.3. A divset in M is a finite subset X ⊂ M which is stable under taking divisors.
That is, for all u ∈ X and v ∈ M , if v|u then v ∈ X.

Said otherwise, a divset is a finite downset or order ideal in M under divisibility.

Example 2.4. X = {x3
1,x

2
1x2,x2

1,x1x2,x1,x2,1} is a divset in M (x1,x2).

3



Definition 2.5. Let X be a divset. We define the degree of X as

deg(X) = max{deg(u) | u ∈ X}.

Notation 2.6. Given a subset of U ⊆ M of monomials, we denote by [U ] the set of divisors
of the elements of U. That is, [U ] = {v ∈ M | ∃u ∈U,v|u}.

In the above example X = {x3
1,x

2
1x2,x2

1,x1x2,x1,x2,1}, we have X = [x3
1,x

2
1x2].

Notation 2.7. Let X be a divset. We denote by max(X) the maximal elements of X under
divisibility. That is, max(X) is the set of those u ∈ X which do not divide any v ∈ X \{u}.

Clearly, a divset X is completely determined by max(X), namely as X = [max(X)].

Notation 2.8. Let X be a divset in M . For d ∈N, we set Xd =X ∩Md = {u∈X | deg(u) = d}.

For instance, we have X0 = M0 = {1} and X1 ⊆ M1 = {x1, . . . ,xn}.

Notation 2.9. Let X be a divset. We denote by D(X) = {u ∈ X | deg(u) ≥ 2} the set of
decomposable monomials in X. Thus X = {1}⊔X1 ⊔D(X). We set X∗ = X \{1}.

2.3 The graph of a divset

Let X be a divset. We canonically associate to X a graph G = G(X) defined as follows. An
edge in G is a pair {u1,u2} with u1,u2 ∈ X∗ such that u1u2 ∈ X∗. This defines the edge set
E(G). The set V (G) of vertices of G is defined as the set of the extremities of the edges. That
is, V (G) = {u ∈ X∗ | ∃v ∈ X∗, uv ∈ X∗}. We denote V (X) = V (G) and E(X) = E(G). The
graph G has no multiple edges, but it may contain loops, namely all pairs {u,u} such that
u,u2 ∈ X∗.

An important measure of X in the sequel is the vertex-maximal matching number of the
graph G(X), defined below.

Notation 2.10. We set vm(X) = the largest cardinality of a subset Y ⊆ X∗ being the vertex
set of a matching in G(X), i.e. where Y is the union of pairwise disjoint pairs {u,v} ⊆ X∗

such that uv ∈ X∗.

2.4 Modeling Apéry sets

Here we use divsets as abstract models of Apéry sets via specific maps f : X → S from a
divset X to a numerical semigroup S.

Definition 2.11. Let S be a numerical semigroup and X a divset. A map f : X → S is a
morphism if f (uv) = f (u)+ f (v) for all u,v ∈ X.
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Of course f (1) = 0 for any such morphism, as f (1) = f (1 ·1) = f (1)+ f (1).

Definition 2.12. Let S be a numerical semigroup of multiplicity m. Let A = Ap(S,m). A
divset model of S is a divset X with an injective morphism f : X → S such that f (X)⊆ A and
f (D(X)) = A∩D.

In particular, for all a ∈ A∩D, i.e. such that a = a1 + a2 with a,a1,a2 ∈ A∗, there are
unique monomials u,u1,u2 ∈ X∗ such that

(3) f (u) = a, f (u1) = a1, f (u2) = a2.

Despite the name, a divset model of S is really an abstract multiplicative model of its Apéry
set A, up to primitive elements not involved as summands of elements in A∩D.

Proposition 2.13. Let S be a numerical semigroup of multiplicity m and A = Ap(S,m). Let
f : X → S be a divset model of S. Then |X | ≤ m, f (X1)⊆ P∗ and A\ f (X)⊆ P∗.

Proof. Since f is injective and f (X) ⊆ A, we have |X | = | f (X)| ≤ |A| = m. Moreover
f (X∗) ⊆ A∗ since f (1) = 0. Let u ∈ X1. If f (u) /∈ P∗ then f (u) ∈ A∩D = A∗ \P∗. Since
A∩D = f (D(X)) by definition, there exists v ∈ D(X) such that f (u) = f (v). Hence u = v
since f is injective, a contradiction since deg(u) = 1 and deg(v)≥ 2. Finally, since 0 ∈ f (X)

and A∩D ⊆ f (X), we have A\ f (X)⊆ A∗ \ (A∩D) = P∗.

Proposition 2.14. Let S be a numerical semigroup. Then S admits a divset model.

Proof. It is well known and easy to verify that, for any decomposable Apéry element a ∈
A∩D, if a = s1+ s2 with s1,s2 ∈ S∗, then necessarily s1,s2 ∈ A∗. For any a ∈ A∩D, consider
the unique decomposition a = pi1 + · · ·+ pid into primitive elements pi j ∈ P∗ which is lexico-
graphically minimal of minimal length d. Clearly, for any nonempty subsum of pi1 + · · ·+ pid ,
the same minimality properties hold.

Let {p1, . . . , pn} ⊆ P∗ be the set of all primitive elements involved in the respective min-
imal decompositions of the elements in A∩D. Let X1 = {x1, . . . ,xn} be a set of n commuting
variables. We set u(pi) = xi for all 1 ≤ i ≤ n. Then, for all a ∈ A∩D, we associate to a the
monomial u(a) of degree d in {x1, . . . ,xn} mirroring, in multiplicative notation, the minimal
decomposition a = pi1 + · · ·+ pid . Let

X = {1}⊔X1 ⊔{u(a) | a ∈ A∩D}.

By the remark on subsums above, if a = a1 + a2 with a1,a2 ∈ A∗, then u(a) = u(a1)u(a2).
Hence X is a divset. Let f : X → S be the unique morphism induced by f (xi) = pi for all i =
1, . . . ,n. Then f is an injective morphism, f (X) ⊆ A and f (D(X)) = A∩D by construction.
Hence f : X → S is a divset model of S, as desired.
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Example 2.15. Let S = ⟨5,6,9⟩. Then m = 5 and A∗ = {w1,w2,w3,w4}= {6,12,18,9} with
wi = min(S∩ (i+5N)) for 1 ≤ i ≤ 4. Let

X = [x2
1,x

2
2] = {x2

1,x
2
2,x1,x2},

X ′ = [x3
1,x2] = {x3

1,x
2
1,x1,x2}.

The morphisms f : X → S and f ′ : X ′ → S both induced by x1 7→ 6,x2 7→ 9 yield two distinct
divset models for S, as easily verified using 18 = 2 ·9 = 3 ·6.

Remark 2.16. One advantage of divsets X as abstract models of Apéry sets A is that for any
u ∈ X∗, a decomposition u = vw with v,w ∈ X∗ is unique up to order, whereas in A∗, decom-
positions a = b+ c are seldom unique in general as seen in the above example. Moreover,
with divsets X one can use the terminology of monomials such as degree, divisibility and so
on, notions which are less intuitive in additive notation.

Remark 2.17. In a divset model f : X → S, by removing from X variables xi ∈X1 not dividing
any u ∈ D(X), the resulting subset X ′ ⊆ X is still a divset and the restriction f ′ : X ′ → S of f
to X ′ is still a divset model since D(X ′) = D(X). Thus, we may and will assume without loss
of generality that X1 ⊆V , where V =V (X) is the vertex set of the associated graph G(X).

Recall that for a divset model f : X → S where S is of multiplicity m, we have |X | ≤ m.
The case of equality deserves a name.

Definition 2.18. Let S be a numerical semigroup of multiplicity m. A full divset model of S
is a divset model f : X → S such that |X |= m.

Note that, for a full divset model f : X → S, we have f (X1) = P∗ and so f (X) = A.

3 Depth, W (S), W0(S)

We recall here some needed material for later use. Throughout this section, S is a numerical
semigroup of multiplicity m and conductor c.

Definition 3.1 (See [12]). The depth of S is the positive integer

q = ⌈c/m⌉.

Thus c = qm−ρ where ρ ∈ [[0,m−1]].

In fact ρ ∈ [[0,m−2]]. For otherwise, if ρ = m−1 then c ≡ 1 mod m, an absurdity since
then its Frobenius number F = c−1 = max(Z\S) would be a multiple of m.
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3.1 The depth function

We keep the same notation as above, namely c = qm−ρ where ρ ∈ [[0,m−2]]. As in [9], we
partition S as S = ⊔i∈NSi, where for all i ∈ N,

Si = S∩ [[im−ρ,(i+1)m−ρ−1]].

In particular, we have
S0 = {0},
S1 = [[m,2m−ρ−1]]∩S,

· · ·
Sq−1 = [[c−m,c−1]]∩S,

Sq = [[c,c+m−1]].
This gives rise to the following function.

Definition 3.2. The depth function δ : S → Z is defined for all x ∈ S by

(4) δ(x) = i ⇐⇒ x ∈ Sq−i.

Equivalently, δ(x) is the unique integer such that

(5) x+δ(x)m ∈ [[c,c+m−1]],

i.e. δ(x) =
⌈c−x

m

⌉
.

The function δ assumes the following values. Recall that L = S∩ [[0,c−1]].

Lemma 3.3. For all x ∈ S, we have

δ(x) = q ⇐⇒ x = 0,

δ(x) ∈ [[1,q−1]] ⇐⇒ x ∈ L\{0},
δ(x) = 0 ⇐⇒ x ∈ [[c,c+m−1]],

δ(x)≤−1 ⇐⇒ x ≥ c+m.

Proof. Straightforward from the definition.

We shall need the following estimates from [10, Proposition 6].

Proposition 3.4. For all x,y ∈ S, we have

(6) δ(x+ y)+q+1 ≥ δ(x)+δ(y)≥ δ(x+ y)+q−min(ρ,1).

Proof (Outline). First note that for all k, l ≥ 1, we have

Sk +Sl ⊂ Sk+l−min(ρ,1)∪Sk+l ∪Sk+l+1.

Set δ(x) = i,δ(y) = j. By (4), this means x ∈ Sq−i,y ∈ Sq− j. Hence

x+ y ∈ S2q−i− j−min(ρ,1)∪S2q−i− j ∪S2q−i− j+1.

By (4) again, this means −q+ i+ j − 1 ≤ δ(x+ y) ≤ −q+ i+ j +min(ρ,1). The claimed
inequalities follow.
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3.2 Total depth

Definition 3.5. Given a finite subset E ⊂ S, the total depth of E is

δ(E) = ∑
x∈E

δ(x).

Lemma 3.6. Let A = Ap(S,m), A∗ = A\{0} and D = S∗+S∗. Then

δ(A∗)⊆ [[0,q−1]],

m = |P|+ |A∩D|,
|L|= δ(A) = δ(A∗)+q.

Proof. Since A∗ ⊆ [[m,c+m−1]], it follows from Lemma 3.3 that δ(A∗)⊆ [[0,q−1]]. We have
|A∗| = m−1 and A∗ = (A∩P)⊔ (A∩D). Also P = (A∩P)⊔{m}. Hence |P| = |A∩P|+1
and so

m = |A∗|+1 = |A∩D|+ |A∩P|+1 = |A∩D|+ |P|.
We have L = S∩ [[0,c−1]] = {0}⊔ (S∩ [[m,c−1]]). Moreover, for all a ∈ A, we have

L∩ (a+mN) = a+[[0,δ(a)−1]]m.

Hence |L|= ∑a∈A δ(a) = δ(A). Since δ(0) = q, the formula |L|= q+δ(A∗) follows.

3.3 On the numbers W (S),W0(S)

The numbers W (S),W0(S) attached to the numerical semigroup S were introduced in [9]. The
alternate notation E(S) =W0(S) was subsequently proposed in [4] and elsewhere. Recall the
notation D = S∗+S∗ and P = S∗ \D.

Notation 3.7. We denote Dq = D∩Sq = D∩ [[c,c+m−1]], and

W (S) = |P||L|− c,

W0(S) = |P∩L||L|− |A∩Dq|+ρ.

Thus, Wilf’s conjecture amounts to the inequality

(7) W (S)≥ 0

for all numerical semigroups S. The interest of W0(S) stems from the inequality

W (S)≥W0(S).

Therefore, if W0(S)≥ 0 then S satisfies Wilf’s conjecture in a somewhat stronger sense. For
instance, the following result is proved in [9].

Theorem 3.8. Let S be a numerical semigroup such that c ≤ 3m. Then W0(S)≥ 0.

There are cases where W0(S) ≤ −1, but those are extremely rare. See [4, 11] for more
details. Note finally that if P ⊆ L then W0(S) =W (S).

8



3.4 New formulas

The following formulas exhibit a closer relationship between W (S) and W0(S) than from the
original ones. The symbols A∗,P,D keep the same meaning as above. We further denote
Pq = P∩Sq, pq = |Pq| and dq = |Dq|.

Proposition 3.9. Let S be a numerical semigroup. Then

W (S) = |P|δ(A∗)−|A∩D|q+ρ,

W0(S) = |P∩L|δ(A∗)−|A∩D|q+ρ.

Proof. We have
W (S) = |P||L|− c

= |P|(δ(A∗)+q)−qm+ρ

= |P|(δ(A∗)+q)−q(|P|+ |A∩D|)+ρ

= |P|δ(A∗)−|A∩D|q+ρ.

Moreover,
W (S) = |P||L|− c

= (|P∩L|+ pq)|L|−qm+ρ

= (|P∩L|+ pq)|L|−q(pq +dq)+ρ

= |P∩L||L|−qdq +ρ+ pq(|L|−q)

=W0(S)+ pq(|L|−q)

=W0(S)+ pqδ(A∗).

Corollary 3.10. We have
W (S)−W0(S) = |Pq|δ(A∗).

Proof. Since |P|= |P∩L|+ |Pq|, the proposition implies

W (S)−W0(S) = (|P|− |P∩L|)δ(A∗)

= |Pq|δ(A∗).

Corollary 3.11. We have {
W0(S)≤W (S),
W0(S) =W (S) ⇐⇒ P ⊆ L.

Proof. Indeed, since P ⊆ S1 ⊔·· ·⊔Sq, we have Pq = /0 ⇐⇒ P ⊆ L.

Corollary 3.12. If S is special of depth q, then W (S) = |P|δ(A∗)−|A∩D|q. □
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4 Focus on the special case
Throughout this section, S denotes a special numerical semigroup of multiplicity m, conduc-
tor c and depth q = ⌈c/m⌉= c/m, i.e. with ρ = 0. As above, A = Ap(S,m) and A∗ = A\{0}.

Proposition 4.1. Let S be a special numerical semigroup of depth q. Let X be a divset model
of S and let n = |X1|. Then

δ(A∗)≥ vm(X)q/2,

W (S)≥ ((n+1)vm(X)−2|D(X)|)q/2.

Proof. By hypothesis, there is a injective morphism f : X → S such that f (X) ⊆ A and
f (D(X)) = A∩D. Let G = G(X) = (V,E) be the graph of X . Denote k = vm(X). Hence,
there is a subset M ⊆V ⊆ X∗ of cardinality |M|= k such that

M =
ℓ⊔

i=1

zi,

where z1, . . . ,zℓ ∈ E are pairwise disjoint edges. Loops are allowed, so |zi| ∈ {1,2} for all i.
We have

(8) |M|= k = |z1|+ · · ·+ |zℓ|.

Let z ∈ {z1, . . . ,zℓ}. Then z = {u1,u2} with u1,u2 ∈ X∗ such that u1u2 ∈ X∗. Let

a1 = f (u1), a2 = f (u2), a = f (u1u2).

Then a = a1 + a2 since f is a morphism, and a ∈ A∗ since f (X∗) ⊆ A∗. We have δ(a) ≥ 0
since δ(A∗)⊆ [[0,q−1]] by Lemma 3.6. Hence

δ(a1)+δ(a2)≥ q+δ(a1 +a2) = q+δ(a)≥ q

by the right inequality in (6) and the value ρ = 0. We have f (z) = {a1,a2} and so

δ( f (z)) = δ(a1)+δ(a2)≥ q.

If |z|= 1 then a1 = a2 and δ(a1)≥ q/2, whereas if |z|= 2 then δ( f (z)) = δ(a1)+δ(a2)≥ q.
Summarizing, we have

δ( f (z))≥ |z|q/2

for all z ∈ {z1, . . . ,zℓ}. Hence

δ( f ({z1, . . . ,zℓ})) =
ℓ

∑
i=1

δ( f (zi))≥ (
ℓ

∑
i=1

|zi|)q/2.
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Since ∑
ℓ
i=1 |zi|= |M|= k by (8), it follows that δ( f ({z1, . . . ,zℓ}))≥ kq/2. And since

f ({z1, . . . ,zℓ})⊆ f (X∗)⊆ A∗,

we conclude that
δ(A∗)≥ δ( f (X∗))≥ δ( f ({z1, . . . ,zℓ}))≥ kq/2,

as desired.
It remains to prove the formula W (S) ≥ ((n + 1)vm(X)− 2|D(X)|)q/2. By Proposi-

tion 3.9, we have W (S) = |P|δ(A∗)− |A∩D|q+ ρ. Since δ(A∗) ≥ vm(X)q/2 and ρ = 0,
this yields W (S) ≥ (|P|vm(X)/2 − |A ∩ D|)q. Finally, since |P| ≥ |X1|+ 1 = n + 1 and
|A∩D|= | f (D(X))|= |D(X)|, the desired inequality follows.

Corollary 4.2. Let S be a special numerical semigroup of depth q. Let X be a divset model
of S. If vm(X)≥ 2k then δ(A∗)≥ kq.

Proof. By Proposition 4.1 and the hypothesis, we have δ(A∗)≥ vm(X)q/2 ≥ kq.

Corollary 4.3. Let S be a special numerical semigroup of depth q such that |P| ≥ m/4. Let
X be a divset model of S. If vm(X)≥ 6 then S satisfies Wilf’s conjecture.

Proof. It follows from the previous corollary that δ(A∗)≥ 3q. By Lemma 3.6, it follows that
|L| ≥ 4q. Hence |P||L| ≥ (m/4)(4q) = qm = c, i.e. W (S)≥ 0 as claimed.

4.1 Tame divsets

Definition 4.4. Let X be a divset. Let G(X) = (V,E) be the graph of X. Set V1 =V ∩X1 and
n = |V1|. We say that X is tame if

(n+1)vm(X)≥ 2|D(X)|.

We say that X is wild if it is not tame, i.e. if (n+1)vm(X)< 2|D(X)|.

Proposition 4.5. Let S be a special numerical semigroup of depth q ≥ 2. If S admits a tame
divset model X, then W0(S)≥ 0 and hence S satisfies Wilf’s conjecture.

Proof. Let f : X → S be a divset model with X tame. Let G(X) = (V,E) be the graph of X
and n = |V1|= |V ∩X1|. Since S is tame, we have (n+1)vm(X)≥ 2|D(X)|.
Claim. We have f (V1)⊆ P∗∩L. Indeed, we have f (V1)⊆ f (X1)⊆ P∗ by Proposition 2.13.
Moreover, if xi ∈V1, there exists u ∈ X∗ such that xiu ∈ X∗. Hence

f (xi)+ f (u) = f (xiu) ∈ f (X∗)⊆ A∗ ⊆ [[m,c+m−1]].

Since f (u) ∈ A∗ hence f (u)≥ m, it follows that f (xi)≤ c−1, i.e. f (xi) ∈ L. This settles the
claim.
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As c = qm with q ≥ 2, we have P∩L = (P∗∩L)⊔{m}. Since f is injective, the claim
implies

|P∩L|= |P∗∩L|+1 ≥ | f (V1)|+1 ≥ |X1|+1 ≥ n+1.

Now |A∩D|= | f (D(X))|= |D(X)|, and δ(A∗)≥ vm(X)q/2 by Proposition 4.1.

Summarizing, and using the formula for W0(S) in Proposition 3.9, we have

W0(S) = |P∩L|δ(A∗)−|A∩D|q
≥ (n+1)vm(X)q/2−|A∩D|q
=
(
(n+1)vm(X)−2|D(X)|)

)
q/2.

Now (n+1)vm(X)−2|D(X)| ≥ 0 since X is tame. Hence W0(S)≥ 0.

Almost all of the divsets involved in the next sections turn out to be tame. But here is an
example of a wild divset.

Example 4.6. Let X = [x3
1,x

2
1x2,x1x2

2,x
3
2], i.e. the set of all monomials of degree at most 3

in x1,x2. Then |X∗| = |X1|+ |D(X)| = 2+(3+ 4) = 9. Here n = |V1| = 2 and |D(X)| = 7.
Moreover, vm(X) = 4 as witnessed by the vertex-maximal matching {{x1,x2

1},{x2,x2
2}} of

the graph G(X). Hence

(n+1)vm(X)−2|D(X)|= 3 ·4−2 ·7 =−2,

so that X is wild. However, it can be shown that for any special numerical semigroup S
modeled by X, one has |P| ≥ 7, whence

W (S) = |P|δ(A∗)−|A∩D|q ≥ 7 ·vm(X)q/2−|D(X)|q = 14q−7q = 7q.

Thus, all such numerical semigroups S satisfy Wilf’s conjecture. Interestingly, those S include
the five smallest numerical semigroups satisfying W0(S)≤−1 as described in [11].

4.2 Proof strategy

It follows from Corollary 4.3 that, in order to settle Wilf’s conjecture for special numerical
semigroups S satisfying |P| ≥ m/4, it suffices to consider divsets X such that vm(X) ≤ 5.
Thus, we need to classify all such divsets.

To start with, since a divset is determined by its maximal elements, we introduce the
following auxiliary notation.

Notation 4.7. Let u1, . . . ,ur ∈ M and X = [u1, . . . ,ur]. We set µ(u1, . . . ,ur) = vm(X).

Determining µ(u1, . . . ,ur) is difficult in general, due to its intimate relationship with
matching numbers in graphs. Nevertheless, the case r = 1 is straightforward.
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Lemma 4.8. Let u = xa1
1 · · ·xan

n ∈ M . Then µ(u) = ∏
n
i=1(ai +1)−2.

Proof. Let X = [u], the divset of divisors of u. Then µ(u) = vm(X), i.e. the maximal number
of vertices touched by a matching of the graph G(X). Now |X | = Πn

i=1(ai + 1), the number
of divisors of u. These divisors may be regrouped in independent edges of the form {v,u/v}
where v is a divisor of u such that 0 ≤ deg(v)≤ deg(u/v), and v is lexicographically smaller
than or equal to u/v if deg(v) = deg(u/v). The pair {1,u} must be discounted since 1 is not
a vertex of G by definition. The other pairs constitute a matching of G covering the whole of
X \{0,u}. Hence µ(u) = vm(X) = |X \{0,u}|= ∏

n
i=1(ai +1)−2.

Coupled with more combinatorial arguments, this basic result will allow us to classify all
divsets X such that vm(X)≤ 5, as needed. Then in each case, we shall show that all special
numerical semigroups S modeled by those divsets and such that |P| ≥ m/4 satisfy Wilf’s
conjecture, thereby proving the main result in this paper.

5 The case deg(X) = 2

We prove here that divsets of degree 2 are tame. This establishes Wilf’s conjecture for all
special numerical semigroups S such that A ∩ D ⊆ P∗ + P∗. In order to do so, we need
the following lemma about the classical matching number in graphs, namely the maximum
number of independent edges.

Lemma 5.1. Let H = (H1,H2) be a simple bipartite graph without isolated vertices, with
matching number k. Then

|E(H)| ≤ k ·max(|H1|, |H2|).

Proof. We may assume |H1| ≤ |H2|. Then k ≤ |H1|. Let M be a maximal matching with k
edges, say

M = {(xi,yi) | xi ∈ H1,yi ∈ H2,1 ≤ i ≤ k}.

Claim. |H1| = k. Assume not. Let then xk+1 ∈ H1 \ {x1, . . . ,xk}. Since H does not have
isolated vertices, it follows that xk+1 has a neighbour z ∈ H2. Now necessarily z ∈ {y1, . . .yk},
for otherwise there would be a new edge (xk+1,z) independent of M, which would then yield
a matching of cardinality k+1, a contradiction. Up to renumbering, we may assume z = yk,
i.e.

(xk+1,yk) ∈ E.

As |H2| ≥ |H1| ≥ k+1, there is a vertex yk+1 ∈ H2 \{y1, . . . ,yk}. Since yk+1 is not isolated,
it has a neighbour z ∈ H1. But as in the preceding reasoning, we have z ∈ {x1, . . . ,xk}, for
otherwise the edge (z,yk+1) would be independent of M, a contradiction. Up to renumbering,
we may assume z = xk. Thus

(xk,yk+1) ∈ E.
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But then, by suppressing the edge (xk,yk) of M and replacing it by the two independent edges
(xk+1,yk),(xk,yk+1), we obtain a matching

M′ = M⊔{(xk+1,yk),(xk,yk+1)}\{(xk,yk)}

of cardinality k+1, a contradiction. This finishes the proof of the claim, whence

|H1|= k.

Since H = (H1,H2) is bipartite, we have |E| ≤ |H1||H2|= k|H2|, as claimed.

Proposition 5.2. Let X be a divset of degree 2, i.e. such that D(X) = X2. Then X is tame, i.e.
(n+1)vm(X)≥ 2|D(X)|, where n = |V ∩X1| and V is the vertex set of the graph G(X).

Proof. Let V1 =V ∩X1 = {x1, . . . ,xn}, the set of variables dividing the monomials in D(X) =

X2. We have V = V1 since if u ∈ V , there exists v ∈ V such that uv ∈ D(X) = X2, implying
deg(u) = deg(v) = 1. Clearly |D(X)| ≤ n(n+ 1)/2. Let M ⊆ D(X) be a maximal set of
pairwise coprime monomials. Denote by V2 ⊆ V1 the set of variables involved in M. Let
n2 = |V2|. Since M corresponds to a matching in G(X) with vertex set V2, we have

vm(X)≥ n2.

Case 1. V2 =V1. In this case we are done. Indeed, we then have n2 = n, so that vm(X)≥ n.

And since |D(X)| ≤ n(n+1)/2, it follows that

(n+1)vm(X)−2|D(X)| ≥ (n+1)n−2n(n+1)/2 = 0,

as desired.
Case 2. Assume V2 ̸= V1. Let V3 = V1 \V2 and n3 = |V3| = n− n2. By maximality of M,
every monomial u = xix j ∈ D(X) with i ≤ j satisfies xi ∈ V2 or x j ∈ V2. Let N ⊆ D(X) be a
largest possible subset of pairwise coprime monomials xix j with xi ∈V2,x j ∈V3. Let k = |N|.
We have k ≤ min(n2,n3) and k ≥ 1 since V3 ̸= /0. Each xix j ∈ N independently contributes a
summand 2 to vm(X). Thus

(9) vm(X)≥ (n2 − k)+2k = n2 + k.

Next, we claim that

(10) |D(X)| ≤ n2(n2 +1)/2+ k max(n2,n3).

Indeed, as V2 induces the empty subgraph in G(X), every monomial in D(X) has its support
in [V1,V1] or [V1,V2]. Now the preceding lemma implies that the number of monomials with
support in [V1,V2] is less than or equal to k max(n2,n3). This proves (10). Combined with (9),
this yields
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(n+1)vm(X)−2|D(X)| ≥ (n+1)(n2 + k)−n2(n2 +1)−2k max(n2,n3).

It remains to show that the right-hand side is non-negative. Since n = n2 +n3, we have

(n+1)(n2 + k)−n2(n2 +1)−2k max(n2,n3) = n2(n+1)−n2(n2 +1)+ k(n+1−2max(n2,n3))

= n2n3 + k(n2 +n3 +1−2max(n2,n3))

= n2n3 + k(min(n2,n3)−max(n2,n3)+1)

since n2 +n3 = min(n2,n3)+max(n2,n3). But for any k ≤ a ≤ b, we have

ab+ k(a−b+1) = k(a+1)+b(a− k)

≥ k(a+1).

Hence (n+1)(n2+k)−n2(n2+1)−2k max(n2,n3)≥ k(min(n2,n3)+1)≥ 0, as desired.

Corollary 5.3. Let S be a special numerical semigroup such that A∩D ⊆ P∗+P∗. Then S
satisfies Wilf’s conjecture.

Proof. Let f : X → S be a divset model. Let G = (V,E) be the graph of X . By Remark 2.17,
we may assume X1 ⊆V . Moreover, since f (D(X)) = A∩D ⊆ P∗+P∗, we may assume that
D(X)⊆ X1 ·X1, i.e. that deg(X) = 2. We conclude with Propositions 4.5 and 5.2.

6 The case deg(X)≥ 3

The case deg(X) = 2 being settled, from here on we only consider divsets X satisfying
deg(X)≥ 3. [. . . ]

References
[1] M. BRAS-AMORÓS, Fibonacci-like behavior of the number of numerical semigroups

of a given genus, Semigroup Forum 76 (2008) 379–384.

[2] W. BRUNS, P. GARCIA-SANCHEZ, C. O’NEILL, D. WILBURNE, Wilf’s conjecture
in fixed multiplicity. arXiv 1903.04342 [math.CO], 2019.

[3] G. CHARTRAND, L. LESNIAK, P. ZHANG, Graphs & digraphs. Sixth edition. Text-
books in Mathematics. CRC Press, Boca Raton, FL, 2016. xii+628 pp. ISBN: 978-1-
4987-3576-6.

[4] M. DELGADO, On a question of Eliahou and a conjecture of Wilf, Math. Z. 288 (2018)
595–627.

15



[5] M. DELGADO, Conjecture of Wilf: a survey. To appear in Numerical Semi-
groups - IMNS 2018, Springer INdAM Series 40, ISBN : 978-3-030-40821-3.
arXiv 1902.03461 [math.CO].

[6] M. DELGADO, Trimming the numerical semigroups tree to probe Wilf’s conjecture to
higher genus. arXiv 1910.12377 [math.CO], 2019.

[7] M. DELGADO, S. ELIAHOU AND J. FROMENTIN, A verification of Wilf’s conjecture
up to genus 100. 2023. https://hal.science/hal-04236367

[8] M. DELGADO, P.A. GARCÍA-SÁNCHEZ AND J. MORAIS, “Numericalsgps”: a
GAP package on numerical semigroups. http://www.gap-system.org/Packages/
numericalsgps.html

[9] S. ELIAHOU, Wilf’s conjecture and Macaulay’s theorem, J. Eur. Math. Soc. 20 (2018)
2105–2129. DOI 10.4171/JEMS/807.

[10] S. ELIAHOU, A graph-theoretic approach to Wilf’s conjecture. Elec. J. Combin. 27(2)
(2020), #P2.15, 31 pp. https://doi.org/10.37236/9106.

[11] S. ELIAHOU AND J. FROMENTIN, Near-misses in Wilf’s conjecture, Semigroup Fo-
rum 98 (2019) 285-298. DOI 10.1007/s00233-018-9926-5.

[12] S. ELIAHOU AND J. FROMENTIN, Gapsets and numerical semigroups, J. Combin.
Theory Ser. A 169 (2020), 105129, 19 pp. DOI 10.1016/j.jcta.2019.105129.

[13] R. FRÖBERG, C. GOTTLIEB AND R. HÄGGKVIST, On numerical semigroups, Semi-
group Forum 35 (1987) 63–83.

[14] J. FROMENTIN AND F. HIVERT, Exploring the tree of numerical semigroups, Math.
Comp. 85 (2016) 2553–2568.

[15] N. KAPLAN, Counting numerical semigroups by genus and some cases of a question
of Wilf, J. Pure Appl. Algebra 216 (2012) 1016–1032.

[16] N. KAPLAN AND L. YE, The proportion of Weierstrass semigroups, J. Algebra 373
(2013) 377–391.

[17] A. MOSCARIELLO AND A. SAMMARTANO, On a conjecture by Wilf about the Frobe-
nius number, Math. Z. 280 (2015) 47–53.

[18] J.L. RAMÍREZ ALFONSÍN, The Diophantine Frobenius problem. Oxford Lecture Se-
ries in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.

16



[19] J.C. ROSALES AND P.A. GARCÍA-SÁNCHEZ, Numerical semigroups. Developments
in Mathematics, 20. Springer, New York, 2009.

[20] A. SAMMARTANO, Numerical semigroups with large embedding dimension satisfy
Wilf’s conjecture, Semigroup Forum 85 (2012) 439–447.

[21] J.J. SYLVESTER, Mathematical questions with their solutions, Educational Times 41
(1884) 21.

[22] H. WILF, A circle-of-lights algorithm for the money-changing problem, Amer. Math.
Monthly 85 (1978) 562–565.

[23] A. ZHAI, Fibonacci-like growth of numerical semigroups of a given genus, Semigroup
Forum 86 (2013) 634–662.

Author’s address
Shalom Eliahou
Univ. Littoral Côte d’Opale, UR 2597 - LMPA - Laboratoire de Mathématiques Pures et
Appliquées Joseph Liouville, F-62100 Calais, France and CNRS, FR 2037, France.
eliahou@univ-littoral.fr

17


