Imbalanced data robust online continual learning based on evolving class aware memory selection and built-in contrastive representation learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Imbalanced data robust online continual learning based on evolving class aware memory selection and built-in contrastive representation learning

Résumé

We introduce Memory Selection with Contrastive Learning (MSCL), an advanced Continual Learning (CL) approach, addressing challenges in dynamic and imbalanced environments. MSCL combines Feature-Distance Based Sample Selection (FDBS) for memory management, focusing on inter-class similarities and intra-class diversity, with a contrastive learning loss (IWL) for adaptive data representation. Our evaluations on datasets like MNIST, Cifar-100, mini-ImageNet, PACS, and DomainNet show that MSCL not only competes with but often surpasses existing memory-based CL methods, particularly in imbalanced scenarios, enhancing both balanced and imbalanced learning performance.
Fichier principal
Vignette du fichier
ICIP2024.pdf (383.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04228888 , version 1 (04-10-2023)
hal-04228888 , version 2 (16-07-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04228888 , version 2

Citer

Rui Yang, Matthieu Grard, Emmanuel Dellandréa, Liming Chen. Imbalanced data robust online continual learning based on evolving class aware memory selection and built-in contrastive representation learning. IEEE International Conference on Image Processing (ICIP), 2024, Abou Dabi, United Arab Emirates. ⟨hal-04228888v2⟩
157 Consultations
217 Téléchargements

Partager

More