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ABSTRACT

We introduce Memory Selection with Contrastive Learning
(MSCL), an advanced Continual Learning (CL) approach,
addressing challenges in dynamic and imbalanced environ-
ments. MSCL combines Feature-Distance Based Sample
Selection (FDBS) for memory management, focusing on
inter-class similarities and intra-class diversity, with a con-
trastive learning loss (IWL) for adaptive data representation.
Our evaluations on datasets like MNIST, Cifar-100, mini-
ImageNet, PACS, and DomainNet show that MSCL not only
competes with but often surpasses existing memory-based
CL methods, particularly in imbalanced scenarios, enhancing
both balanced and imbalanced learning performance.

Index Terms— Continual Learning, Transfer Learning,
Memory Selection

1. INTRODUCTION

Continual Learning (CL) assumes that a model learns from
a continuous stream of data over time, without access to
previously seen data. It faces the challenge of catastrophic
forgetting, which occurs when a model forgets previously
learned knowledge as it learns new information. State
of the art has featured three major CL approaches (e.g.,
Regularisation-based [1, 2], Parameter isolation oriented
[3, 4]) and rehearsal-based [5, 6, 7, 8], along with various
CL paradigms [9] (e.g., Task-incremental learning (TIL),
Domain-incremental learning (DIL), and Class-incremental
learning (CIL)). Early CL methods, e.g., [1, 10], primar-
ily adopted a task-incremental learning (TIL) paradigm and
made the unrealistic assumption of having access to task
boundaries not only during training for knowledge consol-
idation but also during inference. As a result, most recent
research on CL has focused on class incremental learning
(CIL), e.g.,[11, 12, 13],which require the model to learn from
a sequence of mutually class exclusive tasks and perform the
inference without task boundary information. However, in
such a scenario, each class can be learned only once within

a task with all the class data assumed available for learn-
ing and thereby prevents further class adaptation when data
distribution shifts for already seen classes come to occur, in
particular with new domains. Furthermore, a vast majority of
these CIL methods only consider balanced distribution over
classes and tasks and are benchmarked using some single do-
main datasets, e.g., Cifar, mini-ImageNet, although streamed
data distributions in CL are generally non-stationary in the
real world. As a result, they face significant challenges in the
presence of imbalanced data in class and domain [14][15].
[16] introduce a novel approach for quantifying dataset dis-
tribution shifts across two distinct dimensions. Their analysis
highlights that datasets such as ImageNet[17] and Cifar[18]
primarily showcase correlation shifts, characterized by al-
terations in the relationship between features and labels. In
contrast, datasets like PACS[19] and DomainNet[20] predom-
inantly exemplify diversity shifts, marked by the emergence
of new features during testing.

We explore a broader Continual Learning (CL) frame-
work, task-free online CL (OCL), where data are streamed
without task boundaries[21], reflecting the non-stationary na-
ture of real-life data. This setup leads to imbalances in class
and domain distributions, with varying sample availability
and domain representation in each batch. Consequently, this
necessitates ongoing adjustment of class and data represen-
tations to accommodate the diversity and overlap of class
boundaries, especially with the introduction of new class
or domain data. Prior research(e.g.,[5, 9, 22, 7]) indicates
rehearsal-based methods excel in addressing catastrophic for-
getting across various CL scenarios by using a memory set
for data replay, crucially affecting CL efficiency in dynamic,
imbalanced data conditions. Yet, existing methods often
employ basic selection strategies like random[5] or herding-
based sampling[11]. They are unaware of imbalanced data
distributions and ignore increasing intra-class diversity and
decreasing inter-class boundaries when new domain and/or
class data occur over the course of incoming data streams as
illustrated in Fig. 1 (a), thereby failing to adapt the previously
acquired knowledge to novel data streams which require



evolution of learned class boundaries.

In this paper, we argue that not all streamed data sam-
ples are equally beneficial for preserving and enhancing prior
knowledge. The most valuable samples often capture the
evolving diversity within classes and similarities between
them. To harness this, we introduce a novel memory-based
online CL approach, MSCL. This method has two core fea-
tures: 1) Dynamic Memory Population: MSCL selects
samples from incoming data streams that best represent diver-
sity within classes and similarities between different classes.
To achieve this, we’ve devised the Feature-Distance Based
Sample Selection (FDBS). FDBS calculates an importance
weight for each new sample based on its representational
significance compared to the memory set. Especially in im-
balanced datasets, our method emphasizes diverse samples
within each class and similar samples across different classes,
ensuring a comprehensive memory set. 2) Enhanced Data
Representation with Contrastive Learning: We’ve inte-
grated a new Contrastive Learning Loss, IWL. This loss uses
the importance weight from FDBS to bring similar class in-
stances closer while distancing different class instances. In
essence, MSCL continually curates a memory set that cap-
tures the dynamic nature of data streams and refines data
representation for optimal learning.

2. RELATED WORK

2.1. Task-Free online continual learning

[21, 5] introduce a novel CL scenario where task boundaries
are not predefined, and the model encounters data in an online
setting. Several memory-based strategies have been proposed
to navigate this scenario. Reservoir Sampling (ER) [5] as-
signs an equal chance for each piece of data to be selected
in an online setting. However, this method can be easily bi-
ased by imbalanced data stream in terms of class and/or do-
main and inadvertently miss data that are more representative.
Maximally Interfered Retrieval (MIR)[6] makes use of ER
for data selection but retrieves the samples from the memory
set which are most interfered for current learning. Gradient-
based Sample Selection (GSS) [7] proposes to maximize the
variance of gradient directions of the data samples in the re-
play buffer for data sample diversity but with no guarantee
that the selected data are class representative. Furthermore,
the replay buffer can be quickly saturated without any further
update when local maximum of gradient variance is achieved.
Online Corset Selection (OCS) [8] also employs the model’s
gradients for cosine similarity computation to select informa-
tive and diverse data samples in affinity with past tasks. Un-
fortunately, they are not class aware and its effectiveness di-
minishes when handling imbalanced data.

2.2. Imbalanced continual learning

[14] highlighted the limitations of existing CL methods, such
as iCaRL [11], in handling numerous classes. The authors
attributed these shortcomings to the presence of imbalanced
data and an increase in inter-class similarity. To address
this, they proposed evaluating CL methods in an imbalanced
class-incremental learning scenario, where the data distribu-
tion across classes varies (also known as Long-Tailed Class
Incremental Learning, as defined by [15]). In order to mit-
igate this issue, they introduced a simple bias correction
layer to adjust the final output during testing. One approach
described by [22] is CBRS (Class-Balancing Reservoir Sam-
pling), which is based on the reservoir sampling technique
[5]. This algorithm assumes equal data storage for each cat-
egory and employs reservoir sampling within each category.
However, when faced with imbalanced domain-incremental
learning scenarios where the data distribution within domains
is uneven, CBRS can only perform random selection, limiting
its effectiveness.

3. PRELIMINARY AND PROBLEM STATEMENT

We consider the setting of online task-free continual learning.
The learner receives non-stationary data stream O through a
series of data batches denoted as Sstrt = (xi, yi)

Nb

i=1 at time
step t. Here, (xi, yi) represents an input data and its label,
respectively, and Nb denotes the batch size. The learner is
represented as f(·;θ) = g ◦F , where g represents a classifier
and F denotes a feature extractor. We define a memory set
as Smem = (xj , yj)

M
j=1, where M is the memory size. We

use the function l(·, ·) to denote the loss function. The global
objective from time step 0 to T can be computed as follows:

l∗ =

T∑
t=0

∑
(xi,yi)∈Sstrt

l(f(xi;θ), yi) (1)

However, within the setting of online continual learning,
the learner does not have access to the entire data at each train-
ing step but only the current data batch and those in the mem-
ory set if any memory. Therefore, the objective at time step T
can be formulated as follows:

lT =
∑
SstrT

l(f(xi;θT−1), yi)

current loss

+
∑
Smem

l(f(xj ;θT−1), yj)

replay loss

(2)

As a result, to enable online continual learning without catas-
trophic forgetting, one needs to minimize the gap between l∗

and lT :

min(l∗ − lT ) = min(

T−1∑
t=0

∑
Sstrt \Smem

l(f(xi;θT−1), yi)) (3)



Our objective is to define a strategy which carefully selects
data samples to store in the memory set and continuously re-
fines data representation to minimize the gap, as shown in
Eq. (3).

4. METHODOLOGY

4.1. Feature-Distance based sample selection

Our proposed method is denoted as FDBS with M denoting
the memory size and K the number of data samples so far
streamed. When the learner receives a batch of data Sstr from
the stream O, we check for each new data sample xi in Sstr
whether the memory set is full. If it is not full, we can directly
store xi. However, if the memory set is full, we need to eval-
uate the importance weight wi of the new data sample xi to
determine whether it is worth storing. The key to this process
is to keep the memory set aware of intra-class diversity and
inter-class boundaries based on the feature distances between
the new data sample xi and the memory set. It involves the
following three main steps:

• We begin by calculating the feature distance, denoted
as D (refer to Eq. (4)), between every data point in
the set Sstr and each data sample stored in the mem-
ory set Smem. Subsequently, we identify the minimum
distance between the input data and the memory set for
each input data sample, resulting in the vector dstr as
defined in Eq. (6)

Di,j = dist {F (xi), F (xj)}(xi∈Sstr;xj∈Smem) (4)

• Subsequently, we compute Dmem, as in Eq. (5), the
feature distance between every pair of points in the
memory set, and the minimum distance for each data
point in the memory set in dmem, as shown in Eq. (6).
We then calculate a as in Eq. (7) a weighted average
distance from a data point in the memory set to all
other points, using a RBF kernel as in Eq. (7) to weight
the distances. We aim to assign higher weight to closer
distances.

Dmem
i,j = dist {F (xi), F (xj)}(xi,xj∈Smem) (5)

dstr
i = min(Di,:);d

mem
i = min(Dmem

i,j ̸=i) (6)

• By computing the difference between a and D, we
can derive an importance weight for each new data.
This weight is subsequently combined with the reser-
voir sampling coefficient to determine the probability
of selecting the new data point.

αi,j = e−
∥Dmem

i,j −dmem
i ∥2

2σ2 ; ai =

∑M
j ̸=i D

mem
i,j αi,j∑M

j ̸=i αi,j

(7)

Importance weight is the core concept of our proposed
method. It serves to assess the significance of a new data sam-
ple with respect to the memory set, with a focus on promoting
diversity among previously encountered intra-class data while
also considering the potential closeness to inter-class bound-
aries. Specifically, we calculate this importance weight, as
defined in Eq. (9), to capture the influence of each data point
in the memory set on an input data sample. This influence is
determined by whether they belong to the same class, as il-
lustrated in Fig. 1 (b). Our approach is based on the intuitive
notion that when two points, xi and xj , are closer in prox-
imity, the impact of xj on xi becomes more pronounced. To
achieve this, we employ a Radial Basis Function (RBF) ker-
nel, as expressed in Eq. (8). This kernel ensures that the in-
fluence of distant points diminishes rapidly. Additionally, we
use the sign function, as shown in Eq. (8), to assign a value of
1 if the classes are the same and -1 otherwise.

When comparing a new data sample xi with a memory set
data point xj , we consider two scenarios based on their class
labels. If they share the same class label, as shown in Fig. 1
(b), and if the feature distance Di,j significantly exceeds aj ,
it implies a substantial difference between xi and xj . In this
case, we assign Wi,j a value greater than 1, promoting the
selection of xi for storage. However, when xi and xj have
different class labels, we aim to store data points near deci-
sion boundaries to capture closer class boundaries caused by
increased inter-class similarities. We achieve this by setting
Wi,j using Eq. (9) with the sign function returning -1. If aj

significantly surpasses Di,j , it implies that despite their dif-
ferent labels, xi closely resembles xj , motivating us to store
xi. Conversely, if aj is substantially smaller than Di,j , it
suggests that the model can readily distinguish between xi

and xj , leading us to exclude xi from storage. When Di,j is
approximately equal to aj , we consider xi as a typical data
point close to xj , leading Wi,j to approach 1, resulting in a
random selection.

βi,j = e−
∥Di,j−dstr

i ∥2

2σ2 ; sgn(yi, yj) =

{
1 if yi = yj
−1 if yi ̸= yj

(8)

Wi,j = e
sgn(yi,yj)

Di,j−aj
Di,j+aj

βi,jτ
(yi ∈ Sstr; yj ∈ Smem) (9)

To take into account the influence of all data points in
the memory set on a new input data point for its importance
weight, we directly multiply the impact of each memory point
as shown in Eq. (10).

To get the final probability pi for a new data sample xi to
be chosen for storage in memory, we introduce the reservoir
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Fig. 1: Both figures use colors to represent domains and shapes for categories. Figure (a) shows models adapting to datasets
with high inter-class similarity and intra-class variance, underscoring the challenge of differentiating closely related categories.
Figure (b) introduces our proposed MSCL, which maps input data and a memory set into a shared feature space. Here, Di,j

denotes the distance between input data xi and memory set data xj . We calculate these distances to derive an importance
weight matrix that quantifies the relative importance of each input data point in relation to those in the memory set, based
on their intra-class diversity or inter-class similarity. These importance weights, combined with random selection, lead to our
Feature-Distance based Sample Selection (FDBS). Using the importance weight matrix, we then develop a novel Contrastive
Loss (IWL).

sampling. Given a fixed memory size M and the number of
data samples observed so far in the data stream, denoted as
K, M/K represents the probability of each data sample be-
ing randomly selected. We then use the importance weight
wi to adjust the probability of the new data sampled xi be-
ing selected, as shown in Eq. (10). This allows us to handle
imbalanced data and retain a certain level of randomness.

wi =
∏M

j=1Wi,j ; pi = min(wi
M

K
, 1) (10)

4.2. Contrastive learning for better discriminative fea-
ture representation

The importance weight Wi,j , derived from Eq. (9), measures
feature space similarity between data points and is differen-
tiable. Inspired by contrastive learning’s goal to distinguish
between similar (positive) and dissimilar (negative) sample
pairs, we introduce a contrastive learning loss (IWL) to im-
prove feature representation. IWL aims to decrease inter-
class similarity and intra-class variance, serving as an adver-
sarial element to memory selection and compacting the fea-
ture space for better memory selection. For a data batch of
size Nb, we select a minibatch from the memory set of size
Nm, and compute LIWL as per Eq. (11), optimizing Wi,j to
align data points with matching class labels closer and sepa-
rate those with differing labels.

LIWL =

∑Nm

i=1

∑Nb

j=1 log(Wi,j)∑Nm

i=1

∑Nb

j=1 βi,j

(11)

In our algorithm, to reduce computational complexity, we
do not fully update Dmem at each step. Instead, during each
iteration, we draw a small batch of data from the memory
set and dynamically update the corresponding distances and
feature vectors for that specific batch.

5. EXPERIMENTS AND RESULTS

5.1. Balanced benchmarks

Building upon previous research [9, 7, 13], we utilize four
well-established Continual Learning (CL) benchmarks: Split
MNIST, Split ImageNet-1k, Split CIFAR-100, and PACS.
Split MNIST comprises five tasks, each containing two
classes. For Split CIFAR-100, we partition the original
CIFAR-100 dataset [18] into ten subsets, with each subset
representing a distinct task comprising ten classes. For Split
mini-ImageNet[17], we partition the original mini-ImageNet
dataset [18] into ten subsets, with each subset representing
a distinct task comprising ten classes. As for PACS [19], it
encompasses four domains: photo, art painting, cartoon, and
sketch. Each domain consists of the same seven classes. In
our experiments, we treat each domain as an individual task,
resulting in a total of four tasks. Notably, due to significant
differences between images in each domain, one can observe
a notable increase in inter-class variance within this dataset.

5.2. Imbalanced benchmarks

Existing CL benchmarks, with uniform class and domain dis-
tributions, fail to test CL methods on non-stationary, imbal-



anced data. Thus, we’ve created benchmarks specifically to
assess CL methods’ robustness to data imbalance.

5.2.1. Imbalanced Class-Incremental Learning (Imb CIL).

To establish an imbalanced Class-incremental scenario for
split CIFAR-100 and split mini-ImageNet, we build upon the
approach introduced by [22]. Unlike traditional benchmarks
that distribute instances equally among classes, we induce
class imbalance by utilizing a predefined ratio vector, de-
noted as r, encompassing five distinct ratios: (10−2, 10−1.5

, 10−1, 10−0.5, 100). In this setup, for each run and each
class, we randomly select a ratio from r and multiply it by
the number of images corresponding to that class. This cal-
culation determines the final number of images allocated to
the class, thus establishing our imbalanced class scenario.
We maintain the remaining conditions consistent with the
corresponding balanced scenario.

5.2.2. Imbalanced Domain-incremental Learning (Imb DIL).

We adapt the PACS dataset, encompassing four domains, and
follow an approach akin to our Imbalanced Class-Incremental
method. For each domain, we randomly select a ratio from r,
multiply it with the image count of the domain, thereby main-
taining a balanced class count within the imbalanced domain.

5.2.3. Imbalanced Class and Domain Incremental Learning
(Imb C-DIL).

We further refine the PACS dataset to generate an imbalanced
class-domain incremental scenario, which mirrors a more re-
alistic data setting. This scenario involves randomly selecting
a ratio from r for each class and domain, and multiplying it
with the count of instances for that class within the domain.
This operation yields 4 ∗ 7 values for PACS, resulting in a
diverse number of data points across different classes and do-
mains. This approach accentuates the growth of inter-class
similarity and intra-class variance. Because both the class
and domain are already imbalanced in the original Domain-
Net[20], we directly use its original format to generate the im-
balanced scenario. We adhere to a sampling without replace-
ment strategy for data stream generation. Once data from a
pair of class and domain is exhausted, we transition to the
next pair.

5.3. Baselines and implementation details

As the proposed FDBS is a memory-based online CL method,
we compare it primarily against other memory-centric tech-
niques such as Experience Replay (ER) [5], Gradient-Based
Sample Selection (GSS) [7], Class-Balancing Reservoir Sam-
pling (CBRS) [22], Maximally Interfering Retrieval (MIR)
[6], and Online Corset Selection(OCS)[8].

We compare Fine-tuning (FT), where pre-existing model
parameters are used as starting points for new tasks without
additional data, against i.i.d. offline training, a method that
grants complete access to the dataset, allowing multiple data
reviews for maximum performance. Our method introduces
Feature-Distance Based Sampling (FDBS) for choosing sam-
ples and Contrastive Learning Loss (IWL) for better represen-
tation learning. We test the effectiveness of both FDBS alone
and combined with IWL in our experiments.

For MNIST, we utilize a two-hidden-layer MLP with 250
neurons per layer. Meanwhile, for all other datasets, we adopt
the standard ResNet-18 architecture implemented in PyTorch.
The replay buffer size is configured as 5000 for CIFAR-100,
mini-ImageNet, and DomainNet, while it is set to 1000 for
all other scenarios. We maintain a fixed batch size of 20 for
the incoming data stream, with five update steps per batch.
Notably, we abstain from employing data augmentation in our
experiments. We set the σ value in our radial basis function
(RBF) kernel at 0.5, and the τ value in Eq. (9) at 0.5.

5.4. Results on balanced benchmarks

Results for balanced scenarios are shown in Tab. 1. While the
Experience Replay (ER) method fares well in these settings
due to its unbiased memory selection, our proposed FDBS
method paired with the Contrastive Learning Loss (IWL)
offers notable improvements. This enhancement is largely
attributed to IWL’s feature space optimization, which aids
FDBS’s data sample selection based on feature space dis-
tance. The combination of FDBS and IWL also yields more
consistent results, as evidenced by a reduced standard devia-
tion. Especially for datasets like Rotated MNIST and PACS,
FDBS excels by augmenting intra-class diversity in memory,
thus increasing adaptability to domain shifts.

5.5. Results on imbalanced scenarios

Tab. 2 displays results in imbalanced settings. For imbalanced
CIL scenarios, the CBRS method, which maintains an equal
count of images from each class in memory, outperforms the
basic ER approach. Meanwhile, OCS, by continuously eval-
uating data batch gradients, filters noise and selects more rep-
resentative data, shining particularly in imbalanced contexts.
However, our FDBS method stands out, consistently leading
in all imbalanced tests. As scenarios evolve from Imb DIL
to Imb C-DIL, other methods’ accuracy drops significantly,
but FDBS maintains robust performance. Its strength lies in
using feature-distance to fine-tune memory selection, preserv-
ing class boundaries and boosting intra-class diversity. This
advantage is amplified when paired with the IWL, reinforcing
the benefits seen in balanced scenarios.



Table 1: We report the results of our experiments conducted on balanced scenarios. We present the final accuracy as mean
and standard deviation over five independent runs. For Split CIFAR-100 and mini-ImageNet, the memory size was set to 5000,
while for all other scenarios, the memory size was set to 1000.

Methods / Datasets
Split
MNIST mini ImageNet Split

CIFAR-100 PACS

Fine tuning 19.23 ± 0.32 4.21 ± 0.22 4.43 ± 0.17 20.56 ± 0.24
i.i.d. Offline 92.73 ± 0.21 52.52 ± 0.05 49.79 ± 0.28 56.94 ± 0.12
ER 81.68 ± 0.97 15.76 ± 2.34 18.26 ± 1.78 41.66 ± 1.45
GSS 80.38 ± 1.42 12.31 ± 1.26 13.57 ± 1.23 39.87 ± 3.25
CBRS 81.34 ± 1.27 15.58 ± 1.94 18.55 ± 1.68 41.34 ± 1.65
MIR 86.76±0.67 16.73 ± 1.12 18.71 ± 0.89 42.2 ± 0.85
OCS 85.43±0.86 16.59 ± 0.89 19.31 ± 0.48 42.63 ± 0.73
FDBS(ours) 85.79 ± 0.76 17.54 ± 2.17 19.89 ± 1.54 42.86 ± 1.37
MSCL(ours) 86.48 ± 0.57 18.93 ± 0.74 21.13 ± 0.94 43.54 ± 0.75

Table 2: Results on our imbalanced scenarios. We present the final accuracy as mean and standard deviation over five inde-
pendent runs. For PACS, the memory size was set to 1000, while for all other scenarios, the memory size was set to 5000.

Scenarios Imb CIL Imb DIL Imb C-DIL
CIFAR-100 mini-ImageNet PACS PACS DomainNet

Fine Tunning 3.18± 0.31 3.57± 0.25 15.54± 1.34 14.35± 1.23 2.35± 0.65
i.i.d. Offline 41.65± 0.57 43.17± 0.62 46.34± 0.47 46.18± 0.92 37.27± 0.73
ER 7.14± 0.81 8.25± 1.27 25.64± 2.19 22.48± 1.23 6.24± 0.62
GSS 8.38± 0.74 7.95± 0.48 24.46± 1.78 20.17± 2.14 5.15± 0.44
CBRS 10.21± 0.39 11.37± 0.63 25.97± 1.54 23.68± 1.75 6.13± 0.59
MIR 7.52± 0.93 8.97± 0.30 25.85± 2.19 22.15± 2.57 6.47± 0.45
OCS 11.68± 0.63 12.29± 0.49 27.15± 1.42 24.72± 1.37 8.47± 0.78
FDBS(ours) 12.35± 0.85 12.89± 0.62 29.13± 1.53 27.56± 1.52 10.25± 0.94
MSCL(ours) 13.72±0.53 14.21±0.34 31.25±0.83 28.64±1.44 11.46±0.71

6. ABLATION STUDY

Our method includes two primary components: the memory
selection method (FDBS) and the contrastive learning loss.
In this section, we conduct a series of experiments on both
balanced CIFAR-100 and imbalanced DomainNet to demon-
strate the contributions and effectiveness of each component.
The results of the ablation study are displayed in Tab. 3. We
find that our proposed FDBS plays a more significant role
in imbalanced scenarios, while both components collectively
contribute to improved performance.

Table 3: Ablation studies on balanced CIFAR-100 and im-
balanced DomainNet. We set the memory size to 5000.

Method Balanced CIFAR-100 Imb DomainNet
Fine tuning 4.43± 0.17 2.35± 0.65
w/o LIWL 19.89± 1.54 10.25± 0.94
w/o FDBS 20.25± 1.33 9.72± 0.86
MSCL 21.13± 0.94 11.46± 0.71

7. CONCLUSION

This paper introduces MSCL, a novel online CL approach
combining Feature-Distance Based Sample Selection (FDBS)
and Contrastive Learning Loss (IWL). FDBS picks exam-
ples by measuring distances between new and stored data,
focusing on enhancing class diversity and boundary aware-
ness. IWL aims to improve feature representation by adjust-
ing intra-class and inter-class distances. Tests show MSCL
outperforms existing memory-based CL methods in both bal-
anced and imbalanced settings.
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