The intertwined derivative Schrödinger system of Calogero--Moser--Sutherland type
Le system enroulé de Schrödinger-dérivé du type Calogero—Moser—Sutherland.
Résumé
This paper is dedicated to extending the focusing$\slash$defocusing Calogero--Moser--Sutherland cubic derivative Schr\"odinger equation (CMSdNLS), introduced in G\'erard--Lenzmann [arXiv:2208.04105] and Badreddine [arXiv:2303.01087, arXiv:2307.01592], to a system of two matrix-valued variables, leading to the following intertwined system,
\begin{equation*}
\begin{cases}
i\partial_t U + \partial_x^2 U = - \tfrac{1}{2} U \left(\mathrm{D} + |\mathrm{D}| \right) \left( V^* U\right) - \tfrac{1}{2} V \left(\mathrm{D} + |\mathrm{D}| \right) \left( U^* U\right),\\
i\partial_t V + \partial_x^2 V = - \tfrac{1}{2} V \left(\mathrm{D} + |\mathrm{D}| \right) \left( U^* V\right) - \tfrac{1}{2} U \left(\mathrm{D} + |\mathrm{D}| \right) \left( V^* V\right),\\
\end {cases} \quad \mathrm{D}= -i\partial_x.
\end{equation*}This system still enjoys a Lax pair structure, which allows to establish an explicit formula for general solutions on the torus and on the line. As a consequence, this system can be considered as an integrable perturbation of both the linear Schr\"odinger equation and the CMSdNLS equations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|