The intertwined derivative Schrödinger system of Calogero--Moser--Sutherland type - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

The intertwined derivative Schrödinger system of Calogero--Moser--Sutherland type

Le system enroulé de Schrödinger-dérivé du type Calogero—Moser—Sutherland.

Ruoci Sun
  • Fonction : Auteur
  • PersonId : 1289718

Résumé

This paper is dedicated to extending the focusing$\slash$defocusing Calogero--Moser--Sutherland cubic derivative Schr\"odinger equation (CMSdNLS), introduced in G\'erard--Lenzmann [arXiv:2208.04105] and Badreddine [arXiv:2303.01087, arXiv:2307.01592], to a system of two matrix-valued variables, leading to the following intertwined system, \begin{equation*} \begin{cases} i\partial_t U + \partial_x^2 U = - \tfrac{1}{2} U \left(\mathrm{D} + |\mathrm{D}| \right) \left( V^* U\right) - \tfrac{1}{2} V \left(\mathrm{D} + |\mathrm{D}| \right) \left( U^* U\right),\\ i\partial_t V + \partial_x^2 V = - \tfrac{1}{2} V \left(\mathrm{D} + |\mathrm{D}| \right) \left( U^* V\right) - \tfrac{1}{2} U \left(\mathrm{D} + |\mathrm{D}| \right) \left( V^* V\right),\\ \end {cases} \quad \mathrm{D}= -i\partial_x. \end{equation*}This system still enjoys a Lax pair structure, which allows to establish an explicit formula for general solutions on the torus and on the line. As a consequence, this system can be considered as an integrable perturbation of both the linear Schr\"odinger equation and the CMSdNLS equations.
Fichier principal
Vignette du fichier
ICMSdNLS.pdf (414.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04227081 , version 1 (03-10-2023)

Identifiants

  • HAL Id : hal-04227081 , version 1

Citer

Ruoci Sun. The intertwined derivative Schrödinger system of Calogero--Moser--Sutherland type. 2023. ⟨hal-04227081⟩

Collections

TDS-MACS
451 Consultations
146 Téléchargements

Partager

More