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The intertwined derivative Schrödinger system of

Calogero–Moser–Sutherland type

Ruoci Sun∗

Abstract This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland
cubic derivative Schrödinger equation (CMSdNLS), introduced in Gérard–Lenzmann [22] and Badreddine
[2, 3], to a system of two matrix-valued variables, leading to the following intertwined system,{

i∂tU + ∂2
xU = − 1

2U (D + |D|) (V ∗U)− 1
2V (D + |D|) (U∗U) ,

i∂tV + ∂2
xV = − 1

2V (D + |D|) (U∗V )− 1
2U (D + |D|) (V ∗V ) ,

D = −i∂x.

This system still enjoys a Lax pair structure, which allows to establish an explicit formula for general
solutions on the torus and on the line. As a consequence, this system can be considered as an integrable
perturbation of both the linear Schrödinger equation and the CMSdNLS equations.

Keywords derivative Schrödinger equation, Lax pair, explicit formula, Toeplitz operators.

Contents

1 Introduction 2
1.1 The Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The explicit formula on the torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The explicit formula on the line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Proof of the Lax pair structure 7

3 Proof of the explicit formula on T 9

4 Proof of the explicit formula on R 12

∗School of Mathematics, Georgia Institute of Technology, Atlanta, USA. Email: ruoci.sun.16@normalesup.org

1



1 Introduction

Given any two positive integers M,N ∈ N+, the cubic M × N matrix-valued intertwined derivative
Schrödinger system of Calogero–Moser–Sutherland (CMS) type reads as{

i∂tU + ∂2
xU = − 1

2U (D + |D|) (V ∗U)− 1
2V (D + |D|) (U∗U) ,

i∂tV + ∂2
xV = − 1

2V (D + |D|) (U∗V )− 1
2U (D + |D|) (V ∗V ) ,

D = −i∂x. (1.1)

where t ∈ J for some interval J ⊂ R, x ∈ T := R/2πZ or x ∈ R and U = U(t, x), V = V (t, x) ∈ CM×N .
If V = µU , for some µ ∈ C, the system (1.1) is reduced to the following equation,

i∂tU + ∂2
xU = −(Reµ)U (D + |D|) (U∗U) , t ∈ J, x ∈M, (1.2)

where M = T or R. When Reµ > 0, equation (1.2) is called the focusing CMS derivative cubic Schrödinger
equation up to scaling,

i∂tU + ∂2
xU = −U (D + |D|) (U∗U) , t ∈ J, x ∈M. (1.3)

When Reµ < 0, equation (1.2) is called the defocusing CMS derivative cubic Schrödinger equation up to
scaling,

i∂tU + ∂2
xU = U (D + |D|) (U∗U) , t ∈ J, x ∈M. (1.4)

When Reµ = 0, equation (1.2) becomes the linear Schrödinger equation,

i∂tU + ∂2
xU = 0M×N , t ∈ R, x ∈M. (1.5)

In the scalar case M = N = 1, we refer to Abanov–Bettelheim–Wiegmann [1] and the references therein
to see the physical backgrounds of both defocusing and focusing CMSdNLS equations (1.3), (1.4) on M.

1. If M = T, both (1.3) and (1.4) on the torus can be interpreted as the thermodynamic limit of the
following Calogero–Sutherland model (CSM)

HCSM =
1

2

N∑
j=1

p2
j +

π2

2L2

∑
1≤j 6=k≤N

g2

sin2
(
π
L (xj − xk)

) , N = cL→ +∞, (1.6)

for some constant c > 0, which is introduced in Calogero [7] and Sutherland [45].

2. If M = R, both (1.3) and (1.4) on the line can be interpreted as the continuum limit of the following
classical Calogero–Moser model (CM)

HCM =
1

2

N∑
j=1

p2
j +

∑
1≤j 6=k≤N

1

2(xj − xk)2
, N → +∞, (1.7)

which is introduced in Moser [30] and Olshanetsky–Perelomov [32].

Equations (1.3) and (1.4) involve the L2-spaces with only nonnegative Fourier modes,

L2
+(T;C) := {f ∈ L2(T;C) : f̂(n) = 0, ∀n < 0}, L2

+(R;C) := {f ∈ L2(R;C) : supp(f̂) ⊂ [0,+∞)}.
(1.8)
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The filtered Sobolev spaces are denoted by Hs
+(M;C) = Hs

⋂
L2

+(M;C), M = T or R, ∀s ≥ 0. Thanks
to P. Gérard and E. Lenzmann’s work [22] and R. Badreddine’s work [2], both (1.3) and (1.4) enjoy
the Lax pair structure, which allows to deduce an explicit expression of the Poisson integral of general
solutions. The defocusing equation (1.4) is globally wellposed in all filtered Sobolev spaces Hs

+(M;C),
s ≥ 0, for arbitrary initial data; the focusing equation (1.3) is globally wellposed in Hs

+(M;C) for small
L2

+(M;C)-data, s ≥ 0. Moreover, P. Gérard and E. Lenzmann have completely classified all traveling
waves of (1.3) and obtained the turbulent behavior of multi-solitons in [22]. The traveling waves of both
(1.3) and (1.4) are characterized in R. Badreddine’s work [3]. The 1× 1 CMS dNLS equations (1.3) and
(1.4) can be considered as L2-critical versions of the Benjamin–Ono equation,

∂tv = ∂x
(
|D|v − v2

)
, (t, x) ∈ R×M. (1.9)

Inspired from the cubic Schrödinger system of two variables in Zakharov–Shabat [48] and Grébert–
Kappeler [25], and the spin generalization of the Benjamin–Ono equation introduced in Berntson–
Langmann–Lenells [4], Gérard [9], we generalize both (1.3) and (1.4) to the matrix intertwined system
(1.1) in order to study the perturbation of the original equations (1.3), (1.4) and understand their deep
structure of integrable system. Since the intertwined system (1.1) has the same linear part as both (1.3)
and (1.4), Kato’s classical iterative scheme can be used to prove the Hs

+(M) local wellposedness of (1.1),
thanks to the ideas in subsection 2.1 of Gérard–Lenzmann [22].

Proposition 1.1. Given any s > 3
2 , M,N ∈ N+ and R > 0, M ∈ {T,R}, there exists T (R) > 0 such

that, if U0, V0 ∈ Hs
+(M;CM×N ) with ‖U0‖Hs

+(M;CM×N ) + ‖V0‖Hs
+(M;CM×N ) ≤ R, there exists a unique pair

of functions U, V ∈ C0
(
[−T (R), T (R)];Hs

+(M;CM×N )
)

solving the intertwined system (1.1) with initial
datum (U(0), V (0)) = (U0, V0).

The goal of this paper is to provide an explicit expression for all general solutions (U(t), V (t)) to the
intertwined system (1.1) on T and on R in terms of the initial datum (U(0), V (0)) = (U0, V0) and the
time variable t. In order to establish this explicit formula, we need to generalize Gérard–Lenzmann’s Lax
pair structure of (1.3) and (1.4) to the intertwined system (1.1).

1.1 The Lax pair

Let Π≥0 : L2(M;CM×N ) → L2(M;CM×N ) denotes Szegő operator which cancels all negative Fourier

modes and preserves the nonnegative Fourier modes, i.e. for any U =
∑
n∈Z Û(n)einx ∈ L2(T;CM×N ),

for any V ∈ L2(R;CM×N ), we have

(Π≥0U) (x) =
∑
n≥0

Û(n)einx, Û(n) = 1
2π

∫ 2π

0

U(x)e−inxdx ∈ CM×N , ∀n ∈ Z,

̂(Π≥0V )(ξ1) = V̂ (ξ) ∈ CM×N , ̂(Π≥0V )(ξ2) = 0M×N , ∀ξ1 > 0 > ξ2.

(1.10)

Since (D + |D|) = 2DΠ≥0, the intertwined system (1.1) also reads as{
∂tU = i∂2

xU + U∂xΠ≥0 (V ∗U) + V ∂xΠ≥0 (U∗U) ,

∂tV = i∂2
xV + V ∂xΠ≥0 (U∗V ) + U∂xΠ≥0 (V ∗V ) ,

t ∈ J, x ∈M. (1.11)

The matrix-valued Hardy spaces are denoted by L2
+(M;CM×N ) := Π≥0(L2(M;CM×N )), M ∈ {T,R}.

The filtered Sobolev spaces are given by Hs
+(M;CM×N ) := Hs

⋂
L2

+(M;CM×N ) = Π≥0(Hs(M;CM×N )),
∀s ≥ 0. For any d ∈ N+, the (right) Toeplitz operator of symbol V ∈ L2(M;CM×N ) is defined by

TV = T
(r)
V : G ∈ H1

+(M;CN×d) 7→ TV (G) = Π≥0(V G) ∈ L2
+(M;CM×d). (1.12)
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If Ψ = (U, V ) ∈ H1
+

(
M; (CM×N )2

)
, the operators LΨ,BΨ : H1

+(M;CM×d)→ L2
+(M;CM×d) are given by

LΨ =D− 1
2 (TUTV ∗ + TVTU∗) , D = −i∂x;

BΨ = 1
2 (TUT∂xV ∗ + TVT∂xU∗ −T∂xVTU∗ −T∂xUTV ∗) + i

4 (TUTV ∗ + TVTU∗)
2
.

(1.13)

The operator LΨ is a densely defined self-adjoint operator on L2
+(M;CM×d), which is bounded from

below. If Ψ = (U, V ) ∈ H2
+

(
M; (CM×N )2

)
in addition, the operator iBΨ is bounded self-adjoint on

L2
+(M;CM×d), M ∈ {T,R}. The first result of this paper is stated as follows.

Theorem 1.2. Given M,N, d ∈ N+ and M ∈ {T,R}, if Ψ = (U, V ) ∈ C0
(
T−, T+; H2

+(M; (CM×N )2)
)

solves the intertwined system (1.11), then following Heisenberg–Lax equation holds

d

dt
LΨ(t) = [BΨ(t),LΨ(t)] : H1

+(M;CM×d)→ L2
+(M;CM×d), ∀t ∈ (T−, T+). (1.14)

Then (LΨ,BΨ) defined in (1.13) is a Lax pair of the intertwined derivative Schrödinger system (1.1).

Remark 1.3. In the case V = µU , the Lax pair structure for (1.3) and (1.4), which is contructed in
Gérard–Lenzmann [22] and Badreddine [2], can be revisited.

1. When µ = 1, the intertwined system (1.1) becomes the focusing equation (1.3) and the Lax pair
(LΨ,BΨ) is reduced to the following operators,

L−U = D−TUTU∗ , B−U = TUT∂xU∗ −T∂xUTU∗ + i (TUTU∗)
2
. (1.15)

2. When µ = −1, the intertwined system (1.1) becomes the defocusing equation (1.4) and the Lax pair
(LΨ,BΨ) is reduced to the following operators,

L+
U = D + TUTU∗ , B+

U = T∂xUTU∗ −TUT∂xU∗ + i (TUTU∗)
2
. (1.16)

3. When Reµ = 0, the system (1.1) is reduced to the linear Schrödinger equation (1.5) and the Lax
pair degenerates, i.e. (LΨ,BΨ) = (D, 0).

As a consequence, the intertwined system (1.1) is an integrable perturbation of equations (1.3), (1.4) and
(1.5) simultaneously.

Inspired from the works Gérard–Grellier [15], Gérard [10], Gérard–Lenzmann [22], Badreddine [2] and
Sun [44], we establish an explicit expression for general solutions to the intertwined derivative Schrödinger
system (1.1) both on the torus and on the line, thanks to its Lax pair structure (1.14) and the conjugation
acting method.

1.2 The explicit formula on the torus

In the space-periodic case, every function U ∈ L2
+(T;CM×N ) has Fourier series expression, i.e.

U =
∑
n≥0

Û(n)en, Û(n) = 1
2π

∫ 2π

0

U(x)e−inxdx = I(Ue−n) ∈ CM×N , ∀n ∈ Z, (1.17)

where en : x ∈ T 7→ einx ∈ C and I denotes the integral operator, i.e.

I : F ∈ L1(T;CM×N ) 7→ I(F ) = F̂ (0) =
1

2π

∫ 2π

0

F (x)dx ∈ CM×N . (1.18)
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The Hardy space L2
+(T;CM×N ) is equipped with the shift operator S, which is defined by

S : F ∈ L2
+(T;CM×N ) 7→ e1F ∈ L2

+(T;CM×N ). (1.19)

Its L2
+-adjoint is denoted by S∗ ∈ B

(
L2

+(T;CM×N )
)
. Then every nonnegative Fourier mode of an

arbitrary solution to the intertwined system (1.1) can be expressed explicitly in terms of its initial datum
and the time variable, leading to the explicit formula of the solution.

Theorem 1.4. If U =
∑
n≥0 Û(t, n)en, V =

∑
n≥0 V̂ (t, n)en ∈ C0

(
T−, T+; H3

+(T;CM×N )
)

solve the
cubic intertwined derivative Schrödinger system (1.1) for some integers M,N ∈ N+ with initial data
Ψ0 = (U0, V0) = (U(0), V (0)) ∈ H3

+(T; (CM×N )2), the following explicit formula holds:

Û(t, n) = e−intI
(
(e−2itLΨ0S∗)n(U0)

)
, V̂ (t, n) = e−intI

(
(e−2itLΨ0S∗)n(V0)

)
, (1.20)

where I is given by (1.18), ∀n ∈ N, ∀t ∈ (T−, T+).

Inspired from subsection 2.2 of Badreddine [2], we have the following global wellposedness result of (1.1)
on the torus.

Proposition 1.5. Given any s > 3
2 and M,N ∈ N+, if Ψ0 = (U0, V0) ∈ Hs

+(T; (CM×N )2) satisfies that

‖U0‖Hs
+(T;CM×N )‖V0‖Hs

+(T;CM×N ) < 1, (1.21)

then there exists a unique global solution Ψ = (U, V ) ∈ C0
(
R;Hs

+(T; (CM×N )2)
)

to the intertwined system
(1.1) with initial datum (U(0), V (0)) = (U0, V0). Moreover, the global solution is uniformly bounded in
time, i.e. supt∈R ‖Ψ(t)‖Hs

+(T;(CM×N )2) < +∞.

1.3 The explicit formula on the line

Every function U ∈ L2
+(R;CM×N ) can be extended to a holomorphic function on the upper half plane

C+ := {z ∈ C : Imz > 0} via its Poisson integral,

U(z) = P[U ](z) :=

∫
R
Py(x− t)U(t)dt =

1

2π

∫ +∞

0

eizξÛ(ξ)dξ, ∀z = x+ yi ∈ C+, (1.22)

where Py(x) = y
π(x2+y2) , denotes the Poisson kernel on C+. For any fixed y > 0, when restricting to R,

the function τ−yiU |R : x ∈ R 7→ U(x+ yi) ∈ CM×N ∈ L2
+(R;CM×N ) satisfies that

sup
y>0
‖τ−yiU |R‖L2

+(R;CM×N ) ≤ ‖U‖L2
+(R;CM×N ), lim

y→0+
‖τ−yiU |R − U‖L2

+(R;CM×N ) = 0. (1.23)

The mapping U 7→ U provides a C-Hilbert isomorphism from L2
+(R;CM×N ) to the Hardy space

H2(C+;CM×N ) := {U ∈ Hol(C+;CM×N ) : sup
y>0

∫
R

tr (U(x+ yi)(U(x+ yi))∗) dx < +∞}. (1.24)

Instead of one single shift operator, we consider the Lax–Beurling shift semigroup (S(η))η≥0 of isometries
on L2

+(R;CM×N ) and its adjoint semigroup (S(η)∗)η≥0, which are defined as

S(η)U = eηU, S(η)∗U = Π≥0 (e−ηU) , ∀U ∈ L2
+(R;CM×N ), ∀η ≥ 0, (1.25)
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where eη(x) = einx, ∀x ∈ R. Both (S(η))η≥0 and (S(η)∗)η≥0 are contraction semi-groups on L2
+(R;CM×N ).

Let−iG denote the infinitesimal generator of (S(η)∗)η≥0 , i.e. G(F ) := i d
dη

∣∣
η=0+S(η)∗(F ) ∈ L2

+(R;CM×N ),

∀F ∈ Dom(G)M×N , where the domain of definition of G is given by

Dom(G)M×N := {F ∈ L2
+(R;CM×N ) : F̂ |R∗+ ∈ H

1((0,+∞);CM×N )}, (1.26)

with R∗+ = (0,+∞). For any δ > 0, the Sobolev extension theorem yields that ϕ(0+) := limε→0+ ϕ(ε)

exists for any ϕ ∈ H1 ((0, δ);C). For any F ∈ L2
+(R;CM×N ) such that F̂ ∈ H1

(
(0, δ);CM×N

)
for some

δ > 0, we define that
I (F ) := F̂ (0+) ∈ CM×N . (1.27)

Precisely, for any F ∈ Dom(G)M×N , we have

G(F )(x) = xF (x)− i
2π F̂ (0+), ∀x ∈ R. (1.28)

In order to establish an explicit formula for general solutions to the intertwined system (1.1) on R, it is
enough to express their Poisson integrals explicitly in terms of the initial datum and the time variable,
thanks to the L2

+-convergence formula (1.23).

Theorem 1.6. Given M,N ∈ N+, if U, V ∈ C0
(
T−, T+; H3

+(R;CM×N )
)

solve the intertwined system
(1.1) with initial datum Ψ0 = (U0, V0) = (U(0), V (0)) ∈ H3

+(R; (CM×N )2), then we have the following
explicit formula of the Poisson integrals of U(t) and V (t),

U(t, z) = 1
2πiI

(
(G + 2tLΨ0

− z)−1
(U0)

)
, V (t, z) = 1

2πiI
(

(G + 2tLΨ0
− z)−1

(V0)
)
, (1.29)

for any z ∈ C+, where I is given by (1.27), ∀t ∈ (T−, T+).

Then U(t) and V (t) can be described as the L2
+(R;CM×N )-limit of their Poisson integrals U(t) and V (t)

when Imz → 0+, due to formula (1.23). Inspired from subsection 2.3 of Gérard–Lenzmann [22], we have
the following global wellposedness result of (1.1) on the line.

Proposition 1.7. Given any s > 3
2 and M,N ∈ N+, if Ψ0 = (U0, V0) ∈ Hs

+(R; (CM×N )2) satisfies that

‖U0‖Hs
+(R;CM×N )‖V0‖Hs

+(R;CM×N ) < 2π, (1.30)

then there exists a unique global solution Ψ = (U, V ) ∈ C0
(
R;Hs

+(R; (CM×N )2)
)

to the intertwined
system (1.1) on R with initial datum (U(0), V (0)) = (U0, V0). Moreover, the global solution is uniformly
bounded in time, i.e. supt∈R ‖Ψ(t)‖Hs

+(R;(CM×N )2) < +∞.

1.4 Organization of the paper

This paper is organized as follows. Theorem 1.2 about the Lax pair of (1.1) is proved in section 2. Section
3 and 4 are devoted to establishing the explicit formulas of solutions of the intertwined system (1.1) on
the torus and on the line respectively.
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2 Proof of the Lax pair structure

This section is devoted to establishing the Lax pair structure (1.14) of the intertwined system (1.1).
In order to prove theorem 1.2, we need some preliminaries about matrix-valued functions and Toeplitz
operators.

In the space-periodic case, if U =
∑
n∈Z Û(n)en ∈ L2(T;CM×N ), then

Π<0U = (Π≥0(U∗))
∗ − Û(0) ∈ L2

−(T;CM×N ), (Π≥0U)
∗

= Π<0(U∗) + (Û(0))∗ ∈ L2(T;CN×M ) (2.1)

Lemma 2.1. Given M,N, d ∈ N+, if A ∈ L2
+(T;CM×N ) and B ∈ L2

+(T;CN×d) and one of A,B is
essentially bounded, then AB ∈ L2

+(T;CM×d).

Proof. See lemma 2.4 of Sun [44].

Thanks to Lemma 2.1, the intertwined derivative Schrödinger system (1.11) reads as{
∂tU = i∂2

xU + TU∂xTV ∗(U) + TV ∂xTU∗(U),

∂tV = i∂2
xV + TU∂xTV ∗(V ) + TV ∂xTU∗(V ).

(2.2)

Lemma 2.2. For any M,N,P ∈ N+, we choose A,W ∈ L2(T;CM×N ), B, V ∈ L2(T;CN×P ), such that

B ∈ L2
+(T;CN×P ) and W − Ŵ (0) ∈ L2

−(T;CM×N ).
(a). If one of A,B belongs to H1(T), then TATB = TAB : H1

+(T;CP×d)→ L2
+(T;CM×d).

(b). If one of W,V belongs to H1(T), then TWTV = TWV : H1
+(T;CP×d)→ L2

+(T;CM×d).

Proof. If F ∈ H1
+(T;CP×d), we have TATB(F ) = ABF = TAB(F ) ∈ L2

+(T;CM×d) and WΠ<0(V F ) =∑
l≤−1(

∑0
n=l+1 Ŵ (n)V̂ F (l − n))el ∈ L2

−(T;CM×d). Then TWTV (F ) = Π≥0 (W (V F −Π<0(V F ))) =

Π≥0 (WV F ) = TWV (F ) ∈ L2
+(T;CM×d).

In the space non periodic case, if F ∈ L2(R;CM×N ), Π<0F = (Π≥0(F ∗))
∗ ∈ L2

−(R;CM×N ) and

F = Π≥0F + Π<0F = Π≥0F + (Π≥0(F ∗))
∗
. (2.3)

Lemma 2.3. Given A ∈ L2
+(R;CM×N ) and B ∈ L2

+(R;CN×d) for some M,N, d ∈ N+, if one of A,B
is essentially bounded , then AB ∈ L2

+(R;CM×d).

Proof. If f ∈ L2
+(R;C) and g ∈ L∞

⋂
L2

+(R;C), then f̂g(ξ) =
∫
R f̂(ξ − η)ĝ(η) dη

2π = 0, ∀ξ < 0.

Corollary 2.4. Given A ∈ L2
−(R;CM×N ) and B ∈ L2

−(R;CN×d) for some M,N, d ∈ N+, if one of
A,B is essentially bounded , then AB ∈ L2

−(R;CM×d).

Lemma 2.5. For any M,N,P ∈ N+, we choose A,W ∈ L2(R;CM×N ), B, V ∈ L2(R;CN×P ), such that
B ∈ L2

+(R;CN×P ) and W ∈ L2
−(R;CM×N ).

(a). If one of A,B belongs to H1(R), then TATB = TAB : H1
+(R;CP×d)→ L2

+(R;CM×d).
(b). If one of W,V belongs to H1(R), then TWTV = TWV : H1

+(R;CP×d)→ L2
+(R;CM×d).

Proof. This is a direct consequence of lemma 2.3 and corollary 2.4 by following the proof of lemma
2.2.

We are ready to prove the Heisenberg–Lax equation (1.14).
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Proof of theorem 1.2. We prove at first (1.14) for the space-periodic case, i.e. assume that M = T. If
U, V ∈ H1

+(T;CM×N ), we have [D,TU ] = TDU : H1
+(T;CM×d)→ L2

+(T;CM×d) and

[TUTV ∗ ,D] = i (TUT∂xV ∗ + T∂xUTV ∗) : H1
+(T;CM×d)→ L2

+(T;CM×d). (2.4)

We define A := A (U, V ) = TUTV ∗ + TVTU∗ ∈ B(Hs
+(T;CM×d)) for some s = 0 or 1

2 < s ≤ 1, and
Ω := Ω(U, V ) = TUT∂xV ∗ + TVT∂xU∗ −T∂xVTU∗ −T∂xUTV ∗ ∈ H1

+(T;CM×d)→ L2
+(T;CM×d). Then

LΨ = D− 1
2A , BΨ = 1

2Ω + i
4A 2, where Ψ = (U, V ). (2.5)

Formula (2.4) implies −i[A ,D] = TUT∂xV ∗ + T∂xVTU∗ + T∂xUTV ∗ + TVT∂xU∗ , so

i[A 2,D] = iA [A ,D] + i[A ,D]A : H1
+(T;CM×d)→ L2

+(T;CM×d)
=−A TUT∂xV ∗ −A T∂xVTU∗ −A T∂xUTV ∗ −A TVT∂xU∗

−TUT∂xV ∗A −T∂xVTU∗A −T∂xUTV ∗A −TVT∂xU∗A .

(2.6)

The operator [Ω,A ] : H1
+(T;CM×d)→ L2

+(T;CM×d) is given by

[Ω,A ] =−A TUT∂xV ∗ + A T∂xVTU∗ + A T∂xUTV ∗ −A TVT∂xU∗

+ TUT∂xV ∗A −T∂xVTU∗A −T∂xUTV ∗A + TVT∂xU∗A .
(2.7)

Plugging A = TUTV ∗ + TVTU∗ into (2.6) and (2.7), we obtain that

i[A 2,D]− [Ω,A ] : H1
+(T;CM×d)→ L2

+(T;CM×d)
=− 2TU (TV ∗T∂xV + T∂xV ∗TV )TU∗ − 2TV (TU∗T∂xV + T∂xU∗TV )TU∗

− 2TV (TU∗T∂xU + T∂xU∗TU )TV ∗ − 2TU (TV ∗T∂xU + T∂xV ∗TU )TV ∗ .

(2.8)

Since (∂x(U∗V ))
∧

(0) = 0N×N , formula (2.1) implies that ∂x (U∗V ) = ∂xΠ≥0 (U∗V ) + (∂xΠ≥0(V ∗U))
∗
.

For any W,Y ∈ H1
+(T;CM×N ), lemma 2.2 yields that

TW (TU∗T∂xV + T∂xU∗TV )TY ∗ = TWT∂x(U∗V )TY ∗ : H1
+(T;CM×d)→ L2

+(T;CM×d)
=TWT∂xΠ≥0(U∗V )TY ∗ + TWT(∂xΠ≥0(V ∗U))

∗TY ∗ = TW∂xΠ≥0(U∗V )TY ∗ + TWT(Y ∂xΠ≥0(V ∗U))
∗ .

(2.9)

Plugging (2.9) into (2.8), we obtain that ∀U, V ∈ H1
+(T;CM×N ), then

i[A 2,D]− [Ω,A ] : H1
+(T;CM×d)→ L2

+(T;CM×d)
=− 2TU∂xΠ≥0(V ∗V )+V ∂xΠ≥0(U∗V )TU∗ − 2TUT(U∂xΠ≥0(V ∗V )+V ∂xΠ≥0(U∗V ))

∗

− 2TU∂xΠ≥0(V ∗U)+V ∂xΠ≥0(U∗U)TV ∗ − 2TVT(U∂xΠ≥0(V ∗U)+V ∂xΠ≥0(U∗U))
∗ .

(2.10)

Now assume that U, V ∈ H2
+(T;CM×N ), then ∂xU, ∂xV ∈ H1

+(T;CM×N ) and (2.4) yields that

[Ω,D] = −TUT(i∂2
xV )∗ −TVT(i∂2

xU)∗ −Ti∂2
xV

TU∗ −Ti∂2
xU

TV ∗ : H1
+(T;CM×d)→ L2

+. (2.11)

As a consequence, formulas (2.5), (2.10) and (2.11) imply that

2[BΨ,LΨ] = [Ω,D] + i
2 [A 2,D]− 1

2 [Ω,A ] : H1
+(T;CM×d)→ L2

+(T;CM×d)
=−TUT(i∂2

xV+U∂xΠ≥0(V ∗V )+V ∂xΠ≥0(U∗V ))
∗ −Ti∂2

xV+U∂xΠ≥0(V ∗V )+V ∂xΠ≥0(U∗V )TU∗

−TVT(i∂2
xU+U∂xΠ≥0(V ∗U)+V ∂xΠ≥0(U∗U))

∗ −Ti∂2
xU+U∂xΠ≥0(V ∗U)+V ∂xΠ≥0(U∗U)TV ∗ ,

(2.12)
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∀Ψ = (U, V ) ∈ H2
+(T; (CM×N )2). So [BΨ,LΨ] = dLΨ(XE(Ψ)), where XE(Ψ) = (X

(1)
E (Ψ), X

(2)
E (Ψ))

denotes the Hamiltonian vector field of the energy function of (1.11), i.e.{
X

(1)
E (Ψ) = i∂2

xU + U∂xΠ≥0 (V ∗U) + V ∂xΠ≥0 (U∗U) ,

X
(2)
E (Ψ) = i∂2

xV + V ∂xΠ≥0 (U∗V ) + U∂xΠ≥0 (V ∗V ) .

In the space non periodic case, i.e. assume that M = R, formula (2.8) can be obtained by the same calculus
as above. However, L2(R)-functions are almost everywhere defined, then the zero mode no longer plays
an important role in (2.3). Thanks to (2.3), formula (2.9) still holds for all W,Y ∈ H1

+(R;CM×N ) by
using lemma 2.5. The rest of proof is the same as the space-periodic case.

3 Proof of the explicit formula on T
The explicit formula (1.20) for general solutions of the intertwined system (1.1) is proved in this section.
Let D := {z ∈ C : |z| < 1} denote the open unit disc. Given any M,N ∈ N+, the Fourier series
U =

∑
n≥0 Û(n)en of an arbitrary function U ∈ L2

+(T;CM×N ) is identified to the power series of its
Poisson integral,

U(z) = P[U ](r, θ) :=
1

2π

∫ π

−π
pr(θ − x)U(x)dx =

∑
n≥0

znÛ(n) ∈ C, ∀z = reiθ ∈ D, (3.1)

where pr(x) = 1−r2

1−2r cos(x)+r2 =
∑
n∈Z r

|n|einx, denotes the Poisson kernel on D. Thanks to Theorem

11.16 of Rudin [41], the function P[U ](r) =
∑
n≥0 r

nÛ(n)en ∈ L2
+(T;CM×N ) satisfies that

sup
0≤r<1

‖P[U ](r)‖L2
+(T;CM×N ) ≤ ‖U‖L2

+
, lim

r→1−
‖P[U ](r)− U‖L2

+(T;CM×N ) = 0. (3.2)

In addition, if U ∈ L2
+(T;CM×N ) is continuous, then theorem 11.8 and 11.16 of Rudin [41] yield that

sup
0≤r<1

‖P[U ](r)‖L∞(T;CM×N ) ≤ ‖U‖L∞ , lim
r→1−

‖P[U ](r)− U‖L∞(T;CM×N ) = 0. (3.3)

The mapping U 7→ U provides a C-Hilbert isomorphism from L2
+(T;CM×N ) to the Hardy space

H2(D;CM×N ) := {U ∈ Hol(D;CM×N ) : sup
0≤r<1

∫ 2π

0

tr
(
U(reiθ)(U(reiθ))∗

)
dx < +∞}. (3.4)

If F =
∑
n≥0 F̂ (n)en ∈ L2

+(T;CM×N ),

S∗(F ) = Π≥0 (e−1F ) =
∑
n≥0

F̂ (n+ 1)en ∈ L2
+(T;CM×N ). (3.5)

If F = (Fkj)1≤k≤M, 1≤j≤N ∈ L1(T;CM×N ), we have 〈F, Ekj〉L2(T;CM×N ) = F̂kj(0) and

I(F ) =

M∑
k=1

N∑
j=1

〈F, Ekj〉L2(T;CM×N )Ekj ∈ CM×N , (3.6)

where Ekj ∈ CM×N denotes the M ×N matrix whose kj-entry is 1 and the other entries are all 0.
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Lemma 3.1. If U ∈ L2
+(T;CM×N ) for some M,N ∈ N+, then

U(z) = I
(

(idL2
+(T;CM×N ) − zS∗)−1U

)
, ∀z ∈ D. (3.7)

Proof. See Lemma 2.8 of Sun [44].

Recall the following commutator formulas of the Toeplitz operator and the shift operator.

Lemma 3.2. If B ∈ L∞(T;CM×N ), F ∈ L2
+(T;CN×d), for some d,M,N ∈ N+,

[S∗,TB ] (F ) = S∗ (Π≥0B) F̂ (0) ∈ L2
+(T;CM×d). (3.8)

Proof. See lemma 3.8 of Sun [44].

If Ψ = (U, V ) ∈ H2
+

(
T; (CM×N )2

)
, then (2.5) yields that L2

Ψ = D2− 1
2DA − 1

2A D+ i
4A 2 is an unbounded

self-adjoint operator on L2
+(T;CM×d), whose domain of definition is H2

+(T;CM×d).

Lemma 3.3. Given d,M,N ∈ N+, if Ψ = (U, V ) ∈ H1
+

(
T; (CM×N )2

)
, we have

B̃Ψ := BΨ − iL2
Ψ = i∂2

x + TU∂xTV ∗ + TV ∂xTU∗ : H2
+(T;CM×d)→ L2

+(T;CM×d). (3.9)

Proof. If Ψ = (U, V ) ∈ H1
+

(
T; (CM×N )2

)
, then (2.5) yields that L2

Ψ = D2 − 1
2DA − 1

2A D + i
4A 2. So

we conclude by formulas (1.13), (2.5) and the following identity:

TU∂xTV ∗ = ∂xTUTV ∗ −T∂xUTV ∗ = TUTV ∗∂x + TUT∂xV ∗ : H1
+(T;CM×d)→ L2

+(T;CM×d). (3.10)

Then formulas (2.2) and (3.9) yield the following corollary.

Corollary 3.4. The function Ψ = (U, V ) ∈ C0
(
(T−, T+), H2

+(T; (CM×N ))2
)

solves the intertwined
derivative Schrödinger system (1.11) if and only if

∂tU(t) = B̃Ψ(t)(U(t)), ∂tV (t) = B̃Ψ(t)(V (t)), ∀t ∈ (T−, T+). (3.11)

Corollary 3.5. If Ψ ∈ H1
+

(
T; (CM×N )2

)
and A ∈ CM×d, then BΨ(A) = iL2

Ψ(A) ∈ H1
+(T;CM×d).

Proof. If V =
∑
n≥0 V̂ (n)en ∈ H1

+(T;CM×N ), TU∂xTV ∗(A) = TU∂x(V̂ (0)∗A) = ∂2
xA = 0M×d.

In order to prove (1.20) by conjugation acting method, we need the following commutator formula.

Lemma 3.6. Given M,N, d ∈ N+, if Ψ = (U, V ) ∈ H1
+

(
T; (CM×N )2

)
, then

[S∗,BΨ] = iS∗L2
Ψ − (LΨ + id)

2
S∗ : H2

+(T;CM×d)→ L2
+(T;CM×d). (3.12)

Proof. Since Den = nen, ∀n ∈ Z, we have [S∗,D] = S∗ and [S∗,D2] = S∗D + DS∗ = S∗ + 2DS∗. If
V =

∑
n≥0 V̂ (n)en ∈ H1

+(T;CM×N ), then S∗Π≥0(V ∗) = Π≥0(V̂ (0)∗e−1) = 0N×M . If G ∈ H1
+(T;CN×d),

then D̂G(0) = 0Ĝ(0) = 0N×d. Thanks to formula (3.8), ∀U ∈ H1
+(T;CM×N ), we have

[S∗,TV ∗ ] = 0 : L2
+(T;CM×d)→ 0N×d and [S∗,TU ]DTV ∗ = 0 : H1

+(T;CM×d)→ 0M×d. (3.13)
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As a consequence,formula (3.13) yields that

[S∗,TUDTV ∗ ] = [S∗,TUD]TV ∗ = TU [S∗,D]TV ∗ = TUTV ∗S
∗ : H1

+(T;CM×d)→ H1
+(T;CM×d). (3.14)

Then we use formulas (1.13), (3.9) and (3.14) to deduce that

i[S∗, B̃Ψ] = S∗+2DS∗−TUTV ∗S
∗−TVTU∗S

∗ = S∗+2LΨS
∗ : H2

+(T;CM×d)→ H1
+(T;CM×d). (3.15)

So formula (3.12) is obtained by plugging (3.9) into (3.15).

Recall the following wellposedness theorem for linear equations.

Proposition 3.7 (Cauchy). Let E be a Banach space, I is an open interval of R and A ∈ C0(I;B(E)),
if (t0, x0) ∈ I × E, there exists a unique function x ∈ C1(I;B(E)) such that x(t0) = x0 and

d
dtx(t) = A(t) (x(t)) , ∀t ∈ I. (3.16)

Proof. See Theorem 1.1.1 of Chemin [8].

Then we prove theorem 1.4 by comparing two families of unitary operators which act on the shift operator
S∗ by conjugation simultaneously.

Proof of theorem 1.4. If Ψ ∈ H3
+(T; (CM×N )2), then iBΨ is a bounded self-adjoint operator on the Hardy

space L2
+(T;CM×d), ∀d ∈ N+. In addition, BΨ ∈ Xs := B(Hs

+(T;CM×d)), if 1
2 < s ≤ 2. The operators

LΨ and L2
Ψ are unbounded self-adjoint operators on L2

+(T;CM×d) by Kato–Rellich theorem. For any

F ∈ Dom(L2
Ψ) = H2

+(T;CM×d), the operator theory implies that eitL
2
Ψ(F ) ∈ H2

+(T;CM×d), ∀t ∈ R, see
formula (X.97) in Page 236 of Reed–Simon [38].

Now assume that Ψ = (U, V ) ∈ C0
(
(T−, T+), H3

+(T; (CM×N ))2
)

solves the intertwined derivative
Schrödinger system (1.11) with initial data Ψ0 = (U0, V0) = (U(0), V (0)) ∈ H3

+(T; (CM×N ))2, the map-
ping Aj : t ∈ (T−, T+) 7→ Aj(t) ∈ B(Xs) is continuous with respect to the norm topology, j = 1 or 2, if
s = 0 or 1

2 < s ≤ 2, where A1(t)(W ) = BΨ(t)W and A2(t)(W ) = −WBΨ(t). Thanks to Proposition 3.7,

there exists a unique function W ∈ C1(T−, T+;B(L2
+(T;CM×d)) such that

∂tW(t) = BΨ(t)W(t), ∂tW(t)∗ = −W(t)∗BΨ(t), W(0) = idL2
+(T;CM×d). (3.17)

Here W(t)∗ = W(t)−1 is the L2
+-adjoint of W(t). But W,W∗ ∈ C1(T−, T+;B(Hs

+(T;CM×d)), s = 0 or
1
2 < s ≤ 2. The Lax pair structure (1.14) yields the following unitary equivalence: ∀µ ∈ C,(

LΨ(t) + µ
)2

= W(t)
(
LΨ(0) + µ

)2
W(t)∗ : H2

+(T;CM×d)→ L2
+(T;CM×d). (3.18)

Set Y(t) = W(t)∗S∗W(t). Then Y ∈ C1(T−, T+;B(Hs
+(T;CM×d)), s = 0 or 1

2 < s ≤ 2. So

∂tY(t) =W(t)∗[S∗,BΨ(t)]W(t) = iW(t)∗S∗L2
Ψ(t)W(t)− iW(t)∗S∗(LΨ(t) + 1)2W(t)

=iY(t)L2
Ψ0
− i(LΨ0

+ 1)2Y(t) ∈ B(Hs
+(T;CM×d)).

(3.19)

Set Z(t) = eit(LΨ0
+1)2

Y(t)e−itL
2
Ψ0 . If F ∈ H2

+(T;CM×d), then formula (3.19) yields that ∂tZ(t)(F ) =

eit(LΨ0
+1)2 (

i(LΨ0 + 1)2Y(t) + ∂tY(t)− iY(t)L2
Ψ0

)
e−itL

2
Ψ0 (F ) = 0M×d. So we have

W(t)∗S∗W(t) = Y(t) = e−it(LΨ0
+1)2

S∗eitL
2
Ψ0 ∈ B(L2

+(T;CM×d)), ∀t ∈ (T−, T+). (3.20)
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Fix d = N . So ∂t(W(t)∗U(t)) = W(t)∗(∂tU(t) −BΨ(t)U(t)) = −iW(t)∗L2
Ψ(t)U(t) = −iL2

Ψ0
W(t)∗U(t),

thanks to formulas (3.9), (3.11), (3.17) and (3.18). Recall that Ekj ∈ CM×N denotes M × N matrix
whose kj-entry is 1 and the other entries are all 0. Similarly, ∂tW(t)∗Ekj = −iL2

Ψ0
W(t)∗Ekj is obtained

by Corollary 3.5, 1 ≤ k ≤M , 1 ≤ j ≤ N . Consequently, we have

W(t)∗U(t) = e−itL
2
Ψ0 (U0), W(t)∗Ekj = e−itL

2
Ψ0 (Ekj) ∈ H2

+(T;CM×N ). (3.21)

For any z ∈ C such that |z| < 1, we use formulas (3.20) and (3.21) to obtain that

〈(id− zS∗)−1U(t),Ekj〉L2
+(T;CM×N ) = 〈(id− zW(t)∗S∗W(t))−1W(t)∗U(t),W(t)∗Ekj〉L2

+

=〈(id− ze−it(LΨ0
+1)2

S∗eitL
2
Ψ0 )−1e−itL

2
Ψ0 (U0), e−itL

2
Ψ0 (Ekj)〉L2

+(T;CM×N )

=〈(id− ze−ite−2itLΨ0S∗)−1(U0),Ekj〉L2
+(T;CM×N ).

(3.22)

Thanks to (3.6) and (3.7), the Poisson integral of U(t) =
∑
n≥0 Û(t, n)en ∈ H3

+(T;CM×N ) is given by

U(t, z) =
∑
n≥0

znÛ(t, n) =

M∑
k=1

N∑
j=1

〈(id− zS∗)−1U(t),Ekj〉L2
+(T;CM×N )Ekj ∈ CM×N . (3.23)

Plugging formula (3.22) into (3.23), we use (3.6) again to deduce that

U(t, z) = I
(
(id− ze−ite−2itLΨ0S∗)−1U0

)
=
∑
n≥0

zne−intI
(
(e−2itLΨ0S∗)nU0

)
. (3.24)

Since Ψ = (U, V ) solves (1.11), so does Φ := (V,U) with initial data Φ0 = (V0, U0). We observe that
LΨ0

= LΦ0
= D− 1

2

(
TU0TV ∗0

+ TV0TU∗0

)
. Formula (3.24) yields that

V (t, z) = I
(
(id− ze−ite−2itLΦ0S∗)−1V0

)
= I

(
(id− ze−ite−2itLΨ0S∗)−1V0

)
,

and hence the second formula of (1.20) holds.

4 Proof of the explicit formula on R
The Lax–Beurling semigroup (S(η)∗)η≥0 on L2

+(R;CM×N ) defined by (1.25) has been used to establish
the explicit formula of solutions of various integrable equations on the Hardy space. We refer to Pocovnicu
[37] and Gérard–Pushnitski [24] to see its application to the cubic Szegő equation on the line. We refer to
Sun [43], Gérard [10] and Killip–Laurens–Vişan [27] to see its application to the Benjamin–Ono equation
and its hierarchies on the line. Its infinitesimal generator G : Dom(G)M×N → L2

+(R;CM×N ) is a closed
and densely defined operator, which can be interpreted as the adjoint of the operator of multiplication by
the monomial x on L2

+(R;CM×N ). For any F ∈ Dom(G)M×N , the definition formula (1.28) is equivalent
to the following identity,

Ĝ(F )(ξ) = i∂ξF̂ (ξ), ∀ξ > 0 (4.1)

According to formula (X.97) in P. 236 of Reed–Simon [38], (S(η)∗)η≥0 can be expressed as

S(η)∗ = e−iηG ∈ B(L2
+(R;CM×N )), ∀η ≥ 0. (4.2)

The commutator formula between a Toeplitz operator and G is given as follows.
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Lemma 4.1. If B ∈ L2
⋂
L∞(R;CM×N ) for some M,N ∈ N+, then TB

(
Dom(G)N×d

)
⊂ Dom(G)M×d

for any d ∈ N+ and the following identity holds,

[G,TB ](F ) = i
2π (Π≥0B) F̂ (0+) ∈ L2

+(R;CM×d), ∀F ∈ Dom(G)N×d. (4.3)

Proof. The map 1
η [S(η)∗,TB ](F ) =

∑M
k=1

∑d
j=1

∑N
n=1

1
η [S(η)∗,TBkn

](Fnj)Ekj converges to
Π≥0B

2π F̂ (0+)

in L2
+(R;CM×d) when η → 0+, thanks to lemma 3.1 of Sun [43].

Inspired from [37], [10] and [24], we introduce an auxiliary approximate identity

χε(x) = (1− iεx)−1, ∀0 < ε < 1. (4.4)

Then Py = 1
yπReχy−1 , ∀y > 0, where Py is the Poisson kernel defined in (1.22). Then we have

lim
ε→0+

‖χεf − f‖L2(R;C) = 0, lim
ε→0+

〈g, χε〉L2(R;C) = ĝ(0+) = I (g), (4.5)

for any f ∈ L2(R;C) and ∀g ∈ Dom(G)1×1, thanks to Lebesgue’s dominated convergence theorem. Since
χε ∈ H+∞(R;C+) :=

⋂
s≥0H

s
+(R;C+), for any integer p ≥ 1 and f ∈ Hp(R;C), we have

lim
ε→0+

‖∂pxχε‖L2
+(R;C) = lim

ε→0+
‖fχε − f‖Hp(R;C) = 0. (4.6)

For any F ∈ Dom(G)M×N , if Fkj ∈ Dom(G)1×1 denotes the kj-entry of F , then

〈F, χεEkj〉L2
+(R;CM×N ) = 〈Fkj , χε〉L2

+(R;C) → F̂kj(0
+), (4.7)

as ε→ 0+. Recall that I is given by (1.27). Then the following identity holds,

I (F ) = F̂ (0+) =

M∑
k=1

N∑
j=1

lim
ε→0+

〈F, χεEkj〉L2
+(R;CM×N )Ekj ∈ CM×N . (4.8)

The next lemma gives an inversion formula, which expresses the Poisson integral U in terms of the
resolvent of G and the original function U ∈ L2

+(R;CM×N ).

Lemma 4.2. If U ∈ L2
+(R;CM×N ) for some M,N ∈ N+, then we have

U(z) = 1
2πiI

(
(G− z)−1(U)

)
= 1

2πi

M∑
k=1

N∑
j=1

lim
ε→0+

〈(G− z)−1(U), χεEkj〉L2
+(R;CM×N )Ekj , (4.9)

for any z ∈ C+, where U denotes the Poisson integral given by (1.22).

Proof. Set ez : x ∈ R 7→ eizx ∈ C, ∀z ∈ C. If U =
∑M
k=1

∑N
j=1 UkjEkj ∈ L2

+(R;CM×N ), then

Ûkjχε(ξ) = 〈e−ξUkj , χε〉L2(R;C) = 〈S(ξ)∗(U), χεEkj〉L2
+(R;CM×N ), ∀ξ ≥ 0, ∀ε ∈ (0, 1). (4.10)

Since ez ∈ L2(R∗+;C) with R∗+ = (0,+∞), ∀z ∈ C+, formulas (1.22), (4.2), (4.5) and (4.10) yield that

Ukj(z) = 1
2π 〈Ûkj , ez〉L2(R∗+;C) = 1

2π lim
ε→0+

〈Ûkjχε, ez〉L2(R∗+;C)

= 1
2π lim

ε→0+

∫ +∞

0

〈eiξ(z−G)(U), χεEkj〉L2
+(R;CM×N )dξ, ∀z ∈ C+.

(4.11)
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Since Imz > 0, the vector-valued integration
∫ b
a
eiξ(z−G)(U)dξ with a, b ∈ R, defined in theorems 3.27 and

3.29 of Rudin [42] can be extended to the Riemann sum over [0,+∞). Formula (X.98) of Reed–Simon
[38] and definition 3.26 of Rudin [42] yield that

Ukj(z) = 1
2πi lim

ε→0+
〈(G− z)−1

(U), χεEkj〉L2
+(R;CM×N ), ∀z ∈ C+. (4.12)

The proof is completed by using U(z) =
∑M
k=1

∑N
j=1 Ukj(z)Ekj and formula (4.8).

Formula (3.9) still holds for the space non periodic case, i.e. if Ψ = (U, V ) ∈ H1
+(R; (CM×N )2), then

B̃Ψ := BΨ − iL2
Ψ = i∂2

x + TU∂xTV ∗ + TV ∂xTU∗ : H2
+(R;CM×d)→ L2

+(R;CM×d). (4.13)

Thus the intertwined system (1.1) on R also reads as

∂tU(t) = B̃Ψ(t)(U(t)), ∂tV (t) = B̃Ψ(t)(V (t)). (4.14)

The next lemma shows that [G,BΨ] can be expressed in terms of the Lax operator LΨ.

Lemma 4.3. Given any d,M,N ∈ N+, if Ψ = (U, V ) ∈ H2
+(R; (CM×N )2), then

[G,BΨ] = i[G,L2
Ψ] + 2LΨ. (4.15)

Proof. [G, ∂x] = −id, [G, ∂2
x] = −2∂x. For any F ∈ Dom(G)M×d, (4.3) yields that

[G,TV ∗ ](F ) = i
2π (Π≥0(V ∗))F̂ (0+) = 0N×d. (4.16)

Then [G, ∂xTV ∗ ](F ) = [G, ∂x]TV ∗(F ) + ∂x[G,TV ∗ ](F ) = −TV ∗(F ). Thanks to lemma 4.1, for any
F ∈ Dom(G)M×d

⋂
H1

+(R;CM×d), we have TV ∗(F ) ∈ Dom(G)N×d
⋂
H1

+(R;CN×d), then the Fourier

transform (∂xTV ∗(F ))
∧

: ξ 7→ iξT̂V ∗(F ) ∈ H1((0, 1);CN×d), then I (∂xTV ∗(F )) = 0N×d by Sobolev
extension theorem. As a consequence, [G,TU ]∂xTV ∗(F ) = iU

2π (∂xTV ∗(F ))
∧

(0+) = 0M×d. Thus

[G,TU∂xTV ∗ ](F ) = [G,TU ]∂xTV ∗(F ) + TU [G, ∂xTV ∗ ](F ) = −TUTV ∗(F ). (4.17)

Similarly, [G,TV ∂xTU∗ ] = −TVTU∗ . Finally we have

[G, B̃Ψ] = −2i∂x −TUTV ∗ −TVTU∗ = 2LΨ. (4.18)

The proof is completed by comparing formulas (4.13) and (4.18).

The convergence formula (4.6) yields the following lemma.

Lemma 4.4. Given any d,M,N ∈ N+, if Ψ = (U, V ) ∈ H2
+(R; (CM×N )2) and P ∈ CM×d, we have

lim
ε→0+

(
‖L2

Ψ(χεP )‖L2
+(R;CM×d) + ‖BΨ(χεP )‖L2

+(R;CM×d)

)
= 0. (4.19)

Moreover, there exists a constant C(‖Ψ‖H2
+(R;(CM×N )2)) > 0 such that

sup
0<ε<1

‖BΨ(χεP )‖L2
+(R;CM×d) ≤ C(‖Ψ‖H2

+(R;(CM×N )2))‖P‖CM×d . (4.20)
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The explicit formula (1.29) of the intertwined system (1.1) on the line is also proved by using the conju-
gation acting method. However, the constant function does not belong to L2-spaces. So we have to use
the auxiliary approximation identity χε given by (4.4) and study the limit as ε→ 0+.

Proof of theorem 1.6. For any d ∈ N+, there exists a unique function W ∈ C1(T−, T+;B(L2
+(R;CM×d))

such that
∂tW (t) = BΨ(t)W (t), ∂tW (t)∗ = −W (t)∗BΨ(t), W (0) = idL2

+(R;CM×d), (4.21)

thanks to proposition 3.7. Here W (t)∗ = W (t)−1 denotes the L2
+(R)-adjoint of W (t). But W ,W ∗ ∈

C1(T−, T+;B(Hs
+(R;CM×d)), s = 0 or 1

2 < s ≤ 2. The Lax pair structure (1.14) yields the following
unitary equivalence: ∀µ ∈ C, LΨ(t) + µ = W (t)

(
LΨ(0) + µ

)
W (t)∗ and(

LΨ(t) + µ
)2

= W (t)
(
LΨ(0) + µ

)2
W (t)∗ : H2

+(R;CM×d)→ L2
+(R;CM×d). (4.22)

Set Y (t) := W (t)∗GW (t). Then Y satisfies the following linear differential equation,

∂tY (t) =W (t)∗[G,BΨ(t)]W (t) = iW (t)∗GL2
Ψ(t)W (t)− iW (t)∗L2

Ψ(t)GW (t) + 2LΨ(0)

=i[Y (t),L2
Ψ0

] + 2LΨ0 , T− < t < T+.
(4.23)

Then we integrate (4.23) in order to obtain the following identity,

W (t)∗GW (t) = 2tLΨ0
+ e−itL

2
Ψ0GeitL

2
Ψ0 , T− < t < T+. (4.24)

Fix d = N . Using the same idea of proving (3.21), we have

W (t)∗U(t) = e−itL
2
Ψ0 (U(0)), T− < t < T+. (4.25)

Similarly, we integrate ∂t (W (t)∗(χεEkj)) = −W (t)∗BΨ(t)(χεEkj) to obtain

W (t)∗(χεEkj)− χεEkj = −
∫ t

0

W (τ)∗BΨ(τ)(χεEkj)dτ. (4.26)

Recall that W (τ) is a unitary operator on L2
+(R;CM×N ). Thanks to the convergence formula (4.19) and

the estimate (4.20), we use dominated convergence theorem to deduce that

‖W (t)∗(χεEkj)− χεEkj‖L2
+(R;CM×N ) ≤

∣∣∣ ∫ t

0

‖BΨ(τ)(χεEkj)‖L2
+(R;CM×N )dτ

∣∣∣→ 0, (4.27)

as ε→ 0+. Similarly, (4.19) yields that

lim sup
ε→0+

‖e−itL
2
Ψ0 (χεEkj)− χεEkj‖L2

+(R;CM×N ) ≤ lim
ε→0+

‖L2
Ψ0

(χεEkj)‖L2
+(R;CM×N )|t| = 0. (4.28)

Thanks to the previous estimates (4.27) and (4.28), we have the following linearization when ε→ 0+,

lim
ε→0+

‖W (t)∗(χεEkj)− e−itL
2
Ψ0 (χεEkj)‖L2

+(R;CM×N ) = 0. (4.29)

Then the conjugation acting formula (4.24) yields that for any 1 ≤ k ≤M , 1 ≤ j ≤ N ,

〈(G− z)−1
(U(t)), χεEkj〉L2

+(R;CM×N ) = 〈(W (t)∗GW (t)− z)−1
(W (t)∗U(t)),W (t)∗(χεEkj)〉L2

+

=〈
(
e−itL

2
Ψ0GeitL

2
Ψ0 − z + 2tLΨ0

)−1

(e−itL
2
Ψ0U(0)), e−itL

2
Ψ0 (χεEkj)〉L2

+(R;CM×N ) + rε

=〈(G− z + 2tLΨ0
)
−1

(U(0)), χεEkj〉L2
+(R;CM×N ) + rε,

(4.30)

15



where rε is given by

rε := 〈W (t)∗ (G− z)−1
(U(t)),W (t)∗(χεEkj)− e−itL

2
Ψ0 (χεEkj)〉L2

+(R;CM×N ) → 0, (4.31)

as ε → 0+, by using (4.29). Plugging formulas (4.30) and (4.31) into the inversion formula (4.9) for
Poisson integral, we deduce that

2πiU(t, z) =

M∑
k=1

N∑
j=1

lim
ε→0+

〈(G− z)−1(U(t)), χεEkj〉L2
+(R;CM×N )Ekj

=

M∑
k=1

N∑
j=1

lim
ε→0+

〈(G− z + 2tLΨ0
)
−1

(U(0)), χεEkj〉L2
+(R;CM×N )Ekj

=I
(

(G + 2tLΨ0
− z)−1

(U0)
)
.

(4.32)

The explicit formula V (t, z) can be obtained by interchanging U, V and using the fact that L(U,V ) = L(V,U)

as in the proof of theorem 1.4.
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