High order multiscale analysis of discrete integrable equations - Archive ouverte HAL
Article Dans Une Revue Open Communications in Nonlinear Mathematical Physics Année : 2024

High order multiscale analysis of discrete integrable equations

Résumé

In this article we present the results obtained applying the multiple scale expansion up to the order $\varepsilon^6$ to a dispersive multilinear class of equations on a square lattice depending on 13 parameters. We show that the integrability conditions given by the multiple scale expansion give rise to 4 nonlinear equations, 3 of which seem to be new, depending at most on 2 parameters.
Fichier principal
Vignette du fichier
Heredero_Levi_Scimiterna_Mtest_23fb.pdf (453.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04173064 , version 1 (01-08-2023)
hal-04173064 , version 2 (25-01-2024)
hal-04173064 , version 3 (26-01-2024)

Licence

Identifiants

  • HAL Id : hal-04173064 , version 2

Citer

Rafael Hernandez Heredero, Decio Levi, Christian Scimiterna. High order multiscale analysis of discrete integrable equations. Open Communications in Nonlinear Mathematical Physics, 2024. ⟨hal-04173064v2⟩
75 Consultations
289 Téléchargements

Partager

More