High order multiscale analysis of discrete integrable equations - Archive ouverte HAL
Journal Articles Open Communications in Nonlinear Mathematical Physics Year : 2024

High order multiscale analysis of discrete integrable equations

Abstract

In this article we present the results obtained applying the multiple scale expansion up to the order $\varepsilon^6$ to a dispersive multilinear class of equations on a square lattice depending on 13 parameters. We show that the integrability conditions given by the multiple scale expansion give rise to 4 nonlinear equations, 3 of which seem to be new, depending at most on 2 parameters.
Fichier principal
Vignette du fichier
OCNMP_template_Special_2_Heredero.pdf (464.56 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Licence

Dates and versions

hal-04173064 , version 1 (01-08-2023)
hal-04173064 , version 2 (25-01-2024)
hal-04173064 , version 3 (26-01-2024)

Licence

Identifiers

Cite

Rafael Hernandez Heredero, Decio Levi, Christian Scimiterna. High order multiscale analysis of discrete integrable equations. Open Communications in Nonlinear Mathematical Physics, 2024, Special Issue in Memory of Decio Levi, ⟨10.46298/ocnmp.11690⟩. ⟨hal-04173064v3⟩

Collections

TDS-MACS
77 View
322 Download

Altmetric

Share

More