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HIGH ORDER MULTISCALE ANALYSIS OF DISCRETE INTEGRABLE

EQUATIONS

R. HERNÁNDEZ HEREDERO†, D. LEVI⋄ AND C. SCIMITERNA∗

Abstract. In this article we present the results obtained applying the multiple scale expansion
up to the order ε6 to a dispersive multilinear class of equations on a square lattice depending
on 13 parameters. We show that the integrability conditions given by the multiple scale expansion
give rise to 4 nonlinear equations, 3 of which seem to be new, depending at most on 2 parameters.

† Departamento de Matemática Aplicada a las TIC,
Universidad Politécnica de Madrid,
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1. Introduction

Discrete—or difference—equations play an important role in Mathematical Physics for their
double role. First, discrete space-time seems to be basic in the description of fundamental
phenomena of nature, as suggested by quantum gravity. On the other hand, discrete equations
are related to differential difference and differential equations through continuous limits. A
well-known classification of integrable partial difference equations was given by Adler, Bobenko
and Suris [2] in the particular case of equations defined on four lattice points. They used the
“consistency around the cube” condition with some symmetry constrains to be able to get definite
results. Due to the constraints introduced, this classification is partial and already new equations
with respect to those contained in the ABS classification have been found [1, 8, 10,13,17,19].

In this paper we provide necessary conditions for the integrability of a class of real, autonomous
difference equations in the variable u : Z2 → R defined on a Z2 square-lattice

Q(un,m, un+1,m, un,m+1, un+1,m+1;β1, β2, ...) = 0, n,m ∈ Z, (1)

where the βi’s are real, independent parameters. Integrability conditions will be determined
through a multiscale perturbative development, continuing with the theory explained in references
such as [4–7, 11] applicable in differential and difference equations. This approach has the
distinctive advantage of providing criteria in a manner completely independent from other current
approaches. Multiscale developments can be used to reinforce, enhance or augment our previous
knowledge of discrete integrable systems given by other techniques.
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We will assume, as in [2], that (1) is linear-affine in every variable, implying that the equation
is invariant under the Möbius transformation T

un,m
T7→ u′n,m =

Aun,m +B

Cun,m +D
. (2)

In this case, (1) reduces to a polynomial equation in its variables with an at most fourth order
nonlinearity

Q = f0 + a00 u00 + a01 u01 + a10 u10 + a11 u11 + (α1−α2)u00 u10 + (β1−β2)u00 u01 (3)

+d1u00 u11 + d2 u01 u10 + (β1+β2)u10 u11 + (α1+α2)u01 u11

+(τ1−τ3)u00 u01 u10 + (τ1+τ3)u00 u10 u11 + (τ2+τ4)u00 u01 u11

+(τ2−τ4)u10 u01 u11 + f1 u00 u01 u10 u11 = 0,

where all coefficients are taken to be real and independent of n and m. We consider a multiple
scale expansion around the dispersive solution

un,m = KnΩm, (4)

of the linearized equation of (3). Rewriting the constants K and Ω as K = eik and Ω = e−iω, and
introducing the solution (4) into the linear part of Eq. (3) we get a dispersion relation ω = ω (k)

ω = arctan

[
(a00a11 − a10a01) sin(k)

a00a01 + a10a11 + (a00a11 + a01a10) cos(k)

]
, (5)

if f0 = 0. The solution (4) of (3) with f0 = 0 is dispersive if ω(k) is a real nonlinear function of
the wave number k. This leads to the constraint

a200 − a201 + a210 − a211 + 2(a00a10 − a01a11) cos(k) = 0. (6)

The constraint (6) implies that one of the following two conditions must be satisfied to obtain a
non-trivial dispersion relation:

(1) a00 = a11 ≡ a1, a01 = a10 ≡ a2,
(2) a00 = −a11 ≡ a1, a01 = −a10 ≡ a2.

Then the dispersion relation (5) reduces to:

ω±(k) = arctan

[
±

(
a21 − a22

)
sin(k)

2a1a2 ± (a21 + a22) cos(k)

]
(7)

We denote the family of equations (3) satisfying condition (1) with dispersion relation ω+(k)
as Q+ and the one with dispersion relation ω−(k) as Q−. In all the cases a1 and a2 cannot be
zero and their ratio cannot be equal to ±1 in order to have a nontrivial dispersion relation.

We will consider integrability conditions for the class of equations Q+. The study of the
class Q− is left to a future work. The result of this work are a series of integrability theorems
and a table of equations, invariant under a restricted Möbius transformations, passing the very
stringent integrability conditions obtained with the multiple scale expansion up to ε6 order.

In Section 2 we present the main result on the discrete multiscale integrability test, the
conditions up to order ε6. In Section 3 we apply it to the classification of dispersive multilinear
equations defined on a square lattice Q+. Section 4 is devoted to some conclusive remarks.

2. The discrete multiscale integrability test

Consider a dispersive discrete equation of the form Q+, i.e. a completely discrete multilinear
dispersive equation defined on a lattice of four points. In such a situation the discrete multiscale
integrability test may be summarized as follows.
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i. One considers a small amplitude solution of Eq. (3) given by un,m = εwn,m, 0 < |ε| ≪ 1.
Then (3) splits into linear and nonlinear terms:

Q+ =

N∑
i=1

εiQi = 0, (8)

where N ∈ N is the nonlinearity order. A multilinear equation defined on a square can
be at most quartic, i.e. N ≤ 4. In the formal expansion (8) each term Qi contains only
homogeneous polynomials of degree i in wn,m. If the discrete equation is dispersive
then the linear part Q1 admits a solution wn,m = exp[i(κn − ωm)] = KnΩm, where
ω = ω(κ) = ω+(κ), the dispersion relation, is a real function of κ given by Eq. (7).

ii. The multiscale expansion of the basic field variable wn,m around the harmonic KnΩm

reads

wn,m =

∞∑
ℓ=0

εℓ
ℓ+1∑

α=−ℓ−1

KαnΩαmu
(α)
ℓ+1, (9)

where u
(α)
ℓ = u

(α)
ℓ (n1, {mj}) is a bounded slowly varying function of its arguments and

u
(−α)
ℓ = ū

(α)
ℓ , ūℓ being the complex conjugate of uℓ, because we look only for real solutions.

Here n1 = εn, mj = εjm j = 1, 2, . . . are the slow-varying lattice variables.

iii. The nearest-neighbors fields are expanded according to the following formulas:

wn+1,m =

∞∑
ℓ=0

εℓ
ℓ+1∑

α=−ℓ−1

Kα(n+1)Ωαm
ℓ∑

j=max(0,|α|−1)

Aℓ−ju
(α)
j+1, (10)

wn,m+1 =
∞∑
ℓ=0

εℓ
ℓ+1∑

α=−ℓ−1

KαnΩα(m−1)
ℓ∑

j=max(0,|α|−1)

Bℓ−ju
(α)
j+1, (11)

wn+1,m+1 =

∞∑
ℓ=0

εℓ
ℓ+1∑

α=−ℓ−1

Kα(n+1)Ωα(m−1)
ℓ∑

j=max(0,|α|−1)

Cℓ−ju
(α)
j+1. (12)

The operators Ai, Bi, Ci, are equal to 1 when i = 0, and for some lower values of i are:

i = 1 i = 2 i = 3 i = 4

Ai δn1
1
2δ

2
n1

1
6δ

3
n1

1
24δ

4
n1

Bi δm1
1
2δ

2
m1

+ δm2
1
6δ

3
m1

+ δm1δm2 + δm3
1
24δ

4
m1

+ 1
2δ

2
m1

δm2 +
1
2δ

2
m2

+ δm1δm3 + δm4

Ci ∇ 1
2∇

2 + δm2
1
6∇

3 +∇δm2 + δm3
1
24∇

4 + 1
2∇

2δm2 +
1
2δ

2
m2

+∇δm3 + δm4

where δk are the formal derivatives with respect to the index k, δk := ∂k and∇ := δm1+δn1 .
The operator δk can always be expressed in terms of powers of the difference operators
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by the well known identity

δk =
∞∑
i=1

(−1)i−1

i
∆i

k,

where ∆k is the discrete first right difference operator with respect to the variable k, i.e.
∆kuk := uk+1 − uk.

A function fk is a slow-varying function of order L if ∆L+1
k fk = 0. The δk-operators,

which in principle are formal infinite series in powers of ∆k, when acting on slow-varying
functions of finite order L reduce to polynomials in ∆k at most of order L. We shall
assume that we are dealing with functions of an infinite slow-varying order, i.e. L = ∞,
so the δk-operators may be taken as differential operators acting on the indices of the

harmonics u
(α)
j .

iv. Substituting the expansions (9-12) into (8), we get an equation of the following form:

∑
j

εj
∑
α

W(α)
j KαnΩαm = 0, (13)

i.e. we must have W(α)
j = 0 for all α and j. Notice that the equations W(α)

j = 0 are

equations for the slowly varying functions u
(α)
ℓ+1 with ℓ ≤ j.

The multiscale expansion of the Q+ equation for functions of infinite order thus gives rise to a
system of continuous partial differential equations. At the lowest order (slow-time m2) one gets a

Nonlinear Schrödinger equation (NLS ) for the first harmonic u
(1)
1 . We will use orders beyond

that to define the values of the constants appearing in Q+ for which the equation is integrable.
The first attempt to go beyond the NLS order in the case of partial differential equations was
presented by Santini, Degasperis and Manakov in [6] and by Kodama and Mikhailov using normal
forms [12]. In [6] the authors, starting from S-integrable models, through a combination of an
asymptotic functional analysis and spectral methods, succeeded in removing all the secular terms
from the reduced equations, order by order. Their results could be summarized in the following
statements:

(1) The number of slow-time variables required for the amplitudes u
(α)
j coincides with the

number of non-vanishing coefficients ωj (k) =
1
j!

djω(k)
dkj

;

(2) The amplitude u
(1)
1 evolves at the slow-times tσ := mσ, σ ≥ 3 according to the σ−th

equation of the NLS hierarchy;

(3) The amplitudes of the higher perturbations of the first harmonic u
(1)
j , j ≥ 2 evolve at the

slow-times tσ, σ ≥ 2 according to certain linear, nonhomogeneous equations when taking
into account some asymptotic boundary conditions.

From these statements one can conclude that the cancellation at each stage of the perturbation
process of all the secular terms is a sufficient condition to uniquely fix the evolution equations

followed by every u
(1)
j , j ≥ 1 for each slow-time tσ. Conversely, the results in [7] imply that this

expansion is secularity-free. Thus, this procedure provides necessary and sufficient conditions to
get secularity-free reduced equations. Following [7] we can state the following proposition:
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Proposition 1. If a nonlinear dispersive partial difference equation is integrable, then under a

multiscale expansion the functions u
(1)
l , l ≥ 1 satisfy the equations

∂tσu
(1)
1 = Kσ

[
u
(1)
1

]
, (14a)

Mσu
(1)
j = fσ(j), Mσ := ∂tσ −K ′

σ

[
u
(1)
1

]
, (14b)

∀ j, σ ≥ 2, where Kσ

[
u
(1)
1

]
is the σ–th flow in the nonlinear Schrödinger hierarchy. All the

other u
(κ)
j , κ ≥ 2 are expressed in terms of differential monomials of u

(1)
ρ , ρ ≤ j.

In (14b) fσ(j) is a nonhomogeneous nonlinear forcing term depending on all the u
(1)
κ , 1 ≤

κ ≤ j − 1, their complex conjugates and their ξ-derivatives, where ξ is a variable representing
the group velocity and expressed through a linear combination of the slow-space and the first
slow-time t1, while K ′

σ [u] v is the Frechet derivative of the nonlinear term Kσ[u] along the
direction v defined by K ′

σ[u]v := d
dsKσ[u+ sv] |s=0, i.e. the linearization of the expression Kσ[u]

along the direction v near the function u.

In order to characterize the flows Kσ

[
u
(1)
1

]
and the nonlinear forcing terms fσ(j), following [5],

we introduce the finite dimensional vector spaces Pℓ, ℓ ≥ 2, as being the set of all homogeneous,

fully-nonlinear, differential polynomials in the functions u
(1)
j , j ≥ 1, their complex conjugates

and their ξ-derivatives of homogeneity order ℓ in ε and 1 in the accompanying exponential eiθ =
ei(κn−ωm), where

orderε

(
∂κ
ξ u

(1)
j

)
= orderε

(
∂κ
ξ ū

(1)
j

)
= κ+ j, κ ≥ 0.

We introduce the subspaces Pℓ(ȷ) of Pℓ, ȷ ≥ 1, ℓ ≥ 2, whose elements are homogeneous, fully-

nonlinear, differential polynomials in the functions u
(1)
k , their complex conjugates and their

ξ-derivatives with 1 ≤ k ≤ ȷ. Firstly from these definitions it follows that Pℓ = Pℓ (ℓ− 2), that is

ȷ ≤ ℓ− 2. In fact the terms u
(1)
ℓ and ū

(1)
ℓ , as well as ∂ξu

(1)
ℓ−1 and ∂ξū

(1)
ℓ−1, are not included in Pℓ

as any monomial should enter nonlinearly and terms like u
(1)
ℓ−1 and ū

(1)
ℓ−1 cannot be combined

with any other of the monomials u
(1)
1 or ū

(1)
1 to give the right homogeneity degree in eiθ. For

the same reasons, terms of the types ∂κ
ξ u

(1)
ℓ−κ, ∂

κ
ξ ū

(1)
ℓ−κ, 0 ≤ κ ≤ ℓ − 1 and ∂κ

ξ u
(1)
ℓ−κ−1, ∂

κ
ξ ū

(1)
ℓ−κ−1,

0 ≤ κ ≤ ℓ− 2 cannot appear. So the space Pℓ(ȷ) is defined as that functional space generated by
the base of monomials of the following types∏

α,β,γ,δ

(
∂α
ξ u

(1)
β

)ρ(α,β) (
∂γ
ξ ū

(1)
δ

)σ(γ,δ)
, ρ (α, β) ≥ 0, ∀α, β, σ (γ, δ) ≥ 0, ∀γ, δ,

where the product is extended for 1 ≤ β, δ ≤ ȷ ≤ ℓ− 2, 0 ≤ α ≤ ℓ− β − 2 and 0 ≤ γ ≤ ℓ− δ − 2,
so that ∑

α,β,γ,δ

(α+ β) ρ (α, β) + (γ + δ)σ (γ, δ) = ℓ,
∑

α,β,γ,δ

ρ (α, β)− σ (γ, δ) = 1.

For n ≥ 3 the subspaces Pℓ(ȷ), can be generated recursively starting from the lowest one,
corresponding to ℓ = 2 by the following relation

Pℓ(ȷ) = ∂ξPℓ−1(ȷ) ∪

∏
β,δ

(
u
(1)
β

)ρ(β) (
ū
(1)
δ

)σ(δ)

 ,
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where ρ (β) ≥ 0 ∀β, σ (δ) ≥ 0 ∀δ and the product is extended for 1 ≤ β, δ ≤ ȷ ≤ ℓ− 2, so that∑
β,δ

βρ (β) + δσ (δ) = ℓ,
∑
β,δ

ρ (β)− σ (δ) = 1.

It is then clear that in general Kn

[
u
(1)
1

]
∈
{
∂ℓ
ξu

(1)
1

}
∪Pℓ+1(1) and that fσ(j) ∈ Pσ+j(j − 1), ∀σ,

j ≥ 2.
Eqs. (14) are a necessary condition for integrability and represent a hierarchy of compatible

evolutions for the same function u
(1)
1 at different slow-times. The compatibility of Eqs. (14b)

implies some commutativity conditions among their r.h.s. terms fσ(j). If they are satisfied the
operators Mσ defined in Eq. (14b) commute with each other. Once we fix the index j ≥ 2 in the
set of Eqs. (14b), this commutativity condition implies the following compatibility conditions

Mσfσ′ (j) = Mσ′fσ (j) , ∀σ, σ′ ≥ 2, (15)

where, as fσ (j) and fσ′ (j) are functions of the different perturbations of the fundamental
harmonic up to degree j − 1, the time derivatives ∂tσ , ∂tσ′ of those harmonics appearing
respectively in Mσ and Mσ′ have to be eliminated using the evolution equations (14) up to the
index j − 1. The commutativity conditions (15) turn out to be an integrability test.

We finally define the degree of integrability of a given equation:

Definition 1. If the relations (15) are satisfied up to the index j, j ≥ 2, we say that our equation
is asymptotically integrable of degree j or Aj integrable.

Conjecturing that an A∞ degree of asymptotic integrability actually implies integrability,
we have that under this assumption the relations (14, 15) are a sufficient condition for the
S-integrability or that integrability is a necessary condition to have a multiscale expansion where
all the Eqs. (14) are satisfied. So the multiscale integrability test tell us that Q+ will be integrable
if its multiscale expansion will follow all the infinite relations (14, 15). The higher the degree of
asymptotic integrability, the nearer the equation will be to an integrable one. However, as we
can test the conditions (14, 15) only up to a finite order (currently A4), from them we can only
derive necessary conditions for integrability, so we will not be able to state with certainty that
the discrete equation is integrable. The results obtained at a finite but sufficiently high order
will have a good probability to correspond to an integrable equation, but we need to use other
techniques to prove it with certainty.

Let us present for completeness the lowest order conditions for asymptotic S-integrability of

order k or Ak-integrability conditions. To simplify the notation, we will use for u
(1)
j the concise

form u(j), j ≥ 1. Moreover, for the convenience of the reader, we list the fluxes Kσ [u] of the
NLS hierarchy for u up to σ = 5:

K1[u] := Auξ, (16a)

K2[u] := −iρ1

[
uξξ +

ρ2
ρ1

|u|2u
]
, (16b)

K3[u] := B

[
uξξξ +

3ρ2
ρ1

|u|2uξ
]
, (16c)

K4[u] := −iC

{
uξξξξ +

ρ2
ρ1

[
3ρ2
2ρ1

|u|4u+ 4|u|2uξξ + 3u2ξ ū+ 2|uξ|2u+ u2ūξξ

]}
, (16d)

K5[u] := D

{
uξξξξξ +

5ρ2
ρ1

[
3ρ2
2ρ1

|u|4uξ + |uξ|2uξ + (uūξ+2ūuξ)uξξ + uuξūξξ + |u|2uξξξ
]}

, (16e)
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and the corresponding K
′
σ[u]v up to σ = 4:

K ′
1[u]v = Avξ, (17a)

K ′
2[u]v = −iρ1

{
vξξ +

ρ2
ρ1

[
u2v̄ + 2|u|2v

]}
, (17b)

K ′
3[u]v = B

{
vξξξ +

3ρ2
ρ1

[
|u|2vξ + ūuξv + uuξ v̄

]}
, (17c)

K ′
4 [u] v = −iC

{
vξξξξ +

ρ2
ρ1

[
u2v̄ξξ + 4|u|2vξξ + 2uuξ v̄ξ + 2uūξvξ + 6ūuξvξ+ (17d)

+ 4uuξξ v̄ + 3u2ξ v̄ +
3ρ2
ρ1

|u|2u2v̄ + 4ūuξξv + 2uūξξv +
9ρ2
2ρ1

|u|4v + 2|uξ|2v
]}

,

where A, ρ1, ρ2, B, C and D are real non null arbitrary constants.

2.1. The A1-integrability condition.

The A1-integrability condition is given by the reality of the coefficient ρ2 of the nonlinear term
in the NLS. It is obtained commuting the NLS fluxK2[u] with the flux B

[
uξξξ + τ |u|2uξ + µu2ūξ

]
with τ and µ constants. This commutativity condition gives, if ρ2 ̸= 0,

Im [ρ2] = Im [B] = Im [ρ1] = 0, τ = 3ρ2/ρ1, µ = 0. (18)

We remark that, when ρ2 ≠ 0, by the same method it is possible to determine all the
coefficients of all the higher NLS -symmetries (16) together with the reality conditions of the
coefficients A, C and D.

2.2. The A2-integrability conditions.

The A2-integrability conditions are obtained choosing j = 2 in the compatibility conditions (15)
with σ = 2 and σ′ = 3 or alternatively σ′ = 4, respectively

M2f3 (2) = M3f2 (2) , (19a)

M2f4 (2) = M4f2 (2) . (19b)

In this case f2(2), f3(2) and f4(2) will be identified by respectively two, (a, b), five, (α, β, γ, δ, ϵ),
and eight, (θ1, · · · , θ8), complex constants

f2(2) := auξ(1)|u(1)|2 + būξ(1)u(1)
2, (20a)

f3(2) := α|u(1)|4u(1) + β|uξ(1)|2u(1) + γuξ(1)
2ū(1) + δūξξ(1)u(1)

2 + ϵ|u(1)|2uξξ(1), (20b)

f4 (2) := θ1|u (1) |4uξ (1) + θ2|u (1) |2u (1)2 ūξ (1) + θ3|uξ (1) |2uξ (1) (20c)

+ θ4u (1) ūξ (1)uξξ (1) + θ5ū (1)uξ (1)uξξ (1) + θ6u (1)uξ (1) ūξξ (1)

+ θ7|u (1) |2uξξξ (1) + θ8u (1)
2 ūξξξ (1) .

As ρ2 ̸= 0, eliminating from Eq. (19a) the derivatives of u(1) with respect to the slow-times t2
and t3, using the evolutions (14a) with σ = 2 and σ′ = 3 and equating term by term, we obtain
the following two A2-integrability conditions

a = ā, b = b̄. (21)
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So we have two conditions obtained requiring the reality of the coefficients a and b. The
expressions of α, β, γ, δ, ϵ in terms of a and b are:

α =
3iBaρ2
4ρ21

, β =
3iBb

ρ1
, γ =

3iBa

2ρ1
, δ = 0, ϵ = γ. (22)

The same integrability conditions (21) can be derived using Eq. (19b). As in our analysis we will
need them, here follows the explicit expressions of the coefficients of the forcing term f4 (2)

θ1 =
6Caρ2
ρ21

, θ2 =
3Cbρ2
ρ21

, θ3 =
(a+ 3b)C

ρ1
, θ4 =

(a+ 4b)C

ρ1
,

θ5 =
5Ca

ρ1
, θ6 =

(a+ 2b)C

ρ1
, θ7 =

2Ca

ρ1
, θ8 =

Cb

ρ1
.

(23)

2.3. The A3-integrability conditions.

The A3-integrability conditions are derived in a similar way setting j = 3 in the compatibility
conditions (15) with σ = 2 and σ′ = 3, so that M2f3 (3) = M3f2 (3). In this case f2(3) and f3(3)
will be respectively identified by 12 and 26 complex constants

f2(3) := τ1|u(1)|4u(1) + τ2|uξ(1)|2u(1) + τ3|u(1)|2uξξ(1) + τ4ūξξ(1)u(1)
2 (24a)

+ τ7ūξ(2)u(1)
2 + τ8u(2)

2ū(1) + τ9|u(2)|2u(1) + τ10u(2)uξ(1)ū(1)

+ τ11u(2)ūξ(1)u(1) + τ12ū(2)uξ(1)u(1) + τ5uξ(1)
2ū(1) + τ6uξ(2)|u(1)|2,

f3(3) := γ1|u(1)|4uξ(1) + γ2|u(1)|2u(1)2ūξ(1) + γ3|u(1)|2uξξξ(1) (24b)

+ γ5|uξ(1)|2uξ(1) + γ6ūξξ(1)uξ(1)u(1) + γ7uξξ(1)ūξ(1)u(1)

+ γ9|u(1)|4u(2) + γ10|u(1)|2u(1)2ū(2) + γ11ūξ(1)u(2)
2 + γ12uξ(1)|u(2)|2

+ γ13|uξ(1)|2u(2) + γ14|u(2)|2u(2) + γ15uξ(1)
2ū(2) + γ16|u(1)|2uξξ(2)

+ γ17u(1)
2ūξξ(2) + γ18u(2)ūξξ(1)u(1) + γ19u(2)uξξ(1)ū(1)

+ γ21u(2)uξ(2)ū(1) + γ22ū(2)uξ(2)u(1) + γ23uξ(2)uξ(1)ū(1)

+ γ25ūξ(2)uξ(1)u(1) + γ26ūξ(2)u(2)u(1) + γ4u(1)
2ūξξξ(1)

+ γ8uξξ(1)uξ(1)ū(1) + γ20ū(2)uξξ(1)u(1) + γ24uξ(2)ūξ(1)u(1).

Eliminate from Eq. (19a) with j = 3 the derivatives of u(1) with respect to the slow-times t2
and t3 using the evolutions (14a) respectively with σ = 2 and σ′ = 3 and the derivatives of u(2)
using the evolutions (14b) with σ = 2 and σ′ = 3. Equating the remaining terms term by term,
with ρ2 ̸= 0 and, indicating with Ri and Ii the real and imaginary parts of τi, i = 1, . . . , 12, we
obtain the following 15 A3-integrability conditions

R1 = −aI6
4ρ1

, R3 =
(b− a)I6

2ρ2
− aI12

2ρ2
, R4 =

R2

2
+

(a− b)I6
4ρ2

+
aI12
4ρ2

,

R5 =
R2

2
+

(a− b)I6
4ρ2

+
(2b− a)I12

4ρ2
, R6 = −aI8

ρ2
, R7 = R12 +

(a− b)I8
ρ2

,

R8 = R9 = 0, R10 = R12, R11 = R12 +
(a− 2b)I8

ρ2
, (25)

I4 =
(b+ a)R12

4ρ2
+

ρ1I1
ρ2

+
I2 − I3 − 2I5

4
+

[
2b(a− b) + a2

]
I8

4ρ22
, I7 = 0,

I9 = 2I8, I10 = I12, I11 = I6 + I12.
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The expressions of the γj , j = 1, . . . , 26 as functions of the τi, i = 1, . . . , 12 are:

γ1 =
3B

8ρ21

[
−2bR12 − 8ρ1I1 + 2(I2 − 2I3 − 2I5)ρ2 + i(b− 5a)I6 +

2a2I8
ρ2

− 3iaI12

]
,

γ2 = −3Ba

4ρ21

[
iI6 +

(a− 2b)I8
ρ2

+ τ12

]
, γ3 =

3iBτ3
2ρ1

, γ4 = 0, γ5 =
3iBτ2
2ρ1

, γ6 =
3iBτ4
ρ1

,

γ7 = γ5, γ8 = γ3 +
3iBτ5
ρ1

, γ9 = −3B(ρ2I6 + 3aiI8)

4ρ21
, γ10 =

3iBρ2R6

2ρ21
, γ11 = 0,

γ12 =
3iBτ9
2ρ1

, γ13 =
3iBτ11
2ρ1

, γ14 = 0, γ15 =
3iBτ12
2ρ1

, γ16 =
3iBτ6
2ρ1

, (26)

γ17 = γ18 = 0, γ19 =
3iBτ10
2ρ1

, γ20 = γ15, γ21 =
3iBτ8
ρ1

, γ22 = γ12,

γ23 = γ16 + γ19, γ24 = γ13, γ25 =
3iBτ7
ρ1

, γ26 = 0.

2.4. The A4-integrability conditions.

The A4-integrability conditions are derived similarly from (15) with j = 4, that is M2f3 (4) =
M3f2 (4). Now f2(4) and f3(4) are respectively defined by 34 and 77 complex constants

f2 (4) := η1|u(1)|4uξ(1) + η2|u(1)|2u(1)2ūξ(1) + η3|u(1)|2uξξξ(1) (27a)

+ η5|uξ(1)|2uξ(1) + η6ūξξ(1)uξ(1)u(1) + η7uξξ(1)ūξ(1)u(1)

+ η9|u(1)|4u(2) + η10|u(1)|2u(1)2ū(2) + η11ūξ(1)u(2)
2 + η12uξ(1)|u(2)|2

+ η13|uξ(1)|2u(2) + η14|u(2)|2u(2) + η15uξ(1)
2ū(2) + η16|u(1)|2uξξ(2)

+ η17u(1)
2ūξξ(2) + η18u(2)ūξξ(1)u(1) + η19u(2)uξξ(1)ū(1)

+ η21u(2)uξ(2)ū(1) + η22ū(2)uξ(2)u(1) + η23uξ(2)uξ(1)ū(1)

+ η25ūξ(2)uξ(1)u(1) + η26ūξ(2)u(2)u(1) + η4u(1)
2ūξξξ(1)

+ η8uξξ(1)uξ(1)ū(1) + η20ū(2)uξξ(1)u(1) + η24uξ(2)ūξ(1)u(1)

+ η27u(1)ūξ(1)u(3) + η28ū(1)uξ(1)u(3) + η29u(1)uξ(1)ū(3)

+ η30u(1)ū(2)u(3) + η31ū(1)u(2)u(3) + η32u(1)u(2)ū(3)

+ η33|u(1)|2uξ(3) + η34u(1)
2ūξ(3),

f3(4) := κ1u(1)|u(1)|6 + κ2|u(1)|2ū(1)uξ(1)2 + κ3|u(1)|2u(1)|uξ(1)|2 (27b)

+ κ4u(1)
3ūξ(1)

2 + κ5|u(1)|4uξξ(1) + κ6|u(1)|2u(1)2ūξξ(1)
+ κ7|uξ(1)|2uξξ(1) + κ8uξ(1)

2ūξξ(1) + κ9u(1)|uξξ(1)|2 + κ10ū(1)uξξ(1)
2

+ κ11ū(1)uξ(1)uξξξ(1) + κ12u(1)ūξ(1)uξξξ(1) + κ13u(1)uξ(1)ūξξξ(1)

+ κ14|u(1)|2uξξξξ(1) + κ15u(1)
2ūξξξξ(1) + κ16|u(1)|2ū(1)u(2)2

+ κ17|u(1)|2u(1)|u(2)|2 + κ18u(1)
3ū(2)2 + κ19|u(1)|2ū(1)uξ(1)u(2)

+ κ20|u(1)|2u(1)ūξ(1)u(2) + κ21|u(1)|2u(1)uξ(1)ū(2) + κ22u(1)
3ūξ(1)ū(2)

+ κ23ūξ(1)uξξ(1)u(2) + κ24uξ(1)ūξξ(1)u(2) + κ25uξ(1)uξξ(1)ū(2)

+ κ26u(1)ūξξξ(1)u(2) + κ27ū(1)uξξξ(1)u(2) + κ28u(1)uξξξ(1)ū(2)

+ κ29ūξξ(1)u(2)
2 + κ30uξξ(1)|u(2)|2 + κ31|u(1)|4uξ(2)
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+ κ32|u(1)|2u(1)2ūξ(2) + κ33|uξ(1)|2uξ(2) + κ34uξ(1)
2ūξ(2)

+ κ35ū(1)uξξ(1)uξ(2) + κ36u(1)ūξξ(1)uξ(2) + κ37u(1)uξξ(1)ūξ(2)

+ κ38u(1)ūξ(1)uξξ(2) + κ39ū(1)uξ(1)uξξ(2) + κ40u(1)uξ(1)ūξξ(2)

+ κ41|u(1)|2uξξξ(2) + κ42u(1)
2ūξξξ(2) + κ43ūξ(1)u(2)uξ(2)

+ κ44uξ(1)ū(2)uξ(2) + κ45uξ(1)u(2)ūξ(2) + κ46u(1)|uξ(2)|2 + κ47ū(1)uξ(2)
2

+ κ48ū(1)u(2)uξξ(2) + κ49u(1)ū(2)uξξ(2) + κ50u(1)u(2)ūξξ(2)

+ κ51|u(2)|2uξ(2) + κ52u(2)
2ūξ(2) + κ53|u(1)|4u(3) + κ54|u(1)|2u(1)2ū(3)

+ κ55ū(1)u(3)
2 + κ56u(1)|u(3)|2 + κ57|u(2)|2u(3) + κ58u(2)

2ū(3)

+ κ59|uξ(1)|2u(3) + κ60uξ(1)
2ū(3) + κ61u(1)ūξξ(1)u(3) + κ62ū(1)uξξ(1)u(3)

+ κ63u(1)uξξ(1)ū(3) + κ64u(1)ūξ(1)uξ(3) + κ65ū(1)uξ(1)uξ(3)

+ κ66u(1)uξ(1)ūξ(3) + κ67|u(1)|2uξξ(3) + κ68u(1)
2ūξξ(3) + κ69uξ(1)ū(2)u(3)

+ κ70ūξ(1)u(2)u(3) + κ71uξ(1)u(2)ū(3) + κ72ū(1)uξ(2)u(3) + κ73u(1)ūξ(2)u(3)

+ κ74u(1)uξ(2)ū(3) + κ75u(1)ū(2)uξ(3) + κ76ū(1)u(2)uξ(3) + κ77u(1)u(2)ūξ(3).

If we indicate with Sj and Tj respectively the real and imaginary parts of ηj , j = 1, . . . , 34, when
ρ2 ̸= 0, the A4-integrability conditions are represented by 48 real relations whose expressions we
leave for a specific Appendix.

Other integrability conditions corresponding to M4f2 (3) = M2f4 (3) (A3-integrability condi-
tions) and to M4f2 (5) = M2f4 (5) (A5-integrability conditions) in the subspaces with u (2n) = 0,
n ≥ 1 for purely imaginary coefficients can be found in [16]. They are respectively given
by 1 and 14 real relations, the first of which can be deduced from (25) and corresponds to
I4 = ρ1I1/ρ2 + (I2 − I3 − 2I5) /4.

The results presented in this Section will be used in the following Sections to classify integrable
nonlinear equation on the square lattice.

3. Dispersive affine-linear equations on the square lattice

The aim of this Section is to derive necessary conditions for the S-integrability of the simplest
class of Z2-lattice equations, that of dispersive and multilinear equations (3) defined on the
square lattice, satisfying the condition (1) with dispersion relation ω+(k), i.e.

Q+ := a1(un,m + un+1,m+1) + a2(un+1,m + un,m+1) (28)

+(α1 − α2)un,mun+1,m + (α1 + α2)un,m+1un+1,m+1

+(β1 − β2)un,mun,m+1 + (β1 + β2)un+1,mun+1,m+1

+ γ1un,mun+1,m+1 + γ2un+1,mun,m+1

+(ξ1 − ξ3)un,mun+1,mun,m+1 + (ξ1 + ξ3)un,mun+1,mun+1,m+1

+(ξ2 − ξ4)un+1,mun,m+1un+1,m+1 + (ξ2 + ξ4)un,mun,m+1un+1,m+1

+ ζun,mun+1,mun,m+1un+1,m+1 = 0,

where a1, a2 ∈ R \ {0}, |a1| ̸= |a2|, are the coefficients appearing in the linear part while
α1, α2, β1, β2, γ1, γ2, ξ1, ξ2, ξ3, ξ4, ζ are some real parameters which enter in the nonlinear part of
the system. Here we will look, by using the multiscale procedure described in Section 2, into the
values of these coefficients for the class Q+ to be A1 integrable.

To perform a classification of the equations Q+, we need to find the set of transformations that
leave it invariant, i.e. the equivalence transformation. As mentioned before, a generic multilinear
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Figure 1. Representation of the quadratic nonlinearities of Q±

equation of the form (1) is invariant under a Möbius transformation (2). The constant term f0
and the differences a00 − a11, a01 − a10 transform according to

f0
T7→ f ′

0 = D4f0 +B4ζ + 2B3D (ξ1 + ξ2) +B2D2 [γ1 + γ2 + 2 (α1 + β1)] (29)

+2BD3 (a00 + a11 + a01 + a10) ,

a00 − a11
T7→ a′00 − a′11 = (AD −BC)

[
D2 (a00 − a11) +B2 (ξ1 − ξ2 − ξ3 + ξ4)− 2BD (α2 + β2)

]
a01 − a10

T7→ a′01 − a′10 = (AD −BC)
[
D2 (a01 − a10)−B2 (ξ1 − ξ2 + ξ3 − ξ4) + 2BD (α2 − β2)

]
These formulas allow to determine when a given linear-affine equation (1) can be transformed
into one belonging to class Q+. For this to happen all three terms must be null, so setting the
l.h.s. of (29) to zero we get three polynomial equations over B/D or D/B. If simultaneously
solvable (over the reals), we have an equation of the classQ+. One could try to write the conditions
over the coefficients of a general linear-affine equation (1) by using resultant calculations on
the three polynomial conditions, but they turn out to be too complicated to merit further
attention. Thus (29) tells that the class Q+ is invariant under restricted simultaneous Möbius
transformations R of the form

un,m 7→ u′n,m = un,m/(Cun,m +D), (30)

which will be our equivalence transformation. Under (30) the coefficients of Eq. (28) undergo the
following transformations:

a1
R7→ a′1 = D3a1, a2

R7→ a′2 = D3a2, α1
R7→ α′

1 = D2 [α1 + C (a1 + a2)] , α2
R7→ α′

2 = D2α2,

β1
R7→ β′

1 = D2 [β1 + C (a1 + a2)] , β2
R7→ β′

2 = D2β2,

γ1
R7→ γ′1 = D2 (γ1 + 2Ca1) , γ2

R7→ γ′2 = D2 (γ2 + 2Ca2) ,

ξ1
R7→ ξ′1 = Dξ1 +

1
2CD [3C (a1 + a2) + γ1 + γ2 + 2 (α1 − α2 + β1)] , (31)

ξ2
R7→ ξ′2 = Dξ2 +

1
2CD [3C (a1 + a2) + γ1 + γ2 + 2 (α1 + α2 + β1)] ,

ξ3
R7→ ξ′3 = Dξ3 +

1
2CD [C(a1 − a2) + γ1 − γ2 + 2β2] ,

ξ4
R7→ ξ′4 = Dξ4 +

1
2CD [C(a1 − a2) + γ1 − γ2 − 2β2] ,

ζ
R7→ ζ ′ = ζ + C2 [2C (a1 + a2) + γ1 + γ2 + 2 (α1 + β1)] + 2C (ξ1 + ξ2) .
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We will indicate by N the number of free parameters (although not all of them essential under
R) appearing in each subcase of (28). Its maximum number is N = 13, the number of free
coefficients in (28).

3.1. Classification at order ε3.

By performing the multiscale expansion of Eq. (28), the following statement holds regarding
A1-asymptotic integrability

Proposition 2. The lowest order necessary conditions for the S-integrability of equations Q+

read:

• Case 1 (N = 9): {
α2 = β2 = 0,
ξ1 = ξ2, ξ3 = ξ4.

(32)

• Case 2 (N = 7) : 
α2 = β2, α1 = β1,
a1 = 2a2,
γ1 = 2γ2,
a1(ξ1 − ξ2) = −a1(ξ3 − ξ4) = −2α2γ2.

(33)

• Case 3 (N = 7): 
α2 = −β2, α1 = β1,
a2 = 2a1,
γ2 = 2γ1,
a1(ξ1 − ξ2) = a1(ξ3 − ξ4) = −α2γ1.

(34)

• Case 4 (N = 8): 
a2α1 = a2β1 =

1
2(a1 + a2)γ2,

a2γ1 = a1γ2,
a1(ξ1 − ξ2) = −α2γ1,
a1(ξ3 − ξ4) = β2γ1.

(35)

• Case 5 (N = 8):
(a2 − a1)β2 = (a2 + a1)α2,
2a1a2(a1 − a2)α1 = (a1 + a2)(γ2a

2
1 − γ1a

2
2),

2a1a2β1 = γ1a
2
2 + γ2a

2
1,

(a2 − a1)(ξ1 − ξ2) = (γ1 − γ2)α2,
(a2 − a1)

2(ξ3 − ξ4) = [γ2(a2 − 3a1)− γ1(a1 − 3a2)]α2.

(36)

• Case 6 (N = 8):
(a2 + a1)β2 = (a2 − a1)α2,
2a1a2α1 = γ1a

2
2 + γ2a

2
1,

2a1a2(a1 − a2)β1 = (a1 + a2)(γ2a
2
1 − γ1a

2
2),

(a22 − a21)(ξ1 − ξ2) = [γ1(a1 − 3a2)− γ2(a2 − 3a1)]α2,
(a1 + a2)(ξ3 − ξ4) = (γ2 − γ1)α2.

(37)

The obtained six subclasses of equation (28) are invariant under the restricted Möbius transfor-
mation (30).
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Proof: Following the procedure described in Section 2 we expand the fields appearing in
equation Q+ according to formulas (9-12). The lowest order necessary conditions for the S-
integrability of Q+ are obtained by considering the equation W3 (see Eq. (13)), namely the order
ε3 of the multiscale expansion. At this order we get the m2-evolution equation for the harmonic

u
(1)
1 , that is a NLS equation of the form

iδm2u
(1)
1 + ρ1δ

2
ξu

(1)
1 + ρ2u

(1)
1 |u(1)1 |2 = 0, ξ := n1 −

dω

dκ
m1, (38)

where the coefficients ρ1 and ρ2 will depend on the parameters of the equation Q+ and on
the wave parameters κ and ω = ω+, with ω+ expressed in terms of κ through the dispersion
relation (7). According to our multiscale test the lowest order necessary condition for Q+ to be
an S-integrable lattice equation is that Eq. (38) be integrable itself, namely ρ1 and ρ2 have to be
real coefficients.

Let us outline the construction of Eq. (38). At O(ε) we get:

• for α = 1 a linear equation which is identically satisfied by the dispersion relation (7).

• for α = 0 a linear equation whose solution is u
(0)
1 = 0.

At O(ε2), taking into account the dispersion relation (7), we get:

• for α = 2 an algebraic relation between u
(2)
2 and u

(1)
1 .

• for α = 1 a linear wave equation for u
(1)
1 , whose solution is given by u

(1)
1 (n1,m1,m2) =

u
(1)
1 (ξ,m2), where ξ := n1 − (dω/dκ)m1.

• for α = 0 an algebraic relation between u
(0)
2 and u

(1)
1 .

Notice that from the O(ε2) we find that the dependence of all the harmonics on the slow-variables
n1 and m1 is given by ξ.

At O(ε3), for α = 1, by using the results obtained at the previous orders, one gets the NLS
equation (38) with

ρ1 =
a1a2(a

2
1 − a22) sinκ

(a21 + a22 + 2a1a2 cosκ)2
, ρ2 = R1 + iR2,

where

R1 =
sinκ

[
R(0)

1 +R(1)
1 cosκ+R(2)

1 cos2 κ+R(3)
1 cos3 κ+R(4)

1 cos4 κ
]

(a1 + a2)(a21 + a22 + 2a1a2 cosκ)2 [(a1 − a2)2 + 2a1a2 cosκ(1 + cosκ)]
, (39)

R2 =
R(0)

2 +R(1)
2 cosκ+R(2)

2 cos2 κ+R(3)
2 cos3 κ+R(4)

2 cos4 κ+R(5)
2 cos5 κ

(a1 + a2)(a21 + a22 + 2a1a2 cosκ)2 [(a1 − a2)2 + 2a1a2 cosκ(1 + cosκ)]
. (40)

Here the coefficients R(i)
1 , 0 ≤ i ≤ 4, and R(i)

2 , 0 ≤ i ≤ 5, are polynomials depending on the
coefficients a1, a2, α1, α2, β1, β2, γ1, γ2, ξ1, ..., ξ4 and their expressions are cumbersome, so that
we omit them.

Note that ρ1 is a real coefficient depending only on the parameters of the linear part of Q+,
while ρ2 is a complex one. Hence the integrability of the NLS equation (38) is equivalent to the
request R2 = 0 ∀κ, that is

R(i)
2 = 0, 0 ≤ i ≤ 5. (41)

Eq. (41) is a nonlinear algebraic system of six equations in twelve unknowns. By solving it one
gets the six solutions contained in Proposition 1. These solutions are computed taking into
account that a1, a2 ∈ R \ {0} with |a1| ̸= |a2|. One can solve two of the six equations (41) for ξ1
and ξ3, thus expressing them in terms of the remaining ten coefficients. The resulting system
of four equations turns out to be ξ2 and ξ4-independent and linear in the four variables α1, β1,
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γ1 and γ2. Therefore we may write the remaining four equations as a matrix equation with
coefficients nonlinearly depending on α2, β2, a1 and a2. The rank of the matrix is three. The six
solutions are obtained by requiring that the matrix be of rank 3, 2, 1 and 0, and correspond to six
classes of equations (28) that pass integrability conditions up to order O(ε3). A direct calculation
proves the invariance of the six classes with respect to the restricted Möbius transformation R.

□

Corollary 1. If the coefficients a1, a2, α1, α2, β1, β2, γ1, γ2, ξ1, ..., ξ4 of equation Q+ do not satisfy
one of the conditions given in Eqs. (32–37) then Q+ is not integrable.

Quadratic difference equations are a subclass of Q+ which have attracted a deal of attention.
These equations are not Möbius invariant, but we can spot those that belong to the class Q+

and pass our integrability conditions, just by inspection of (32–35).

3.2. Classification at order ε4.

For what concerns the A2-asymptotically integrable cases satisfying the integrability conditions
(21), the following statement holds

Proposition 3. At order ε4, the necessary conditions for the S-integrability of equations Q+

read:

• Case 1 (N = 9): {
α2 = β2 = 0,
ξ1 = ξ2, ξ3 = ξ4.

(42)

• Case 4 (N = 8): 
α1 = β1 =

(a1+a2)γ1
2a1

,

γ2 =
a2γ1
a1

,

a1(ξ1 − ξ2) = −α2γ1,
a1(ξ3 − ξ4) = β2γ1,
(α2, β2) ̸= (0, 0) .

(43)

The corresponding two subclasses of equations are non overlapping and invariant under the
restricted Möbius transformation (30).

Notice that of the six A1-asymptotically integrable cases listed in Proposition 2, Case 1 and
Case 4 automatically satisfy the A2-integrability conditions (21), while the remaining four cases
2, 3, 5 and 6 specify to some subcases of theirs.

3.3. Classification at order ε5.

It is possible to find all the cases satisfying the A3-integrability conditions (25). They are
given by the following proposition

Proposition 4. The necessary and sufficient conditions for ε5 asymptotic integrability are:

Case (a): (N = 4)

α2 = β2 = 0, γ2 = α1 + β1 − γ1, a2 = 2a1, (2α1 − 3γ1, 2β1 − 3γ1) ̸= (0, 0) ,

ξ1 = ξ2 =
α1β1
2a1

, ξ3 = ξ4 = −(α1 − γ1) (β1 − γ1)

2a1
, ζ =

γ1
[
3γ21 − 3γ1 (α1 + β1) + 4α1β1

]
4a21

;
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Case (b): (N = 4)

α2 = β2 = 0, γ1 = α1 + β1 − γ2, a1 = 2a2, (2α1 − 3γ2, 2β1 − 3γ2) ̸= (0, 0)

ξ1 = ξ2 =
α1β1
2a2

, ξ3 = ξ4 =
(α1 − γ2) (β1 − γ2)

2a2
, ζ =

γ2
[
3γ22 − 3γ2 (α1 + β1) + 4α1β1

]
4a22

;

Case (c): (N = 5)

α1 = β1 =
(a1 + a2) γ1

2a1
, α2 = β2 = 0, γ2 =

a2γ1
a1

, ξ1 = ξ2,

ξ3 = ξ4 =
(a2 − a1) γ

2
1

4a21
− (a2 − a1)

(a2 + a1)
ξ2, ρ :=

[
8a21ξ2

(a1 + a2)
− 3γ21

]
1

(a1 + a2)
2 ̸= 0;

Case (d): (N = 5)

α1 = β1 =
(a1 + a2) γ1

2a1
, α2 = β2 = 0, γ2 =

a2γ1
a1

, ξ1 = ξ2,

ξ3 = ξ4 =
(a1 − a2) γ

2
1

2a21
− (a1 − a2)

(a1 + a2)
ξ2, ρ :=

[
8a21ξ2

(a1 + a2)
− 3γ21

]
1

(a1 + a2)
2 ̸= 0;

Case (e): (N = 4)

α1 = β1 =
γ1 + γ2

2
, α2 = β2 = 0, γ2 ̸=

a2γ1
a1

,
a2
a1

̸= 1

2
, 2,

ξ1 = ξ2 =
3 (γ1 + γ2)

2

8 (a1 + a2)
, ξ3 = ξ4 =

9 (a1 − a2) (a1γ2 − a2γ1)
2

8a1a2 (a1 + a2)
2 − a1γ

2
2 − a2γ

2
1

8a1a2
,

ζ =
(γ1 + γ2)

3

4 (a1 + a2)
2 +

(a1 − a2) (a1γ2 − a2γ1)
3

a21a
2
2 (a1 + a2)

2 ;

Notes: In all of the cases a2/a1 ̸= (0, ±1); the values a2/a1 = (2, 1
2) are excluded in Case (e)

because we would obtain respectively a subcase of Case (a) or of Case (b). All of the Cases (a)–(e)
are subcases of Case 1. So nothing survives out of Case 4 at order ε5.

3.3.1. Canonical forms for ε5 S-asymptotically integrable cases. Comparison with the ABS list.
We will use now the Möbius transformation to reduce the equation to normal form, i.e. to
eliminate the maximum number of free parameters appearing in the nonlinear difference equation
and reduce the coefficients of the linear part in vn,m and vn+1,m+1 to 1.

In the Case (a) of Proposition 4, performing the Möbius transformation

un,m =
αvn,m + β

γvn,m + δ
,

with

β = 0, γ = −γ1δ

2
, α = a1δ, δ ̸= 0,

we obtain the canonical form:

Case (a′): (N = 2)

vn,m + vn+1,m+1 + 2 (vn+1,m + vn,m+1) + vn+1,mvn,m+1 (τ1 + τ2)

+ (vn+1,mvn+1,m+1 + vn,mvn,m+1) τ2 + (vn,m+1vn+1,m+1 + vn,mvn+1,m) τ1

+vn+1,mvn,m+1 (vn,m + vn+1,m+1) τ1τ2 = 0, (44)
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where (τ1, τ2) :=
(
α1 − 3γ1

2 , β1 − 3γ1
2

)
̸= (0, 0). Performing a further rescaling on (44), we can

fix, in all generality, the coefficients to either τ1 = 0 and τ2 = 1 or τ1 = 1 and we obtain the
following two canonical forms respectively

vn,m + vn+1,m+1 + 2 (vn+1,m + vn,m+1) + (45a)

+vn+1,mvn,m+1 + vn+1,mvn+1,m+1 + vn,mvn,m+1 = 0,

vn,m + vn+1,m+1 + 2 (vn+1,m + vn,m+1) + vn+1,mvn,m+1 (1 + τ2) + (45b)

+ (vn+1,mvn+1,m+1 + vn,mvn,m+1) τ2 + vn,m+1vn+1,m+1 + vn,mvn+1,m

+vn+1,mvn,m+1 (vn,m + vn+1,m+1) τ2 = 0,

representing the two non overlapping subclasses of Case (a) defined respectively by the addi-

tional conditions α1 = 3γ1
2 and α1 ̸= 3γ1

2 . As under a restricted Möbious transformation τ2 is
invariant, we see that two canonical forms (45b), specified by two invariants τ2a and τ2b, form
two disconnected components of the same conjugacy subclass unless τ2a = τ2b.

In the Case (b) of Proposition 4, performing the Möbius transformation

un,m =
αvn,m + β

γvn,m + δ
,

with

β = 0, γ = −γ2δ

2
, α = a2δ, δ ̸= 0,

we obtain the canonical form:

Case (b′): (N = 2)

2 (vn,m + vn+1,m+1) + vn+1,m + vn,m+1 + vn,mvn+1,m+1 (τ1 + τ2)

+ (vn+1,mvn+1,m+1 + vn,mvn,m+1) τ2 + (vn,m+1vn+1,m+1 + vn,mvn+1,m) τ1

+vn,mvn+1,m+1 (vn+1,m + vn,m+1) τ1τ2 = 0, (46)

where (τ1, τ2) :=
(
α1 − 3γ2

2 , β1 − 3γ2
2

)
≠ (0, 0). Performing a further rescaling on (46) we can

fix, in all generality, the parameters either to τ1 = 0 and τ2 = 1 or to τ1 = 1 and we obtain
respectively the two canonical forms

2 (vn,m + vn+1,m+1) + vn+1,m + vn,m+1 + (47a)

+vn,mvn+1,m+1 + vn+1,mvn+1,m+1 + vn,mvn,m+1 = 0,

2 (vn,m + vn+1,m+1) + vn+1,m + vn,m+1 + vn,mvn+1,m+1 (1 + τ2) + (47b)

+ (vn+1,mvn+1,m+1 + vn,mvn,m+1) τ2 + vn,m+1vn+1,m+1 + vn,mvn+1,m

+vn,mvn+1,m+1 (vn+1,m + vn,m+1) τ2 = 0,

representing the two non overlapping subclasses of Case (b) defined respectively by the additional

conditions α1 = 3γ2
2 and α1 ̸= 3γ2

2 . As τ2 is invariant under a restricted Möbious transformation,
we see that two canonical forms (47b), specified by two invariants τ2a and τ2b, form two discon-
nected components of the same conjugacy subclass unless τ2a = τ2b;

In the Cases (c) and (d) of Proposition 4, performing the Möbius transformation

un,m =
αvn,m + β

γvn,m + δ
,
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with

α =
2a1δ

(a1 + a2)
√

|ρ|
, β = 0, γ = − γ1δ

(a1 + a2)
√
|ρ|

, δ ̸= 0,

we obtain the canonical forms:
Case (c′): (N = 2)

vn,m + vn+1,m+1 + ϵ (vn+1,m + vn,m+1) + (48)

+ sgn (ρ) [ϵvn+1,mvn,m+1 (vn,m + vn+1,m+1) + vn,mvn+1,m+1 (vn+1,m + vn,m+1)]

+ζ ′vn,mvn+1,mvn,m+1vn+1,m+1 = 0,

and
Case (d′): (N = 2)

vn,m + vn+1,m+1 + ϵ (vn+1,m + vn,m+1) + (49)

+ sgn (ρ) [vn+1,mvn,m+1 (vn,m + vn+1,m+1) + ϵvn,mvn+1,m+1 (vn+1,m + vn,m+1)]

+ζ ′vn,mvn+1,mvn,m+1vn+1,m+1 = 0,

where ϵ := a2/a1 ̸= 0,±1 and ζ ′ := 8s
∣∣∣π2

ρ3

∣∣∣1/2 / (1 + ϵ)2, π :=
[
ζ − 2γ1

a1
ξ2 +

(a1+a2)γ3
1

2a31

]
/ (a1 + a2)

and s := ±1. As under a restricted Möbius transformation ρ → ρ (α/δ)2 and π → π (α/δ)3, we
see that the absolute value of ζ ′ and sgn (ρ) are invariant under such a transformation. With
another rescaling we can always fix ζ ′ ≥ 0 and the two canonical forms, specified by the two
set of invariants (ϵa, sgn (ρa) , ζ

′
a) and (ϵb, sgn (ρb) , ζ

′
b), form two disconnected components of the

conjugacy class unless the two sets are the same;
In the Case (e) of Proposition 4, performing the Möbius transformation

un,m =
αvn,m + β

γvn,m + δ
,

with

β = 0, γ = −(γ1 + γ2)α

2 (a1 + a2)
, δ =

(a2γ1 − a1γ2)α

a1 (a1 + a2)
, α ̸= 0,

we obtain the canonical form:
Case (e′): (N = 1)

vn,m + vn+1,m+1 + ϵ (vn+1,m + vn,m+1) + vn,mvn+1,m+1 − vn+1,mvn,m+1 + (50)

+

(
1− 1

ϵ

)
[vn+1,mvn,m+1 (vn,m + vn+1,m+1)− vn,mvn+1,m+1 (vn+1,m + vn,m+1)]

+

(
1− 1

ϵ2

)
vn,mvn+1,mvn,m+1vn+1,m+1 = 0,

where ϵ := a2/a1 ̸= 0,±1, 2, 1/2. As ϵ is invariant under a restricted Möbius transformation, we
see that two canonical forms, specified by the two invariants ϵa and ϵb, form two disconnected
components of the conjugacy class unless ϵa = ϵb;

As our allowed transformations are subcases of the full Möbius transformations allowed in the
ABS approach [2], any conjugacy class of ours is either completely contained into one of the ABS
classification or is totally disjointed from them. Considering that no one out of the (left hand
members of the) canonical forms (a′)-(e′) possesses the invariance (up to an overall sign) under
vn,m ↔ vn+1,m, vn,m+1 ↔ vn+1,m+1, we can conclude that no intersection can exist between our
classes and those generated by the ABS list. Even more, no equation in our list is of Klein-type
or, that is the same [14], a subcase of the QV equation.
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We can enlarge our class of transformations by including also an exchange n ↔ m between the
two independent variables. The subclass (45a) can be discarded because under this exchange we
would get it from subclass (45b) with τ2 = 0; similarly the subclass (47a) can be discarded because
under this exchange we would get it from subclass (47b) with τ2 = 0; finally the subclasses
(48-50) are invariant under this transformation.

Let us include also the inversion n → −n. Setting ṽn,m := v−n,m, we have that, if vn,m
satisfies (45b), then ṽn,m satisfies (47b); if vn,m satisfies (48) with parameters ϵ and ζ ′, then
ṽn,m := sgn (ϵ) v−n,m satisfies (48) with parameters 1/ϵ and ζ ′/ |ϵ| and similarly for Eq. (49);
if vn,m satisfies (50) with parameter ϵ, then ṽn,m := −v−n,m/ϵ satisfies (50) with parameter
1/ϵ (this implies that, if vn,m satisfies one of the four canonical forms (47b), (48-50), then
also ṽn,m := v−n,−m does). As a consequence under this enlarged class of transformations the
Eq. (47b) can be discarded and in the case of the Eqs. (48-50) we can limit the parameter ϵ to
the range −1 < ϵ < 1, ϵ ̸= 0 as the equation with parameters 1/ϵ and ζ ′ can be obtained from
the corresponding with parameters ϵ and ζ ′ |ϵ|.

Notes: In the Cases (c) and (d) of Proposition 4, when π = 0, corresponding to ζ ′ = 0
in the cases (c′) and (d′), they reduce to the S-integrable cases analyzed in Levi-Yamilov and
Ramani-Grammaticos [17].

3.4. Classification at order ε6.

Now we perform a multiscale reduction at order ε6 on the four canonical forms (47b), (48-50)
and we find that all the so far obtained equations satisfy the A4-integrability conditions (60).
Hence we can state the following proposition

Proposition 5. Up to a restricted Möbius transformations ṽn,m := vn,m/ (αvn,m + β), exchanges
n ↔ m and inversions n → −n, all the A4-asymptotically S-integrable cases in the class Q+ are
given by

vn,m + vn+1,m+1 + 2 (vn+1,m + vn,m+1) + vn+1,mvn,m+1 (1 + τ) + (51a)

+ (vn+1,mvn+1,m+1 + vn,mvn,m+1) τ + vn,m+1vn+1,m+1 + vn,mvn+1,m

+vn+1,mvn,m+1 (vn,m + vn+1,m+1) τ = 0;

vn,m + vn+1,m+1 + ϵ (vn+1,m + vn,m+1) + (51b)

+δ [ϵvn+1,mvn,m+1 (vn,m + vn+1,m+1) + vn,mvn+1,m+1 (vn+1,m + vn,m+1)]

+τvn,mvn+1,mvn,m+1vn+1,m+1 = 0, −1 < ϵ < 1, ϵ ̸= 0, δ := ±1, τ ≥ 0;

vn,m + vn+1,m+1 + ϵ (vn+1,m + vn,m+1) + (51c)

+δ [vn+1,mvn,m+1 (vn,m + vn+1,m+1) + ϵvn,mvn+1,m+1 (vn+1,m + vn,m+1)]

+τvn,mvn+1,mvn,m+1vn+1,m+1 = 0, −1 < ϵ < 1, ϵ ̸= 0, δ := ±1, τ ≥ 0;

vn,m + vn+1,m+1 + ϵ (vn+1,m + vn,m+1) + vn,mvn+1,m+1 − vn+1,mvn,m+1 + (51d)

+
(
1− 1

ϵ

)
[vn+1,mvn,m+1 (vn,m + vn+1,m+1)− vn,mvn+1,m+1 (vn+1,m + vn,m+1)]

+
(
1− 1

ϵ2

)
vn,mvn+1,mvn,m+1vn+1,m+1 = 0, −1 < ϵ < 1, ϵ ̸= 0,

1

2
.

Eqs. (51a, 51d) depend on N = 1 free parameter, while (51b, 51c) depend on N = 2 free
parameters (without considering the additional discrete parameter δ).

If in (51a), when τ = 0, we apply the (not allowed) transformation vn,m :=
√
3wn,m − 1, we

obtain

wn,mwn+1,m + wn+1,mwn,m+1 + wn,m+1wn+1,m+1 − 1 = 0, (52)
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which in the direction n satisfies two first order necessary integrability conditions given in [14]
but doesn’t admit the corresponding three-point generalized symmetry either autonomous or not,
while in the direction m the first order integrability conditions are not satisfied. Following [8] we
were able to prove the integrability of (52) constructing two five-point symmetries, one in the n
direction depending on the points (n+ 2,m), (n+ 1,m), (n,m), (n− 1,m) and (n− 2,m) and
the other one in the m direction. In [18] its integrability was finally proven providing a 3× 3
Lax pair. Moreover this equation has the singularity confinement property, can be bilinearized,
possesses multisoliton solutions and has a continuous limit into the mKdV equation, [9].

If in (51a), when τ = 1, we apply the (not allowed) transformation vn,m := −
(
21/3wn,m + 1

)
,

we obtain

wn+1,mwn,m+1 (wn,m + wn+1,m+1) + 1 = 0, (53)

an integrable system introduced in [15], where it was proved to satisfy the second order, but not
the first order, integrability conditions, to posses a 3× 3 Lax pair and to be a degeneration of the
discrete integrable Tzitzeica equation proposed by Adler in [1]. Moreover this equation has the
singularity confinement property, can be trilinearized and possesses multisoliton solutions, [9].

Finally, if in (51a), when τ ̸= 0, 1 we apply the (not allowed) transformation vn,m :=
1−τ
τ wn,m − 1, we obtain

wn,mwn+1,m + wn,m+1wn+1,m+1 + wn+1,mwn,m+1 (1 + wn,m + wn+1,m+1) + χ = 0, (54)

where χ := (τ−3)τ2

(1−τ)3
, which doesn’t satisfy the first order integrability conditions for three-point

generalized symmetries either autonomous or not, either in direction n or m. In [18] we showed
the integrability of the subcase χ = 0 constructing two five-point generalized symmetries, one
in the n direction and the other one in the m direction, and a 3 × 3 Lax pair. An indication
of the integrability of the general case (54) for arbitrary χ was provided showing its algebraic
entropy vanishes. Other strong indications of integrability for arbitrary χ, such as the singularity
confinement property, bilinear form, multisoliton solutions and a continuous limit into the mKdV
equation when χ = −1, were established in [9]. In the case χ = −1 we can provide the following
five-point symmetry in the n direction depending on the points (n+ 2,m), (n+ 1,m), (n,m),
(n− 1,m) and (n− 2,m):

wn,m,t =
wn,m (wn,m + 1) (wn,mwn−1,m − 1) (wn+1,mwn,m − 1) (wn+2,mwn+1,m − wn−1,mwn−2,m)

(wn,mwn−1,mwn−2,m + 1) (wn+1,mwn,mwn−1,m + 1) (wn+1,mwn+1,mwn,m + 1)
,

where t is a group parameter. The last generalized symmetry is invariant under w̃n,m := 1/wn,m

and under the following Miura transformation

zn,m :=
wn+1,mwn,m − 1

wn+1,mwn,mwn−1,m + 1
(55)

it can be transformed into a Bogoyavlenskyi lattice

zn,m,t = zn,m (zn,m + 1) (zn+2,mzn+1,m − zn−1,mzn−2,m) .

Proposition 6. If (54) with χ = −1 is satisfied, given (55), then

wn+1,m = − zn,m + 1

(zn,mwn−1,m − 1)wn,m
, (56a)

wn,m+1 = −(zn,m+1 + zn,m + 1) (wn−1,m + 1)wn,m

(zn,m + 1) (wn,m + 1)
, (56b)

wn−1,m+1 =
(zn,m + 1) (wn,mwn−1,m − 1)

zn,m+1 (wn−1,m + 1)wn,m
, (56c)
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and zn,m satisfies

zn,m (zn+1,m + 1) + zn+1,m+1 (zn,m+1 + zn,m + 1) = 0. (57)

To prove (56a), just solve (55) with respect to wn+1,m; to obtain (56b), substitute (56a) and
its shifted once along direction m into the equation (54) with χ = −1, solve with respect to
wn−1,m+1, substitute this result into the equation (54) with χ = −1 shifted back once along
direction n and solve with respect to wn,m+1; (56c) follows inserting (56b) into the previous
result for wn−1,m+1. The three relations (56) provide a Miura transformation between equation
(54) with χ = −1 and (57): the compatibility between the z−variables implies (54) with χ = −1,
while the compatibility between the w−variables implies (57).

Equation (57) is an integrable lattice possessing a 3 × 3 Lax representation, [18]. When
zn,m ̸= 0, under the inversion w̃n,m := 1/zn,m the equation (57) is mapped into the equation (54)
with χ = 0, so (55) provides also a Miura mapping from wn,m solving (54) with χ = −1 to w̃n,m

solving the same equation but with χ = 0. This Miura transformation induces, through the
mapping vn,m := 1−τ

τ wn,m − 1, a corresponding Miura transformation from a solution vn,m of
(51a) with τ = 1/3 to a solution ṽn,m of (51a) with τ = 3. Another set of Miura transformations
between the equations (52), (53) and (54) was derived in [9].

Summing up, we have very strong indications of integrability for the master equation (51a)
which, when τ = 3, 1/3, has a continuous limit into the mKdV equation, [9].

If in (51b), (51c) we apply the (not allowed) transformations wn,m := δ sgn (ϵ) /vn,m and
w̃n,m := δ/vn,m respectively, we obtain

τ

|ϵ|
+ wn,m + wn+1,m+1 +

1

ϵ
(wn+1,m + wn,m+1) (58a)

+δ

[
1

ϵ
wn+1,mwn,m+1 (wn,m + wn+1,m+1) + wn,mwn+1,m+1 (wn+1,m + wn,m+1)

]
= 0,

τ + w̃n,m + w̃n+1,m+1 + ϵ (w̃n+1,m + w̃n,m+1) (58b)

+δ [w̃n+1,mw̃n,m+1 (w̃n,m + w̃n+1,m+1) + ϵw̃n,mw̃n+1,m+1 (w̃n+1,m + w̃n,m+1)] = 0.

Eqs. (58a, 58b) are just an almost trivial looking modification of the two integrable systems
discussed in [17], which are recovered when τ = 0. In that paper it was shown that, when τ = 0,
Eqs. (58b, 58a) are mapped through a Möbius transformation respectively to the Hirota discrete
sine-Gordon equation and to its potential form. After in (58a) we replace ϵ → 1/ϵ and in (58b)
δ → sδ, with s := sgn (ϵ), the precise form of the potentiation induced between them is

wn,m = |ϵ|1/2 w̃n+1,m + w̃n,m+1

1 + sδw̃n+1,mw̃n,m+1
.

These equations satisfy the first order integrability conditions for three-point generalized symme-
tries either autonomous or not if and only if τ = 0, which in this limit, in the n direction, are
respectively given by

wn,m,t =

(
δw2

n,m − ϵ
) (

δϵw2
n,m − 1

)
(wn+1,m − wn−1,m)

(1 + δwn,mwn+1,m) (1 + δwn,mwn−1,m)
,

w̃n,m,t̃ = Y

(
δw̃2

n,m − 1
)
(w̃n+1,m − w̃n−1,m)

δw̃n+1,mw̃n−1,m − 1
+ [(−1)n κ+ (−1)m θ]

(
δw̃2

n,m − 1
)
,

where t and t̃ are two group parameters, and, in the m direction, by similar expressions obtained
changing wn+1,m → wn,m+1 and wn−1,m → wn,m−1. The second integrable system shows a
two parameters non autonomous point symmetry tail too. We note that both the integrable
systems are invariant under wn,m := −vn,m; the first integrable system is covariant under the
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inversion wn,m := 1/vn,m as ϵ is changed into 1/ϵ, while the second one is invariant; under the

non autonomous transformation wn,m := (−1)n+m vn,m both the integrable systems are covariant
as in the first case ϵ is changed into −ϵ and δ into −δ, while in the second one ϵ is changed into
−ϵ. This implies that in those systems we can limit ourselves to the range 0 < ϵ < 1. Moreover

the second integrable system under the non autonomous transformation w̃n,m := (vn,m)(−1)n+m

is invariant when δ = 1 and covariant when δ = −1 as ϵ is changed into δϵ. Finally both the
integrable systems are covariant under the transformation wn,m := ivn,m as δ is changed into −δ.
This implies that in those systems we can always take δ = 1 but in general, if we allow such a
transformation, the solution will be no more a real field but a complex one. Let’s also note that
the non autonomous transformation wn,m := (−1)n vn,m or wn,m := (−1)m vn,m brings both the
integrable systems from class Q+ into class Q−.

An indication that the general cases (58a, 58b) are not integrable when τ ̸= 0 can be obtained
showing their algebraic entropy [3] doesn’t vanish.

If in (51d) we apply the (not allowed) transformation vn,m :=
|ρ|1/2w0,0+1

|ρ|1/2w0,0−1/ϵ
, with ρ := −1+2ϵ

ϵ(ϵ−2) ≠ 0,

we obtain

wn,m + wn+1,m+1 + wn,mwn+1,m+1

[
δ (wn+1,m + wn,m+1) + ϵ|ρ|3/2wn+1,mwn,m+1

]
+

δ

ϵ|ρ|3/2
= 0, (59)

where δ := sgn (ρ) = sgn (1/ϵ− 2), which, for δ = −1, is a real discrete Tzitzeica equation with

coefficient c = 1/
(
ϵ|ρ|3/2

)
and for δ = 1, through the (not allowed) transformation wn,m → iwn,m

becomes a complex Tzitzeica equation with coefficient c = i/
(
ϵ|ρ|3/2

)
. We remember that the

Tzitzeica equation possesses a 3× 3 Lax representation and satisfies [15] the second order, but
not the first order, integrability conditions.

We note that, besides not being subcases of the QV equation, our systems (51), except for (51b,
51c) with τ = 0, where a five-point generalized symmetry depending on the points (n+ 1,m),
(n,m+ 1), (n,m), (n− 1,m) and (n,m− 1) exists, are not included into the Garifullin-Yamilov
class [10] too.

4. Concluding remarks

In this paper we have considered the application of a multiple scale expansion to a class of
dispersive multilinear partial difference equation on the square lattice, Q+. The integrability
conditions we obtain when we require that the multiple scale expansion of the discrete class
of equations is equivalent to the equations of the NLS hierarchy reduce the N = 13 initial
parameters defining the Q+ class to a maximum of N = 2 free (continuous) parameters defining
four equations. A great effort has been directed to extend the expansion up to order ε6, the
related integrability conditions appearing in this paper for the first time. As a result of our
efforts we have been able to compare the A3 integrable equations to the A4 integrable equations.
They turn out to be the same, so that one could presume we might be already in the asymptotic
regime and that the obtained equations might be integrable. However a non vanishing algebraic
entropy is an indication that the general cases (58a, 58b) are not integrable when τ ̸= 0.

An open problem seems of major importance now: the consideration of the second class of
dispersive multilinear partial difference equations on the square lattice, Q− is a major task which
will surely provide new classes of integrable equations. However in this case the lowest order
integrability conditions appear already at order ε2 and will not produce an equation of the NLS
type, but more likely a coupled wave equation. Work on it is in progress.
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Appendix

Here we present explicitly the 48 conditions for ε6 S-asymptotic integrability (A4-integrability)
involving the real (Sj) and imaginary parts (Tj) of the coefficients ηj , j = 1,. . . , 34 of the
differential polynomial (27a). The expressions of the coefficients κm , m = 1,. . . , 77 of the
differential polynomial (27b) as functions of the ηj , j = 1,. . . , 34 are complicated, so we will omit
them.
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