A Linear Algorithm for Radio k-Coloring Powers of Paths Having Small Diameter - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

A Linear Algorithm for Radio k-Coloring Powers of Paths Having Small Diameter

Résumé

The radio k-chromatic number rc_k(G) of a graph G is the minimum integer λ such that there exists a function ϕ:V(G)→{0,1,⋯,λ} satisfying |ϕ(u)−ϕ(v)|≥k+1−d(u,v), where d(u, v) denotes the distance between u and v. To date, several upper and lower bounds of rc_k(⋅) is established for different graph families. One of the most notable works in this domain is due to Liu and Zhu [SIAM Journal on Discrete Mathematics 2005] whose main results were computing the exact values of rc_k(⋅) for paths and cycles for the specific case when k is equal to the diameter. In this article, we find the exact values of rc_k(G) for powers of paths where the diameter of the graph is strictly less than k. Our proof readily provides a linear time algorithm for providing such labeling. Furthermore, our proof technique is a potential tool for solving the same problem for other graph classes with “small” diameter.
Fichier principal
Vignette du fichier
IWOCA2023_CNSS_camera_ready.pdf (359.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04169997 , version 1 (25-07-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Dipayan Chakraborty, Soumen Nandi, Sagnik Sen, D. Supraja. A Linear Algorithm for Radio k-Coloring Powers of Paths Having Small Diameter. 34th International Workshop on Combinatorial Algorithms, Jun 2023, Tainan, Taiwan. pp.148-159, ⟨10.1007/978-3-031-34347-6_13⟩. ⟨hal-04169997⟩
52 Consultations
88 Téléchargements

Altmetric

Partager

More