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Abstract. The radio k-chromatic number rck(G) of a graph G is the
minimum integer λ such that there exists a function ϕ : V (G) → {0, 1, · · · ,
λ} satisfying |ϕ(u) − ϕ(v)| ≥ k + 1 − d(u, v), where d(u, v) denotes the
distance between u and v. To date, several upper and lower bounds of
rck(·) is established for different graph families. One of the most notable
works in this domain is due to Liu and Zhu [SIAM Journal on Discrete
Mathematics 2005] whose main results were computing the exact values
of rck(·) for paths and cycles for the specific case when k is equal to the
diameter.

In this article, we find the exact values of rck(G) for powers of paths
where the diameter of the graph is strictly less than k. Our proof readily
provides a linear time algorithm for providing such labeling. Further-
more, our proof technique is a potential tool for solving the same problem
for other graph classes with “small” diameter.

Keywords: radio coloring · radio k-chromatic number · Channel As-
signment Problem · power of paths.

1 Introduction and main results

The theory of radio coloring and its variations are popular and well-known
mathematical models of the Channel Assignment Problem (CAP) in wireless
networks [1,2]. The connection between the real-life problem and the theoretical
model has been explored in different bodies of works. In this article, we focus
on the theoretical aspects of a particular variant, namely, the radio k-coloring.
All the graphs considered in this article are undirected simple graphs and we
refer to the book “Introduction to graph theory” by West [14] for all standard
notations and terminologies used.
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A λ-radio k-coloring of a graph G is a function ϕ : V (G) → {0, 1, · · · , λ}
satisfying |ϕ(u)− ϕ(v)| ≥ k + 1− d(u, v). For every u ∈ V (G), the value ϕ(u) is
generally referred to as the color of u under ϕ. Usually, we pick λ in such a way
that it has a preimage under ϕ, and then, we call λ to be the span of ϕ, denoting
it by span(ϕ). The radio k-chromatic number4 rck(G) is the minimum span(ϕ),
where ϕ varies over all radio k-colorings of G.

In particular, the radio 2-chromatic number is the most well-studied restric-
tion of the parameter (apart from the radio 1-chromatic number, which is equiv-
alent to studying the chromatic number of graphs). There is a famous conjecture
by Griggs and Yeh [6] that claims rc2(G) ≤ ∆2 where ∆ is the maximum degree
of G. The conjecture has been resolved for all ∆ ≥ 1069 by Havet, Reed and
Sereni [7].

As one may expect, finding the exact values of rck(G) for a general graph is
an NP-complete problem [6]. Therefore, finding the exact value of rck(G) for a
given graph (usually belonging to a particular graph family) offers a huge num-
ber of interesting problems. Unfortunately, due to a lack of general techniques
for solving these problems, not many exact values are known till date. One of the
best contributions in this front remains the work of Liu and Zhu [12] who com-
puted the exact value of rck(G) where G is a path or a cycle and k = diam(G).

As our work focuses on finding radio k-chromatic number of powers of paths,
let us briefly recall the relevant related works. For a detailed overview of the
topic, we encourage the reader to consult Chapter 7.5 of the dynamic survey on
this topic maintained in the Electronic Journal of Combinatorics by Gallian [5]
and the survey by Panigrahi [13]. For small paths Pn, that is, with diam(Pn) < k,
Kchikech et al. [8] had established an exact formula for rck(Pn); whereas, recall
that, for paths of diameter equal to k ≥ 2, Liu and Zhu [12] gave an exact formula
for the radio number rck(Pk). Moreover, a number of studies on the parameter
rck(Pn) depending on how k is related to diam(Pn), or n alternatively, have
been done by various authors [8,9,10,3]. So far as works on powers of paths
are concerned, the only notable work we know is an exact formula for the radio
number rn(P 2

n) of the square of a path Pn by Liu and Xie [11]. Hence the natural
question to ask is whether the results for the paths can be extended to paths of
a general power m, where 1 ≤ m ≤ n.

Progressing along the same line, in this article we concentrate on powers
of paths having “small diameters”, that is, diam(Pm

n ) < k and compute the
exact value of rck(P

m
n ), where Pm

n denotes the m-th power graph of a path Pn

on (n + 1) vertices. In other words, the graph Pm
n is obtained by adding edges

between the vertices of Pn that are at most m distance apart, where m ≤ n.
Notice that, the so-obtained graph is, in particular, an interval graph. Let us
now state our main theorem.

Theorem 1. For all k > diam(Pm
n ) and m ≤ n, we have

4 In the case that diam(G) = k, k+1 or k+2, the radio k-chromatic number is alter-
natively known as the radio number denoted by rn(G), the radio antipodal number
denoted by ac(G) and the nearly antipodal number denoted by ac′(G), respectively.
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rck(P
m
n ) =


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n,

where s ≡ n (mod m) and 1 ≤ s < m.

In this article, we develop a robust graph theoretic tool for the proof. Even
though the tool is specifically used to prove our result, it can be adapted to
prove bounds for other classes of graphs. Thus, we would like to remark that,
the main contribution of this work is not only in proving an important result
that captures a significant number of problems with a unified proof, but also
in devising a proof technique that has the potential of becoming a standard
technique to attack similar problems. We will prove the theorem in the next
section.

Moreover, our proof of the upper bound is by giving a prescribed radio k-
coloring of the concerned graph, and then proving its validity, while the lower
bound proof establishes its optimality. Therefore, as a corollary to Theorem 1,
we can say that our proof provides a linear time algorithm radio k-color powers
of paths, optimally.

Theorem 2. For all k > diam(Pm
n ) and m ≤ n, one can provide an optimal

radio k-coloring of the graph Pm
n in O(n) time.

We prove Theorem 1 in the next section.

2 Proofs of Theorems 1 and 2

This section is entirely dedicated to the proofs of Theorems 1 and 2. The proofs
use specific notations and terminologies developed for making it easier for the
reader to follow. The proof is contained in several observations and lemmas and
uses a modified and improved version of the DGNS formula [4].

As seen from the theorem statement, the graph Pm
n that we work on is the

mth power of the path on (n+1) vertices. One crucial aspect of this proof is the
naming of the vertices of Pm

n . In fact, for convenience, we shall assign two names
to each of the vertices of the graph and use them as required depending on the
context. Such a naming convention will depend on the parity of the diameter of
Pn
m.

Observation 1. The diameter of the graph Pm
n is diam(Pm

n ) = ⌈ n
m⌉.

For the rest of this section, let q = ⌊diam(Pm
n )

2 ⌋.
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2.1 The naming conventions

We are now ready to present the first naming convention for the vertices of Pm
n .

For convenience, let us suppose that the vertices of Pm
n are placed (embedded) on

the X-axis having co-ordinates (i, 0) where i ∈ {0, 1, · · · , n} and two (distinct)
vertices are adjacent if and only if their Euclidean distance is at most m.

We start by selecting the layer L0 consisting of the vertex, named c0, say,
positioned at (qm, 0) for even values of diam(Pm

n ). On the other hand, for odd
values of diam(Pm

n ), the layer L0 consists of the vertices c0, c1, · · · , cm, say,
positioned at (qm, 0), (qm+ 1, 0), · · · , (qm+m, 0), respectively, and inducing a
maximal clique of size (m+1). The vertices of L0 are called the central vertices,
and those positioned to the left and the right side of the central vertices are
naturally called the left vertices and the right vertices, respectively.

After this, we define the layer Li as the set of vertices that are at a distance
i from L0. Observe that the layer Li is non-empty for all i ∈ {0, 1, · · · , q}.
Moreover, notice that, for all i ∈ {1, 2, · · · , q}, Li consists of both left and right
vertices. In particular, for i ≥ 1, the left vertices of Li are named li1, li2, · · · , lim,
sorted according to the increasing order of their Euclidean distances from L0.
Similarly, for i ∈ {1, 2, · · · , q−1}, the right vertices of Li are named ri1, ri2, · · · ,
rim, sorted according to the increasing order of their Euclidean distance from L0.
However, the right vertices of Lq are rq1, rq2, · · · , rqs, where s = (n+1)− (2q−
1)m− |L0| (observe that this s is the same as the s mentioned in the statement
of Theorem 1), again sorted according to the increasing order of their Euclidean
distances from L0. That is, if m ∤ n, then there are s = (n+1)− (2q−1)m−|L0|
right vertices in Lq. Besides Lq, every layer Li, for i ∈ {1, 2, · · · , q − 1}, has
exactly m left vertices and m right vertices. This completes our first naming
convention.

Now, we move to the second naming convention. This depends on yet another
observation.

Observation 2. For k ≥ diam(Pm
n ), let ϕ be a radio k-coloring of Pm

n . Then
ϕ(x) ̸= ϕ(y) for all distinct x, y ∈ V (Pm

n ).

Let ϕ be a radio k-coloring of Pm
n . Thus, due to Observation 2, it is possible to

sort the vertices of Pm
n according to the increasing order of their colors. That is,

our second naming convention which names the vertices of Pm
n as v0, v1, · · · , vn

satisfying ϕ(v0) < ϕ(v1) < · · · < ϕ(vn). Clearly, the second naming convention
depends only on the coloring ϕ, which, for the rest of this section, will play the
role of any arbitrary radio k-coloring of Pm

n .

2.2 The lower bound

Next, we shall proceed to establish the lower bound of Theorem 1 by showing
it to be a lower bound of span(ϕ). To do so, however, we need to introduce yet
another notation. Let f : V (Pm

n ) → {0, 1, · · · , q} be the function which indicates
the layer of a vertex, that is, f(x) = i if x ∈ Li. With this notation, we initiate
the lower bound proof with the following result.



Radio k-coloring Pm
n with small diameter 5

Lemma 1. For any i ∈ {0, 1, · · · , n− 1}, we have

ϕ(vi+1)− ϕ(vi) ≥

{
k − f(vi)− f(vi+1) + 1 if diam(Pm

n ) is even,

k − f(vi)− f(vi+1) if diam(Pm
n ) is odd.

Proof. If diam(Pm
n ) is even, then L0 consists of the single vertex c0. Observe

that, as vi is in Lf(vi), it is at a distance f(vi) from c0. Similarly, vi+1 is at a
distance f(vi+1) from c0. Hence, by the triangle inequality, we have

d(vi, vi+1) ≤ d(vi, c0) + d(c0, vi+1) = f(vi) + f(vi+1).

Therefore, by the definition of radio k-coloring,

ϕ(vi+1)− ϕ(vi) ≥ k − f(vi)− f(vi+1) + 1.

If diam(Pm
n ) is odd, then L0 is a clique. Thus, by the definition of layers

and the function f , there exist vertices cj and cj′ (j ̸= j′) in L0 satisfying
d(vi, cj) = f(vi) and d(vi+1, cj′) = f(vi+1). Hence, by triangle inequality again,
we have

d(vi, vi+1) ≤ d(vi, cj) + d(cj , cj′) + d(cj′ , vi+1) = f(vi) + 1 + f(vi+1).

Therefore, by the definition of radio k-coloring,

ϕ(vi+1)− ϕ(vi) ≥ k − f(vi)− f(vi+1).

Hence we are done.

Notice that it is not possible to improve the lower bound of the inequality
presented in Lemma 1. Motivated by this fact, whenever we have

ϕ(vi+1)− ϕ(vi) =

{
k − f(vi)− f(vi+1) + 1 if diam(Pm

n ) is even,

k − f(vi)− f(vi+1) if diam(Pm
n ) is odd.

for some i ∈ {0, 1, · · · , n− 1}, we say that the pair (vi, vi+1) is optimally colored
by ϕ. Moreover, we can naturally extend this definition to a sequence of vertices
of the type (vi, vi+1, · · · , vi+i′) by calling it an optimally colored sequence by ϕ if
(vi+j , vi+j+1) is optimally colored by ϕ for all j ∈ {0, 1, · · · , i′−1}. Furthermore,
a loosely colored sequence (vi, vi+1, vi+2, · · · , vi+i′) is a sequence that does not
contain any optimally colored sequence as a subsequence.

An important thing to notice is that the sequence of vertices (v0, v1, · · · , vn)
can be written as a concatenation of maximal optimally colored sequences and
loosely colored sequences. That is, it is possible to write

(v0, v1, · · · , vn) = Y0X1Y1X2 · · ·XtYt

where Yis are loosely colored sequences and Xjs are maximal optimally colored
sequences. Here, we allow the Yis to be empty sequences as well. In fact, for
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1 ≤ i ≤ t− 1, a Yi is empty if and only if there exist two consecutive vertices vs′

and vs′+1 of Pm
n in the second naming convention such that (vs′ , vs′+1) is loosely

colored and that Xi = (vs, vs+1, · · · , vs′) and Xi+1 = (vs′+1, vs′+2, · · · , vs′′) for
some s ≤ s′ < s′′. Moreover, Y0 (resp. Yt) is empty if and only if the pair
(v0, v1) (resp. (vn−1, vn)) is optimally colored. By convention, empty sequences
are always loosely colored and a sequence having a singleton vertex is always
optimally colored. From now onward, whenever we mention a radio k-coloring
ϕ of Pm

n , we shall also suppose an associated concatenated sequence using the
same notation as mentioned above.

Let us now prove a result which plays an instrumental role in the proof of
the lower bound.

Lemma 2. Let ϕ be a radio-k coloring of Pm
n such that

(v0, v1, · · · , vn) = Y0X1Y1X2 · · ·XtYt.

Then, for even values of diam(Pm
n ), we have

span(ϕ) ≥

[
n(k + 1)− 2

q∑
i=1

i|Li|

]
+

[
f(v0) + f(vn) +

t∑
i=0

|Yi|+ t− 1

]

and, for odd values of diam(Pm
n ), we have

span(ϕ) ≥

[
nk − 2

q∑
i=1

i|Li|

]
+

[
f(v0) + f(vn) +

t∑
i=0

|Yi|+ t− 1

]
,

where |Yi| denotes the length of the sequence Yi.

As we shall calculate the two additive components of Lemma 2 separately,
we introduce short-hand notations for them for the convenience of reference. So,
let

α1 =

{
n(k + 1)− 2

∑q
i=1 i|Li| if diam(Pm

n ) is even,

nk − 2
∑q

i=1 i|Li| if diam(Pm
n ) is odd,

and

α2(ϕ) = f(v0) + f(vn) +
t∑

i=0

|Yi|+ t− 1.

Observe that α1 and α2 are functions of a number of variables and factors such
as, n,m, k, ϕ, etc. However, to avoid clumsy and lengthy formulations, we have
avoided writing α1 and α2 as multivariate functions, as their definitions are not
ambiguous in the current context. Furthermore, as k and Pm

n are assumed to be
fixed in the current context and, as α1 does not depend on ϕ (follows from its
definition), it is treated and expressed as a constant as a whole. On the other
hand, α2 is expressed as a function of ϕ.

Now we shall establish lower bounds for α1 and α2(ϕ) separately to prove
the lower bound of Theorem 1. Let us start with α1 first.
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Lemma 3. We have

α1 =

{
nk − n2+m2−s2

2m if diam(Pm
n ) is even,

nk − n2−s2

2m if diam(Pm
n ) is odd,

where s = (n+ 1)− (2q − 1)m− |L0|.

Next, we focus on α2(ϕ). We shall handle the cases with odd diam(Pm
n ) first.

Lemma 4. We have

α2(ϕ) ≥

{
0 if diam(Pm

n ) is odd and m|n,
1 if diam(Pm

n ) is odd and m ∤ n.

Next, we consider the cases with even diam(Pm
n ). Before starting with it

though, we are going to introduce some terminologies to be used during the
proofs. So, let Xi be an optimally colored sequence. As Xi cannot have two
consecutive left (resp., right) vertices as elements, the number of left vertices
can be at most one more than the number of right vertices and the central
vertex, the latter two combined together.

Lemma 5. We have

α2(ϕ) ≥

{
1 if diam(Pm

n ) is even and m|n,
m− s+ 1 if diam(Pm

n ) is even and m ∤ n,

where s ≡ n (mod m).

Combining Lemmas 2, 3, 4 and 5, therefore, we have the following lower
bound for the parameter rck(P

m
n ).

Lemma 6. For all k ≥ diam(Pm
n ) and m ≤ n, we have

rck(P
m
n ) ≥


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n,

where s ≡ n (mod m) and 1 ≤ s < m.

Remark 1. Our lower bound technique can be applied to a graph G of diameter
more than k also. This can be achieved by taking a subgraph H of G induced

on
q⋃

i=0

Li, where q = ⌊k
2 ⌋ and diam(H) ≤ k. Thus, a lower bound for H serves

as a lower bound for G as well.
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2.3 The upper bound

Now let us prove the upper bound. We shall provide a radio k-coloring ψ of Pm
n

and show that its span is the same as the value of rck(P
m
n ) stated in Theorem 1.

To define ψ, we shall use both naming conventions. That is, we shall express the
ordering (v0, v1, · · · , vn) of the vertices of Pm

n with respect to ψ in terms of the
first naming convention.

Let us define some ordering for the right (and similarly for the left) vertices:

(1) rij ≺1 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)j−1i < (−1)j
′−1i′;

(2) rij ≺2 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)m−ji < (−1)m−j′i′;
(3) rij ≺3 ri′j′ if either (i) j < j′ or (ii) j = j′ and i > i′; and

(4) rij ≺4 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)ji < (−1)j
′
i′.

Observe that, the orderings are based on comparing the second co-ordinate
of the indices of the right (resp., left) vertices, and if they happen to be equal,
then comparing the first co-ordinate of the indices with conditions on their par-
ities. Moreover, all the above four orderings define total orders on the set of all
right (resp., left) vertices. Thus, there is a unique increasing (resp., decreasing)
sequence of right (or the left) vertices with respect to ≺1, ≺2, ≺3, and ≺4. Based
on these orderings, we are going to construct a sequence of vertices of the graph
and then greedy color the vertices to provide our labeling.

The sequences of the vertices are given as follows:

(1) An alternating chain as a sequence of vertices of the form (a1, b1, a2, b2, · · · ,
ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right vertices
with respect to ≺1 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺2.

(2) A canonical chain as a sequence of vertices of the form (a1, b1, a2, b2, · · · , ap,
bp) such that (a1, a2, · · · , ap) is the increasing sequence of right vertices with
respect to ≺3 and (b1, b2, · · · , bp) is the decreasing sequence of left vertices
with respect to ≺3;

(3) A special alternating chain as a sequence of vertices of the form (a1, b1, a2, b2,
· · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right ver-
tices with respect to ≺2 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺1; and

(4) A special canonical chain as a sequence of vertices of the form (a1, b1, a2, b2,
· · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right ver-
tices with respect to ≺4 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺4.

Notice that the special alternating chains, the reverse alternating chain and
the canonical chains can exist only when the number of right and left vertices are
equal. Of course, when m|n, both the chains exist. Otherwise, we shall modify
the names of the vertices a little to make them exist.

We are now ready to express the sequence (v0, v1, · · · , vn) by splitting it into
different cases which are depicted in Figures 1, 2, 3 and 4 for example. In the
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figures, the both naming conventions for each of the vertices are given so that
the reader may cross verify the correctness for that particular instance for each

case. For convenience, also recall that q = ⌊diam(Pm
n )

2 ⌋.

Case 1: when diam(Pm
n ) is even,m|n and k > diam(Pm

n ). First of all, (v0, v1, · · · ,
v2qm−1) is the alternating chain. Moreover, vn = c0.

l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22 r23 r24

4 28 36 60 11 19 43 51 65 0 24 32 56 7 15 39 47

v3 v9 v15 v21 v5 v7 v17 v19 v24 v0 v10 v12 v22 v2 v8 v14 v20

L0 L1L1 L2L2

Fig. 1: Case 1. n = 16, m = 4, diam(P 4
24) = 4, k = 6.

Case 2: when diam(Pm
n ) is odd, m|n and k > diam(Pm

n ). Let the ordering of
the vertices be (v0, v1, · · · , v2qm+m). Now, vj(2q+1) = cj for all 0 ≤ j ≤ m. The
remaining vertices follow the canonical chain.

l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23 r24

18 41 64 87 9 32 55 78 0 23 46 69 92 14 37 60 83 5 28 51 74

v4 v9 v14 v19 v2 v7 v12 v17 v0 v5 v10 v15 v20 v3 v8 v13 v18 v1 v6 v11 v16
L0 L1L1 L2L2

Fig. 2: Case 2. n = 20, m = 4, diam(P 4
20) = 5, k = 7.

Case 3: when diam(Pm
n ) is odd, m ∤ n and k > diam(Pm

n ). For any set A,
let A⋆ represent an ordered sequence of the elements of A. Let G ∼= Pm

n and
S = V (G) = {v0, v1, v2, · · · , v2qm+s}. Then S⋆ is defined as described. First,
define

T = {vt : 0 ≤ t ≤ s(2q + 1)} − {vj(2q+1) : 0 ≤ j ≤ s}.

Order T ⋆ as a canonical chain. Also, define vj(2q+1) = cj for all 0 ≤ j ≤ s.
Assume G′ to be the subgraph of G induced by the subset S−{rq1, rq2, · · · , rqs}
of S. Then G′ ∼= Pm

n′ , m|n′ and diam(G′) = n′

m is even, where n′ = n− s. Define

vn = l11 and U = {vt : s(2q + 1) + 1 ≤ t < n}.

Note that U ⊂ V (G′). Order U⋆ (as vertices of G′) by the following.

(i) Special alternating chain when m and s have the same parity.
(ii) Alternating chain when m is even and s is odd.
(iii) Special canonical chain when m is odd and s is even.
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l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23

18 41 64 79 9 32 55 90 0 23 46 69 84 14 37 60 75 5 28 51

v4 v9 v14 v17 v2 v7 v12 v19 v0 v5 v10 v15 v18 v3 v8 v13 v16 v1 v6 v11
L0 L1L1 L2L2

Fig. 3: Case 3. n = 19, m = 4, diam(P 4
19) = 5, k = 7, s = 3.

Case 4: when diam(Pm
n ) is even, m ∤ n and k > diam(Pm

n ). Notice that, in
this case, the left vertices are (m− s) more than the right vertices. Also, L0 has
only one vertex in this case. We shall discard some vertices from the set of left
vertices, and then present the ordering. To be specific, we disregard the subset
{l11, l12, · · · , l1(m−s)}, temporarily, from the set of left vertices and consider the
alternating chain. First of all, (v0, v1, · · · , v2qm−2m+2s−1) is the alternating chain.
Additionally, (v2qm−2m+2s, v2qm−2m+2s+1, v2qm−2m+2s+2, · · · , v2qm−m+s) =
(c0, l11, l12, · · · , l1(m−s)).

l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22

4 28 36 44 11 19 61 55 49 0 24 32 40 7 15

v3 v9 v15 v17 v5 v7 v22 v21 v20 v0 v10 v12 v18 v2 v8

L0 L1L1 L2L2

Fig. 4: Case 4. n = 14, m = 4, diam(P 4
22) = 4, k = 6, s = 2.

Thus, we have obtained a sequence (v0, v1, · · · , vn) in each case under con-
sideration. Now, we define, ψ(v0) = 0 and ψ(vi+1) = ψ(vi) + k+ 1− d(vi, vi+1),
recursively, for all i ∈ {0, 1, 2, · · · , n − 1}. Next, we note that ψ is a radio k-
coloring.

Lemma 7. The function ψ is a radio k-coloring of Pm
n .

This brings us to the upper bound for rck(P
m
n ).

Lemma 8. For all k > diam(Pm
n ) and m ≤ n, we have

rck(P
m
n ) ≤


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n,

where s ≡ n (mod m) and 1 ≤ s < m.
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Proof. Observe that, rck(P
m
n ) ≤ span(ψ). So, to prove the upper bound, it is

enough to show that for all k > diam(Pm
n ) and s ≡ n (mod m),

span(ψ) =


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n.

As ψ is explicitly known, it is possible to calculate it and prove the above.
However, we omit the rest of the proof due to space constraint.

2.4 The proofs

Finally we are ready to conclude the proofs.

Proof of Theorem 1 The proof follows directly from Lemmas 6 and 8.

Proof of Theorem 2 Notice that the proof of the upper bound for Theorem 1 is
given by prescribing an algorithm (implicitly). The algorithm requires ordering
the vertices of the input graph, and then providing the coloring based on the
ordering. Each step runs in linear order of the number of vertices in the input
graph. Moreover, we have theoretically proved the tightness of the upper bound.
Thus, we are done.

For the full version of the paper, please go to https://homepages.iitdh.

ac.in/~sen/Supraja_IWOCA.pdf.
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