AJAR: An Argumentation-based Judging Agents Framework for Ethical Reinforcement Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

AJAR: An Argumentation-based Judging Agents Framework for Ethical Reinforcement Learning

Résumé

An increasing number of socio-technical systems embedding Artificial Intelligence (AI) technologies are deployed, and questions arise about the possible impact of such systems onto humans. We propose a hybrid multi-agent Reinforcement Learning framework consists of learning agents that learn a task-oriented behaviour defined by a set of symbolic moral judging agents to ensure they respect moral values. This framework is applied on the problem of responsible energy distribution for smart grids.
Fichier principal
Vignette du fichier
Argumentation_based_judging_agents_for_ethical_Reinforcement_Learning_supervision.pdf (664.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04127943 , version 1 (14-06-2023)

Identifiants

Citer

Benoît Alcaraz, Olivier Boissier, Rémy Chaput, Christopher Leturc. AJAR: An Argumentation-based Judging Agents Framework for Ethical Reinforcement Learning. AAMAS '23: International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, May 2023, London, United Kingdom. ⟨10.5555/3545946.3598956⟩. ⟨hal-04127943⟩
175 Consultations
150 Téléchargements

Altmetric

Partager

More