Stochastic Covariant Derivatives in a (Curved) Space-Time: a Glimpse into the Fractoid Spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Stochastic Covariant Derivatives in a (Curved) Space-Time: a Glimpse into the Fractoid Spaces

Edoardo Niccolai
  • Fonction : Auteur
  • PersonId : 1185944

Résumé

A study on the notion of covariant derivatives in flat and curved space-time via Itô–Wiener processes, when subjected to stochastic processes, is presented. Going into details, there is an analysis of the following topics: (i) Besov space, (ii) Schrödinger operators, (iii) Klein–Gordon and Dirac equations, (iv) Dirac operator via Clifford connection, (v) semi-martingale and Stratonovich integral, (vi) stochastic geodesics, (vii) white noise on a (4+)D space-time $\mathfrak{H}$-geometry (with the Paley–Wiener integral), and (viii) torsion of the covariant derivative. In the background stands the scale relativity theory, together with a sketch of the concept of fractoid spaces.
Fichier principal
Vignette du fichier
scd.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04081660 , version 1 (10-05-2023)
hal-04081660 , version 2 (28-12-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Edoardo Niccolai. Stochastic Covariant Derivatives in a (Curved) Space-Time: a Glimpse into the Fractoid Spaces. 2023. ⟨hal-04081660v2⟩
79 Consultations
45 Téléchargements

Altmetric

Partager

More