Stochastic Covariant Derivatives in a (Curved) Space-Time: a Glimpse into the Fractoid Spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Stochastic Covariant Derivatives in a (Curved) Space-Time: a Glimpse into the Fractoid Spaces

Edoardo Niccolai
  • Fonction : Auteur
  • PersonId : 1185944

Résumé

A study on the notion of covariant derivatives in flat and curved space-time via Itô–Wiener processes, when subjected to stochastic processes, is presented. Going into details, there is an analysis of the following topics: (i) Besov space, (ii) Schrödinger operators, (iii) Klein–Gordon and Dirac equations, (iv) Dirac operator via Clifford connection, (v) semi-martingale and Stratonovich integral, (vi) stochastic geodesics, (vii) white noise on a (4+)D space-time $\mathfrak{H}$-geometry (with the Paley–Wiener integral), and (viii) torsion of the covariant derivative. In the background stands the scale relativity theory, together with a sketch of the concept of fractoid spaces.
Fichier principal
Vignette du fichier
scd.pdf (1.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04081660 , version 1 (10-05-2023)
hal-04081660 , version 2 (28-12-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Edoardo Niccolai. Stochastic Covariant Derivatives in a (Curved) Space-Time: a Glimpse into the Fractoid Spaces. 2023. ⟨hal-04081660v1⟩
79 Consultations
45 Téléchargements

Altmetric

Partager

More