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STOCHASTIC COVARIANT DERIVATIVES
IN A (CURVED) SPACE-TIME:

A GLIMPSE INTO THE FRACTOID SPACES

EDOARDO NICCOLAI

Abstract. A study on the notion of covariant derivatives in flat and curved space-time via
Itô–Wiener processes, when subjected to stochastic processes, is presented. Going into de-
tails, there is an analysis of the following topics: (i) Besov space, (ii) Schrödinger operators,
(iii) Klein–Gordon and Dirac equations, (iv) Dirac operator via Clifford connection, (v) semi-
martingale and Stratonovich integral, (vi) stochastic geodesics, (vii) white noise on a (4+)D
space-time H-geometry (with the Paley–Wiener integral), and (viii) torsion of the covariant
derivative. In the background stands the scale relativity theory, together with a sketch of the
concept of fractoid spaces.

Keywords: σ-(sub)algebra(s), Besov space, C2 smooth vector fields, Clifford connection, covari-
ant derivative of stochastic type in R4

1,3 (Minkowski space-time) and in curved space-time (gr),
Dirac equation(s), Dirac operator, forward and backward mean derivatives, fractal space-time,
fractoid spaces, Itô–Wiener processes, Klein–Gordon equation(s), Littlewood–Paley operator,
martingale, Newton–Nelson equation(s), Paley–Wiener integral, quantum-like fluctuations, ran-
dom fluctuations, relativistic generalization of Nelson’s stochastic mechanics, scale relativity,
Schrödinger operators, Schwartz space, torsion.
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1.1 A Quick Summary 3

Thierry’s Question
Que devient la dérivée covariante, que je note ici D∗, de Laurent Nottale, obtenue en supposant un espace temps

fractal, qui revient à un opérateur de type Schrödinger en i ddt + Laplacien dans un espace temps plat dans le cas non
relativiste, dans le cas de la relativité général avec une métrique gij qui fluctuerait de manière stochastique?

— T. Lehner, via email to me

Patently, I do not offer a réponse univoque to my sodalis Thierry, great and συμπαθητικός friend,
also because our starting perspectives are different (me with a mathematical priority, he with a
physical priority), but a series of pièces de puzzle, nay, a 七巧板 (q̄ıqiǎobǎn), or tangram, with a set
of pieces, which, assembled together, can help and contribute to offering a réponse to his question.

ouverture

1. Scale Relativity and Non-differentiability of a Continuous Fractal Space-Time

1.1. A Quick Summary

To begin with, a few words about the scale relativity by L. Nottale & collaborators [29] [30] [33]
[31] [32] [34]. This theory is made up of the following postulates.

(1) The concept of space-time is continuous but non-differentiable, that is to say, fractal. The
space contemplated in the theory of scale relativity is thereby originated in the Mandelbrot set,

MC =
{
c ∈ C | φn

c (0) →− ∞ as n→ ∞
}
. (1)

This set is related to a complex quadratic polynomial φc,

C φc−→ C, (2a)

φc(z) = z2 + c, (2b)

under the map (2a) plus the equation (2b), hence a quadratic family φc : z 7→ z2 + c.
Consequently,
(i) any covariant derivative is a math-construct of the non-differentiable and fractal geometry;
(ii) the baggage of coordinate transformations are continuous but can be non-differentiable.
(2) Let us try to find out what that means.
(i) A continuous curve line γc, or rather, a geodesic, is non-differentiable when its length ℓ(γc)

is dependent on a scale variable εs, and it diverges, ℓ
(
εs(γc)

)
→ ∞, if εs → 0, which constitutes its

fractality; the scale divergence of continuous and almost nowhere-differentiable curves turns up as
a counterpart to the extension of the fundamental theorem of calculus, of Lebesgueian memory, on
the basis of which a curve, of finite length, is almost everywhere differentiable. For a continuous
fractal α-function, namely a scale-dependent function, φα(x) viz. x(t, δt), all this is exemplified by
two equality procedures—via nonstandard analysis, in which δt is replaced with dt—enunciating
the variation of the position vector x of a particle, along a geodesic, between t − dt and t, and
between t and t+ dt,

x(t+ dt)dt− x(t, dt) = v+(x, t)dt+ σ+
s (t, dt)

(
dt

τeb

) 1
Df

, (3)

x(t, dt)− x(t− dt)dt = v−(x, t)dt+ σ−s (t, dt)

(
dt

τeb

) 1
Df

, (4)

where σ+
s and σ−s are stochastic variables exhibiting finite velocity fluctuations, τeb = ℏ

mc2 is the
Einstein–de Broglie time, and Df is the fractal dimension (or Hausdorff or Hausdorff–Besicovitch
dimension) of the path.

If one wants, Eqq. (3) (4) stand in a statistical explication, under diffusion coefficients.
(ii) The same rule of the previous point (i) applies to the notion of manifold, thus to a topological

space.
(iii) Regarding the fractal space-time, it entails the scale dependence of the reference frames,

with internal scale variables: obviously, it will consist of non-differentiable but also differentiable
parts (in any case, we are dealing with a continuum which, historiquement et par définition, is
differentiable); the non-differentiable part, the fractal one, will be characterized by stochastic
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fluctuations (the two parts are later combined together). It is conjectured that fluctuations in the
fractal space-time lead to δDm(x, t)-fluctuations of the coefficient of diffusion

Dm =

(
1

2t

)∫ +∞

−∞
∆2P(∆, t)d∆ =

(
1

t

)∫ +∞

−∞

∆2

2
P(∆, t)d∆, (5)

where P(∆, τ) is the probability density function, and d∆ is the displacement, or the length of
path, from ∆ to ∆+d∆, in an interval of time t. Cf. Eq. (14.20) in [27]; from such a context to the
theory of Brownian motion, and interconnected Chapman–Kolmogorov equation, Fokker–Planck
equation, etc., is a flash.

NB. There is also another fact that brings stochasticity in evidence: since the geodesics of fractal
space-time are infinite, its interpretation must be stochastic.

(3) The scale relativity is conceived in such a way as to reject a discrete space-time, as it is
asserted in the poussière de Cantor [21, pp. 55-62],a or in the fractal caillé.

1.2. The Head-scratcher of the Covariant Derivative

The quandary of the covariant derivative in scale relativity is due to two conditions.

1.2.1. Lack of Differentiability

The first is that, where there is a lack of differentiability, owing to fractality, of space-time, one
is witnessing a divergence that cannot be managed, except with stochastic tools—this is a clue of
the mathematical skeleton of the scale-dependent properties, which have a random bosom.b

1.2.2. The Obstacle of the Two Derivatives, and the Arrangement with Sobolev and
Besov Spaces

The second condition is that two derivatives arise, the classical one and the scale covariant
derivative, the latter inserted in the fractal structure, once one accepts the hypothesis that the
space-time is continuous, as the theory of scale relativity requires.

That explains why one of the modes of enunciating fractional derivatives, in favor of a good
mathematical rigour, is to utilize the standard Sobolev space [40] [41]

W k,2(Q) = Hk(Q), L2(Q) = H0(Q), k ∈ Z∗, or k ∈ N, Q ⊂ Rn,

easily tractable; for p = 2, the Sobolev space W k,p(Q) is a Hilbert space.
An analogous goal, toward the fractal Laplacian, is achieved with the Besov space [1] [2]c

Bs
p,∞(R2), s ⊂ Rn, 0 < p ⩽ ∞,

which generalizes the Sobolev space, when the B-space is a collection of every regular tempered (or
Schwartz) distribution υt ∈ D∗(R2), D∗ eqv

== S∗c being the Schwartz space [12] [7] [39] of distributions,
such that the norms∥∥ c| Lp(R2)

∥∥+ sup
0<|υt|⩽1

|υt|−s
∥∥∥△k

υt

c| Lp(R2)
∥∥∥ , 2(1−p)

p < s < k ∈ N, (6a)

∥∥ c| Lp(R2)
∥∥+ (∫ 1

0

|υt|−sq
∥∥∥△k

υt

c| Lp(R2)
∥∥∥q dυt

|υt|2

) 1
q

, 0 < q <∞, (6b)

are finite, id est Eqq. (6a) (6b) <∞, where cis a continuous monotonically increasing function,
and Lp the Lebesgue space. The operator △ can be recognized as the Littlewood–Paley operator
[18] [19] [20].

a See, in this respect, the interesting notion of fractal lacunarity [22].
b It is not a coincidence that the adjective στοχαστικός means “able to hit”, “skilful in aiming”, “guessing”.
c For a detailed bibliography on Besov spaces, see [38, pp. 898-901].
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1.2.3. Do Not Forget the Discretum

I disagree with maintaining the continuity of space as the womb of space-time. Actually, the
continuum seems to be an approximation of the discretum, cf. [27, Margo 9.2.1]. This is the original
sin inherent in the theory of scale relativity, as far as I am able to judge.

parts of the answer: a fab-tangram

2. Some Tips. Let us Do a Refresh: Schrödinger Operators

Let us first give some definitions, just to cross some T’s and dot some I’s.

2.1. Linear Schrödinger Operator for a 1-parameter Unitary Group

The simple equality
S̈t

viz
= Ut = eit△ (7)

establishes the Schrödinger operator, whose notation here is a letter S with diaeresis, for a
1-parameter unitary group. The symbol △ designates the Laplacian.

For an equality
S̈tφ = ψ(x̂, t),

the linear Schrödinger operator (7) is determined by

S̈tφ(x̂) =

(
1

4πit

)n
2
∫
ei

|x̂− ˙̂x|2
4t φ

(
˙̂x
)
d ˙̂x, x̂ ∈ Rn. (8)

2.2. Schrödinger Operator on Continuous L2(Rn)L2(Rn)L2(Rn)-Space Structures

The Schrödinger operator

S̈ = −ℏ2

2
△+ υ[R]. (9)

is a linear partial differential operator in the Hilbert space—and in fact H
viz
= L2(Rn); in Eq. (9)

the Laplacian is n-dimensional, and υis a smooth R-potential.

2.3. Covariant Schrödinger Operator on Riemannian nnn-Manifolds (Groupal Algebra):

S̈∇эS̈
∇
ӭS
∇
э in Γ

(L2)
ςΓ
(L2)
ςΓ
(L2)
ς

We define a covariant Schrödinger operator S̈∇э , where ∇ is a (metric) covariant derivative on a
(metric) vector bundle E̊ over M, i.e. E̊ → M, and s-adj(э)

viz
= э is a self-adjoint endomorphism, on

a smooth Riemannian pair (M, g) in the Hilbert space L2 of square-integrable sections, denoted by

Γ (L2)
ς

(
M, E̊

)
,

so to get (
e−tS̈

∇
э (x)

)
t⩾0

⊂ Γ (L2)
ς

(
M, E̊

)
, t > 0, x ∈ M. (10)

Let dµ be the Riemannian volume element (µ is for a Borel measure); for a function

φµ ∈ Γ (L2)
ς

(
M, E̊

)
,

one has
e−tS̈

∇
э φ(x) =

∫
M
e−tS̈

∇
э (x, y)φµ(y)dµ(y). (11)

Here the Schrödinger operator S̈∇э is but a covariant Schrödinger bundle, that is,(
E̊ ,∇, э

)
(·)−→ M,

bearing in mind that the map
э : M → end

(
E̊
)

(12)
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is Borel µ-measurable, having a linear self-adjoint map э(x) : E̊x → E̊x, for each x ∈ M. The
self-adjoint endomorphism s-adj(э) in (12) counts as a potential on E̊ → M.

2.4. Random Schrödinger Operator on Discrete L2(Zn)L2(Zn)L2(Zn)-Space Structures

If one needs to use a random Schrödinger operator can quietly go from a L2(Rn)-space to
L2(Zn)-space, in such a way that the △-operator from continuous on the R-field becomes discrete
on the Z-field, so as to have this distinctness:

−△Z =

n∑
λ=1

(
2φ(x)z − φ(x− eλ)z − φ(x+ eλ)z

)
. (13)

3. Some Answers—Let Us Just Cut to the Chase: Covariant Derivatives

From this Section, until the end of the articles, I will sketch some solutions to the opening
question.

3.1. Covariant Derivative of Stochastic Type in R4
1,3R4
1,3R4
1,3 (c.-à-d. on a Flat Lorentz–Minkowski

Space-Time) via Itô–Wiener Processes

Here we look for the covariant derivative, within the stochastic realm, in Minkowski/Lorentz–Minkowski
space-time M4 = R4

1,3.
The first thing to do is recover Itô’s formula, for M4 viz

= M4, together with the Wiener processes,
for R4

1,3.
We choose

φ

t = φ

0 +

∫ t

0

βsds+ вRWt (14)

as an Itô diffusion-type process, where

φ

t is a stochastic process,
βs is a process almost surely with bounded variation of some path,
вR > 0 is a real constant,
Wt is the Wiener stochastic process, which is almost surely continuous in t, and square-integrable

martingale regarding a non-decreasing family Ut, t ∈ [0,∞) of σ-subalgebras of the σ-algebra B.

Marginalia 3.1. A martingale is a stochastic process governed by a sequence of random fluctuations.
Consider that in my formalism—cf. [27, Sec. 12.4.3.2, and Definition 16.1.9]—the triple

( “Ω,Bσ,µ) denotes a probability space with a Borel σ-algebra on “Ω.

Let
τ be a proper time (an invariant parameter),
Э viz. Э(U

φ

τ ) be the conditional expectation on ( “Ω,Bσ,µ) of φ

(t) concerning the σ-algebra
generated by some Borel sets in a n-dimensional R-field, with the map υ : “Ω → Rn (that is why
the expectation covers the Ut),
Ν be the present state,a viz. the now, of φ

τ , scilicet the present σ-algebra for φ

τ .
Suppose that φ

τ (the stochastic process) has values in a specific Riemannian manifold, in
compliance with the map φ

τ : “Ω → M.
Then we can write, à la Dohrn–Guerra–Ruggiero [10] [14],b the relativistic forward and backward

mean derivative of stochastic type, indicated with D+ φ

τ and D− φ

τ , respectively, for a flat pseudo-
Euclidean (Minkowskian-like) Lorentzian space-time:

D+ φ

τ = lim
∆τ↓0

Э
{ φ(τ +∆τ)− φ

τ

∆τ

∣∣∣∣ Ν φ

t

(

φ(τ +∆τ)− φ

τ

)2
⩽ 0

}
+ lim

∆τ↓0
Э
{ φ

τ − φ(τ −∆τ)

∆τ

∣∣∣∣ Ν φ

t

(

φ

τ − φ(τ −∆τ)
)2

⩾ 0

}
(15)

a It is not a La. letter. It is a capital Gr. letter, from the adverb νῦν, “now”.
b See also A.B. Cruzeiro and J.-C. Zambrini [5, sec. 5].
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and

D− φ

τ = lim
∆τ↓0

Э
{ φ

τ − φ(τ −∆τ)

∆τ

∣∣∣∣ Ν φ

t

(

φ

τ − φ(τ −∆τ)
)2

⩽ 0

}
+ lim

∆τ↓0
Э
{ φ(τ +∆τ)− φ

τ

∆τ

∣∣∣∣ Ν φ

t

(

φ(τ +∆τ)− φ

τ

)2
⩾ 0

}
, (16)

marking with ∆τ the relativistic displacements a/o increments of φ

τ .
The relativistic forward mean derivative D+ φ

τ (15) and the relativistic backward mean derivative
D− φ

τ (16) are covariant under the Lorentz transformations of the reference systems given by the
tetrads.

It will of course be useful to note that one has D+ φ

τ =

Ψ+
(
τ, φ

τ

)
, for a C2 smooth vector field

Ψ+(τ, x) = lim
∆τ↓0

Э
{ φ(τ +∆τ)− φ

τ

∆τ

∣∣∣∣ φ

τ = x
(

φ(τ +∆τ)− φ

τ

)2
⩽ 0

}
+ lim

∆τ↓0
Э
{ φ

τ − φ(τ −∆τ)

∆τ

∣∣∣∣ φ

τ = x
(

φ

τ − φ(τ −∆τ)
)2

⩾ 0

}
, (17)

and D− φ

τ =

Ψ−
(
τ, φ

τ

)
, for a C2 smooth vector field

Ψ−(τ, x) = lim
∆τ↓0

Э
{ φ

τ − φ(τ −∆τ)

∆τ

∣∣∣∣ φ

τ = x
(

φ

τ − φ(τ −∆τ)
)2

⩽ 0

}
+ lim

∆τ↓0
Э
{ φ(τ +∆τ)− φ

τ

∆τ

∣∣∣∣ φ

τ = x
(

φ(τ +∆τ)− φ

τ

)2
⩾ 0

}
. (18)

3.2. Covariant Derivative of Stochastic Type in Curved Space-Time (c.-à-d. on a
Lorentz Hyperbolic Manifold) via Itô–Wiener Processes

We analyze the context of general relativity (gr). Let

Ψ

(τ,m) be a vector field on a Lorentz
4-manifold, symbolized by L4, with a metric signatures (1,3)− viz. (−,+,+,+), or, which is the
same, to use the usual Riemannian notation, on a 4-manifold, symbolized by M4, of type C2

smooth, considering within this scheme a Lorentzian orthonormal frame in the tangent space
TxM4, x ∈ M4.

Let us say that Γτ,s is an operator of parallel translation—derived from the Levi-Civita-like
connection—on the Lorentz bundle Л (M4), along a stochastic Itô-process [15] [16],a from a random
point φ

s to another random point φ

τ . Therefore the displacements a/o deviations of the geodesic
are taken into account.

For the general relativity, we define the covariant relativistic mean derivatives of stochastic type,

D+ Ψ

(τ, φ

τ ) and D−

Ψ

(τ, φ

τ ),

over a L4-manifold, on the guideline of these equalities:

D

Ψ

(τ, φ

τ ) = lim
∆τ→+0

Э φ

τ

Γτ,τ+∆τ

Ψ(
τ +∆τ, φ(τ +∆τ)

)
−

Ψ

(τ, φ

τ )
)

∆τ

 , (19)

and

D∗

Ψ

(τ, φ

τ ) = lim
∆τ→+0

Э φ

τ



Ψ

(τ, φ

τ )− Γτ,τ−∆τ

Ψ(
τ −∆τ, φ(τ −∆τ)

)
∆τ

 , (20)

after specifying the expressions

D

Ψ

=
∂

Ψ

∂τ
+∇β

Ψ

+

(
1

2

)
∇2 Ψ

=
∂

Ψ

∂τ
+∇β

Ψ

+

(
в2

R

2

)
∇2 Ψ

, (21)

D∗

Ψ

=
∂

Ψ

∂τ
+∇β∗

Ψ

−
(
1

2

)
∇2 Ψ

=
∂

Ψ

∂τ
+∇β∗

Ψ

−
(

в2
R

2

)
∇2 Ψ

, (22)

a See the finishing touches in [9].
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where ∇ is the covariant derivative of the Levi-Civita connection, ∇2 is the Laplace–Beltrami
operator, and

в2
R

2

eqv
==

ℏ
2m

. (23)

The reduced Planck constant, ℏ = h
2π , pops up on the assignment of the value

вR =

√(
ℏ
m

)
eqv
== 1 (24)

to the number вR, embracing the Itô diffusion-type process, subordinated to the statement

φ

[M4] =

∫ τ

0

βsds+ вRWτ , (25)

to be compared with Eq. (14).
The aforementioned decomposition is covariant referring to Lorentz transformations in TxM4

for (15) and (16) bur not for D φ

τ and D∗ φ

τ . There is however another covariance. Let X be a
frame under which the time-like component and the space-like 3D components hold, so

D+ φ

τ = X 0
+(τ, φ

τ ), (26)

D− φ

τ = X 0
−(τ, φ

τ ). (27)

Let w φ

τ be a vector field. Putting

w̃

φ

1 (τ, x) =
1

2

(
X 0

+(τ, x) + X 0
−(τ, x)

)
, (28)

w̃

φ

2 (τ, x) =
1

2

(
X 0

+(τ, x)−X 0
−(τ, x)

)
. (29)

We set
w̃

φ

1 (τ,

φ

τ ) = D̃s φ

τ (30)
as the gr-relativistic current 4-velocity of φ

τ ,
a where

D̃s =
1

2
(D+ +D−), (31)

is the gr-relativistic symmetric (s) mean derivative, and

w̃

φ

2 (τ,

φ

τ ) = D̃a φ

τ (32)

as the gr-relativistic velocity (cf. footnote a on p. 8) of osmotic determination of φ

τ , where

D̃a =
1

2
(D+ −D−) (33)

is the gr-relativistic antisymmetric (a) mean derivative.
The current vector w

φ

τ
1 is clearly covariant, since

w

φ

τ
1 = w̃

φ

τ
1 (34)

(they have the the same decomposition-coordinate); whilst about the osmotic vector, it is decreed
that

w

φ

τ
2 =

(
D

φ

a

φ0
τ , D

φ

a ˜φτ
)
, (35)

w̃

φ

τ
2 =

(
D

φ

a

φ0
τ −D

φ

a ˜φτ
)
. (36)

The vector 1
2 (D

+D− +D−D+) φ

τ of (the stochastic process) φ

τ , is called the 4-acceleration.
Under the Itô formula in M4 emerges that

1

2
(DD∗ +D∗D) φ

τ =
1

2
(D+D− +D−D+) φ

τ , (37)

which is proven by D+D− φ

τ =
(
D∗φD φφ0τ , D φD∗φ˜φτ

)
and D−D+ φ

τ =
(
D φD∗φφ0τ , D

∗

φD φ˜φτ
)
.

a When we talk about velocity, a stochastic fluctuation takes place here.
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3.3. A Step Back

Let us proceed with an additional conceptualization. The 4-vector acceleration 1
2 (DD

∗+D∗D) φ

τ

has a precise stochastic origin:
1

2
(DD∗ +D∗D) φ

t = (DsDs −DaDa) φ

t = Dsw

φ

t −Daw

φ

t , (38)

constituting a Borel vector on a R-field. From here, it is agile to have classical formulæ,

Dsw

φ

t
1 =

∂

∂t
w

φ

t
1 +∇w

φ

t
1
w

φ

t
1 , (39)

Daw

φ

t
2 = ∇w

φ

t
2
w

φ

t
2 +

1

2
в2

R∇2w

φ

t
2 . (40)

NB. Before arriving at an explicitly relativistic picture, the vector w1 and w1 can be written as

w

φ

t
1 = w

φ

t
1 (m, t) =

1

2

[ Ψ0(m, t) +

Ψ0
∗(m, t)

]
, (41)

w

φ

t
2 = w

φ

t
2 (m, t) =

1

2

[ Ψ0(m, t)−

Ψ0
∗(m, t)

]
, (42)

respectively.
We can thereupon formalize the stochastic acceleration as follows:

1

2
(DD∗ +D∗D) φ

t =

(
∂

∂t
w

φ

t
1 +∇w

φ

t
1
w

φ

t
1

)
−
(
∇w

φ

t
2
w

φ

t
2 +

1

2
в2

R∇2w

φ

t
2

)
. (43)

With the support of the latter equation, we are close to describing the accelerated motion ẍ(t)
of a particle of mass m and velocity ẋ(t) along a curve x(t), according to Newtonian mechanics:

ẍ = 1/mF
(
x(t), t, ẋ(t)

)
, (44)

for a vector force field F . If the system is conservative, Newton’s second law, F = ma⃗ = dv⃗
dt

eqv
==

F
(
m(t), t, ṁ(t)

)
= DT̊

dt ṁ(t), becomes

DT̊

dt
ṁ(t) = − gradEu, (45)

where DT̊ /dt is the (covariant derivative of the) Levi-Civita connection, and Eu is the potential
energy.

From Eqq. (38) (43) we can extract this new equalization of the stochastic acceleration:a

1

2
(DD∗ +D∗D) φ

t =

(
∂

∂t
w

φ

t
1 +∇w

φ

t
1
w

φ

t
1

)
− 1

2

(
2∇w

φ

t
2
w

φ

t
2 −△rkh w2

)
, (46)

with the presence of the Laplace–de Rham operator, aka the Kodaira–Hodge Laplacian [6, p. 196],
△rkh = (d+ δ2) = dδ + δd, including the Cartanian differential (namely, the exterior derivative) d,
and the codifferential δ.

4. Relativistic Newton–Nelson Equations

What we have seen in the previous Section leads to a double formula à la Nelson [23] [24] [25,
chap. I, sec. 10. Stochastic Parallel Translation] [26, chap. 12. Dynamics of stochastic motion], or
à la Newton–Nelson,

1

2

(
D+D− +D−D+

)

φ

τ = F
(

φ

τ , w̃

φ

1 (τ,

φ

τ )
)
, (47)

D2 φ

τ =
ℏ
m
In, (48)

where

a Compare with Eqq. (50).
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F is a linear operator F (x) : TxM4 → TxM4, physically interpretable as a 4-force (it is, again,
a vector force field), imagining a stochastic mechanics in space-time of general relativity, with a
relativistic particle endowed with rest mass m, under an Itô-like process φ

τ in a 4-manifold,
D2 φ

τ can be re-equalized (and clarified) like this,

D2 φ

τ =

{[
lim
∆τ↓0

Э φ

τ

(
∆+ φ

τ ⊗∆+ φ

τ

∆τ

)
= lim

∆τ↓0
Э φ

τ

(
∆− φ

τ ⊗∆− φ

τ

∆τ

)] ∣∣∣∣ U

φ

τ

}
, (49)

In is the identity matrix.
For the appearance of ℏ, see Eqq. (23) (24). Consult T. Zastawniak [44].
Two remarks.
(1) In (47) (48) the Nelson’s mean acceleration (nma), which is a stochastic acceleration in the

Nelsionan view, is shown; it can be established in various mathematical guises:

F a

φ

τ
=



1
2 (DD

∗ +D∗D) φ

τ [M4] =
1
2

(
D+D− +D−D+

)

φ

τ [M4],
a

1
2 [DD

∗x(τ) +D∗Dx(τ)] φ

τ ,

− 1
2 [Bτ

˙
Bτ (x) +

˙
BtBt(x)] ,

− grad Ϙ υ/m,

(50a)

(50b)

(50c)
(50d)

where
B(t) and

˙
B(t) are differential operators inherent in Brownian motion, or Wiener process,

Ϙ υis the potential under the Ornstein–Uhlenbeck process [42] addressed to the theory of
Brownian motion.

It is very captivating to emphasize that Nelson [23] produces the Schrödinger equation

iℏ
∂ψ

∂t
= i

в2
R

2
∇2ψ − i

1

ℏ
Euψ, (51a)

= −ℏ2

2
∇2ψ + gradEu︸ ︷︷ ︸

grad Ϙ υ

ψ,b ∇2 = △ (Laplace–Beltrami operator), (51b)

from diffusion theory, but he ends up developing a stochastic Newtonian equation. In other words,
Eq. (51) is deductible from the stochastic Newton’s equation. (And with that we reconnect to
Section 2). This is verifiable because from a small modification of Eq. (43) and from

1

2
(DD∗ +D∗D) φ

t = 1/m · F
(

φ

τ , w

φ

1 (t,

φ

t)
)
, (52)

D2 φ

t =
ℏ
m
In,c (53)

revealing the trajectory of a particle under stochastic laws of motion, one sees that

∂w

φ

1

∂t
= − grad Ϙ υ− (w

φ

1∇)w

φ

1 + (w

φ

2∇)w

φ

2 +

(
в2

R

2
∇2

)
w

φ

2 , (54)

for F = − grad Ϙ υ.
(2) In (47) (48) we can also express the Ricci curvature, designated with Ric, in the form of

C∞-smooth
(
1
1

)
-tensor,

1

2
(DD∗ +D∗D) φ

τ = 1/m · F
(

φ

τ , w

φ

τ
1 , τ

)
+

ℏ
2m

Ric( φ

τ ) ◦ w

φ

τ
2 , (55)

D2 φ

τ =
ℏ
m
g{2,0}, (56)

where g{2,0} is an algebraic symmetric object in the form of
(
2
0

)
-tensor. Pay attention to the fact

that, in the latter double formula, the mean derivatives and the Ricci curvature tensor have a

a Cf. [8, p. 123].
b To be meticulous, iℏ ∂ψ∂t (x, t) = et cetera.
c Compare with Eqq. (47) (48).
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definition according to the metric connection, viz. the Levi-Civita (Riemannian) connection

ωh
eqv
== ∇ (57)

of a
(
0
2

)
-tensor field, taking for granted that ωh ∈ Ω1(P̊, h) is a h-valued 1-form on P̊, or rather,

a principal connection equivalent to the Levi-Civita connection (it is sometimes referred to as
Ehresmann connection).

4.1. Parallel Translation of Random Vectors from One Fiber Bundle to Another

Let (E̊ , π,M, F̊) be a fiber bundle, where E̊ , M and F̊ are the total space, the base space, and
the fiber of the bundle, respectively. The vector bundle can be represented by the map π : E̊ → M.

Presupposing a connection Γ E̊τ,s, the quartet of Eqq. (47) (48) (55) (56) can nimbly become a
set of formulæ on fiber bundles.

Example 4.1. Let us confine ourselves to a paradigmatic equalities, with a(
Γ E̊τ,s

)
-translation from E̊ φ

s
to E̊ φ

τ
,

where the terms E̊ φ

s
and E̊ φ

τ
are two fiber bundles related to stochastic processes with the

occurrence of random variables. If we impose that

φE̊
τ

eqv
== φ

τ

is our stochastic process in the bundle E̊ , then Eqq. (15) and (16), articulating the covariant mean
derivatives, take this look:

D+ φE̊
τ = lim

∆τ↓0
Э

{
Γ E̊τ,τ+∆τ

φE̊(τ +∆τ)− φE̊
τ

∆τ

∣∣∣∣ Ν φ

t

(
φ(τ +∆τ)− φ

τ

)2
⩽ 0

}

+ lim
∆τ↓0

Э

{
φE̊

τ − Γ E̊τ,τ−∆τ

φE̊(τ −∆τ)

∆τ

∣∣∣∣ Ν φ

t

(
φ

τ − φ(τ −∆τ)
)2

⩾ 0

}
(58)

and

D− φE̊
τ = lim

∆τ↓0
Э

{

φE̊
τ − Γ E̊τ,τ−∆τ

φE̊(τ −∆τ)

∆τ

∣∣∣∣ Ν φ

t

(

φ

τ − φ(τ −∆τ)
)2

⩽ 0

}

+ lim
∆τ↓0

Э

{
Γ E̊τ,τ+∆τ

φE̊(τ +∆τ)− φE̊
τ

∆τ

∣∣∣∣ Ν φ

t

(

φ(τ +∆τ)− φ

τ

)2
⩾ 0

}
. (59)

4.2. Stochastic Quantization of a Particle in a Non-Abelian Gauge Field

In light of what has just been said in Section 4.1, with an addition of the vector bundle E̊ ,
Eqq. (47) (48) are nothing more than a version of the quantum formulæ of the motion of a certain
particle in a gauge field, under a stochastic process. Here is how:

1

2

(
DE̊+D− +DE̊−D+

)

φE̊
t = F

t, φE̊
t

(
w

Γ (ϑ,Ω)

φE̊

)
, (60)

D2 φ

t =
ℏ
m
In, (61)

postulating a connection Γ (ϑ,Ω) having
a (sub)connection ϑ-form, or a vector-valued 1-form,
a curvature Ω-form, or a 2-form of the Cartan connection,
by virtue of which

Ω = Dϑ, Ω
eqv
== ΩE̊ , ϑ

eqv
== ϑE̊ (62)

holds on E̊ .
NB. A kindred road-solution to this one is taken by Y.E. Gliklikh and N.V. Vinokurova [11, p.

77].
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5. Klein–Gordon & Dirac Equations

The quartet of Eqq. (47) (48) (55) (56) is plainly related to Klein–Gordon equation, which I
will divide into three versions, (

1
c2

∂2

∂t2 −∇2 + m2c2

ℏ2

)
ψ[(

ωh − i
ℏ w̃, ωh − i

ℏ w̃
)
− 1

h2

]
ψ

□+m2ψ

 = 0, (63)

where ψ is a scalar/wave function, and □ = 1
c2

∂2

∂t2 − ∇2 is the d’Alembertian, constituting the
substratum for the Dirac equation, also divided into three versions,(

iℏγµ ∂
∂xµ −mc

)
ψ(

iγµ∂µ −m
)
ψ(

i/∂ −m
)
ψ

 = 0,a (64)

where the Dirac 4-spinor, id est a 4-component wave function, ψ =
(

ζα

χ̃α̇

)
, appears, with a

left-handed spinor ζα, and a right-handed spinor χ̃α̇.

6. Dirac Operator via Clifford Connection

In these circumstances, we are able to find a link between the covariant derivatives of Sections
3.1 plus 3.2 and the Dirac operator via Clifford algebra. Let
π : E̊ → M be a vector bundle over a 4-manifold M,
Γς
(
M, E̊

)
be the space of smooth sections of E̊ ,

Γς
(
M,

∧k T̊ ∗M⊗ E̊
) viz
= Zς

(
M, E̊

)
be the space of sections of the bundle

(
M,

∧k T̊ ∗M⊗ E̊
)
,

or the space of differential k-forms in E̊ , stated that T̊ ∗M is a cotangent bundle (more particularly,
a disjoint union of the cotangent spaces T ∗x M).

So, assume that E̊ is a complex Z2-bundle{
E̊ viz
=
(
E̊
)
Z2

}
= E̊+ ⊕ E̊−. (67)

Which allows us to imagine that E̊ is a bundle of Clifford modules, with a bundle map φCℓ : T̊ ∗M →
end
(
E̊
)

such that
φCℓ(ω1)φCℓ(ω2) + φCℓ(ω2)φCℓ(ω1) = −2(ω1, ω2), (68)

letting ω ∈ T ∗x M be a 1-form (acting as a cotangent vector) on M.
Given a Cliffordian bundle of a Riemannian manifold Cℓ(M), and identified with endCℓ(M) an

endomorphism of Clifford E̊-valued module over Cℓ(M), the space of sections

Γς
{
M, end

(
E̊
)} ∼= Γς

{
M, Cℓ(M)⊗ endCℓ(M)

(
E̊
)}

(69)

is isomorphic to the space of E̊-valued differential k-forms,

Zς
{
M, endCℓ(M)

(
E̊
)} ∼= Γς

(
M,

k∧
T̊ ∗M⊗ endCℓ(M)

(
E̊
))

. (70)

a In Eq. (64) γµ viz. γµd = {γ0, γ1, γ2, γ3} are the [M ]4×4 Dirac gamma matrices,

γ
0
=

(
1 0
0 −1

)
, γ

1
=

(
0 σ1

−σ1 0

)
, γ

2
=

(
0 σ2

−σ2 0

)
, γ

3
=

(
0 σ3

−σ3 0

)
, (65)

plus γ5 =
(

0 1
1 0

)
; γ0 is the time-like matrix, 1 = I2, and σ1,2,3 the Pauli matrices; its extended writing is:

γ
0
=

{
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

}
, γ

1
=

{
0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

}
, γ

2
=

{
0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

}
, γ

3
=

{
0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

}
, (66)

plus γ5 = iγ0, γ1, γ2, γ3 =

{
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

}
, in the anti-commutation relation {γµ, γν} = γµγν + γνγµ = 2ηµν I4×4,

∂µ = ∂
∂xµ , and /∂ = γµ∂µ is the partial derivative under the Feynman slash notation, with which Feynman’s Dirac

operator, D = /∂
eqv
== γµ∂µ, is accessed.
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The endomorphic decomposition is

end
(
E̊
) ∼= Cℓ(M)⊗ endCℓ(M)

(
E̊
)
.

A connection on the vector bundle via Clifford E̊-module, simply called Clifford connection, is
∇E̊ , according to which {

∇E̊
X⃗
, φCℓ(ω)

}
= φCℓ

(
∇X⃗ω

)
, (71)

where X⃗ is a vector field, and ∇X⃗ω is the Levi-Civita derivative of ω. Which means that the
Levi-Civita connection ∇T̊ (to wit, the linear connection on the tangent bundle) on

∧k T̊ ∗M is
but a Clifford connection,

∇T̊ eqv
== ∇E̊ . (72)

The Dirac operator affiliated with the Clifford connection ∇E̊ can take these two forms:
(1) for a local frame field, namely an orthonormal basis, ej = {e1, . . . , en},

D =

n∑
j=1

φj
Cℓ∇

E̊
ej , (73)

or, alternatively,

D =

n∑
j=1

φCℓ(dx
j)∇E̊∂j , (74)

(2) for a sequential configuration,

Γς
(
M, E̊

) ∇E̊

−−→ Γς
(
M, T̊ ∗M⊗ E̊

) φCℓ−−→ Γς
(
M, E̊

)
.

Marginalia 6.1 (Smoothness, differentiability, and non-differentiability). We were talking earlier
on about space of sections. We start from the surmise that our sections are smooth. It should be
remembered that by sections—of vector bundles—we mean differentiable relations designed to
colleague a certain vector in the corresponding vector space to each point of the manifold under
consideration. This is in accordance with the scale relativity, which is a physico-geometric theory
mixing differentiable and non-differentiable parts. The non-differentiable parts are certainly the
fractal ones.

Marginalia 6.2 (Spinor connection). About Eq. (72), the same goes for a Levi-Civita connection
∇P̊ß on a spinor bundle P̊ß of a spin manifold M. Here too we have a coincidence with the Clifford
connection,

∇P̊ß eqv
== ∇E̊ . (75)

Recall that a spinor bundle P̊ß is
a component of the principal SL2(C)-bundle over R4

1,3, or
a complex vector bundle ς : P̊ß → M (see Atiyah–Singer index theorem).

7. A Dive into the Fractoid Spaces

In this Section, we will evaluate the notion of stochastic geodesic together with that of energy
functional, and of stochastic diffusions, which is neither smooth nor time-differentiable. (Since the
geodesic paths, or the spatial trajectories of the manifold, are not differentiable anent the time, it
is indispensable to substitute the derivative in time with a mean derivative). There will also be a
nexus to Brownian motion. I call fractoid spaces all non-time-differentiable fractal spaces that,
wherever it happens, can also be devoid of smoothness.
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7.1. Derivatives Coupled with a I-Type Semi-martingale and the Stratonovich Integral

Let мt be
· a semi-martingale in Tм0

M, in accordance with a filtration Ф t, t ∈ [0, T ], and
· a stochastic process with

мt = м loc
t + χt, (76)

where м loc
t is a local martingale, and χt is a stochastic, or random, process having paths almost

surely bounded with variation in t.
Let φ

t be a stochastic process outlined with a stochastic differential equation in Stratonovich
form, and ℓs the arc length (the distance between two points along a section of a curve),

φ

t =

∫ t

0

(
τм
0←ℓs ◦ dмℓs

)
, (77)

estimating that
τм
t←ℓs : Tмℓs

M → Tмt
M

is the stochastic parallel transport along φ

t paired with the connection ∇T̊ . The time derivative
on the right-hand side of (77) can be demarcated by conditional expectations under a change of
probability measure µ (on every Borel set, cf. Section 3.1),

Dµ

φ

t
eqv
== D φ

t = lim
ε→0

1

ε
E

φ

k

(

φ(t+ ε)− φ

t

∣∣∣∣ Ф t

)
, φ

t = φ(t+ ε), (78)

where Dµ is the derivative with reference to probability µ-measures, and E

φ

k is the stochastic kinetic
energy of м.

The derivative, in its forward version, is, instead,

D∇µ мt
eqv
== D∇

T̊
мt = τм

t←0D φ
t. (79)

To generalize the derivative, merely subjoin a vector field, say, X⃗,

D∇µ X⃗t
eqv
== D∇

T̊
X⃗t = lim

ε→0
E

φ

k
Фt

{
τм
t←t+εX⃗

(
t+ ε,м(t+ ε)

)
− X⃗(t,мt)

ε

}
. (80)

NB. Compare the above results with those in X. Chen and A.B. Cruzeiro [3, sec. 2].

7.2. The Concept of EEE-Stochastic Geodesics and of υ φ

υ

φ

υ

φ-Diffusion Process

The concept of geodesic can be characterized by the notion of set of critical points. The
most direct manner is to use the random Brownian motion (Fig. 1), on the flat space, along
certain directions, say, в

s (s is for sign). Let x reveal a path of a R-valued Brownian motion,
xt, t ∈ [0, T ], x0 = 0. We can generalize the derivative Dµ

eqv
== D on a flat space, which is that of

random motion, to hold onto the stochastic schema.

Proposition 7.1 (Geodesic as a set of critical points). Let

E

φ

k (м) = E

φ

k

∫ T

0

∥∥∥D∇µ мt
eqv
== D∇

T̊
мt

∥∥∥2 dt (81)

be the energy functional, w a vector field, and υ φthe diffusion process (see Section 7.3.1), produced
by the operator Łw, w ∈ C2, see Eq. (97). Iff

∇T̊ w + ∂tw + △w +Ricw
2

D∇
T̊
w(t, υ

φ

t )

 = 0 (82)

almost everywhere, said that △w and Ricw
a are the Laplacian operator, see Eq. (95), and the Ricci

curvature w.r.t. w, then υ

φis a critical path for E

φ

k , that is, a geodesic is nothing more than a set

a A definition of the Ricci curvature tensor for the stochastic geodesic curves inside the variational principle and the
Euler–Lagrange dynamics, is in A.B. Cruzeiro [4, p. 90].
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of critical points of

E

φ

k

(
γc(t)

)
=

∫ T

0

(
gµν
(
γ̇c(t)

)
γ̇µc(t)γ̇

ν
c(t)

)
dt =

∫ T

0

∥∥γ̇c(t)∥∥2 dt, (83)

gµν being the Riemannian metric tensor (field).
Eqq. (78) (79) (80) (81) (82) (83) can be placed into the fractoid spaces.

Proof. Firstly, please note that the critical path satisfies the Euler–Lagrange equations:
∂L

∂xµ
=

d

dt

(
∂L

∂ẋµ

)
or − ∂Eu

∂xµ
=

d

dt

(
∂Ek

∂ẋµ

)
, 1 ⩽ µ ⩽ n, (84a)

∂L

∂xµ

(
γc(t), γ̇c(t), t

)
=

d

dt

(
∂L

∂vµ

)(
γc(t), γ̇c(t), t

)
, γc(t) =

{
x1t , . . . , x

n
t

}
, γ̇c(t) =

{
ẋ1t , . . . , ẋ

n
t

}
.a

(84b)

Let π : O̊(M) → M, π(x, р) = x, be a fiber map advantageous for a Euclidean isometry, and
O̊(M) = {(x ∈ M, р)} the orthonormal frame bundle on M (see Section 7.3.2). If one handles the
action functional of a Lagrangian system [27, Eqq. (1.76) (1.77)], and sets out that

E

φ

k = E

φ

k

∫ T

0

∥∥∥Dπ (рx(t)

)∥∥∥2 dt, (85)

one can obtain
d

dε

∣∣∣∣
ε=0

E

φ

k

∫ T

0

∥∥∥Dπ (рx+ε в(t)

)∥∥∥2 dt = 2E

φ

k

∫ T

0

{
Dπ

(
рx(t)

)
, Dπ̇

(
d

dε

∣∣∣∣
ε=0

(
рx+ε в(t)

))}
dt

= 2E

φ

k

∫ T

0

{
Dπ

(
рx(t)

)
, ˙в− Ric( в)

2
−£( в

t)

}
dt

= [: 2E

φ

k

∫ T

0

{
Dπ

(
рx(t)

)
, D ( м

t)
}
:]dt, (86)

where

вnominates processes of bounded variation, for which

в

0 = в

T = 0, (87)

£ is the Lie derivative, cf. Eq. (95),
the notations [: plus :] signify that the combination of symbols within them must be repeated,

stimulated by the beginning and ending repeat signs in music, and

мis a semi-martingale, with initial conditions м

0 = 0, see Eq. (94).
By virtue of the Eq. (87), it follows that the second expression of (86) [: · · · :] can be put in

equivalence to −2E

φ

k

∫ T

0

{
(D)Dπ (рx) ,

в

t

}
, à savoir

−2E

φ

k

∫ T

0

{
(D)Dπ (рx) ,

в

t

}
eqv
== 2E

φ

k

∫ T

0

{
Dπ

(
рx(t)

)
, D ( м

t)
}
, (88)

and we are done. In Eqq. (85) (86) (87) the equivalence Dµ
eqv
== D holds. □

7.3. Marginalia of Clarification

7.3.1. The υ

φ

υ

φ

υ

φ-Diffusion Process and RRR-valued Random Brownian Motion

The diffusion process υ φby Łw∈C2 is built on

dυ

φ

t
(ν)

= yνξ dx
ξ
t + dt

{
wν −

gϱ,ςΓ ν
ϱ,ς

2

}
; (89)

y and xt are path R-elements belonging to Brownian motion, accompanied by the Christoffel
Γ -symbols.

a Consider a particle of mass m moving along γc(t) with a velocity v. The function L(x, ẋ, t) viz. (x, v, t) is the
Lagrangian on T̊ M × [0, 1] → R, and it matchs with the difference between the kinetic energy (Ek) and the potential
energy (Eu).
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Figure 1. To give an idea with a simulation: Brownian-like y-#800080 paths & Brownian-like xt-#008080
paths in a circle, or a subset of the real 2-space, S1 = {x ∈ R2 | ∥x∥ = 1}

Thinking back to the lesson of A.N. Kolmogorov [17, p. 281], a R-valued random variable
y = φ(x) on a probability space Pµ = ( “Ω,Bσ,µ) has a standard Gaussian distribution with zero
mean, where it takes the form

µ (x ∈ Pµ | φ(x) < η) =
1√

2π
(∫

Pµ
φ2dµ

) ∫ η

−∞
exp

− ш2

2
(∫

Pµ
φ2dµ

)
 dш, −∞ < η< +∞,

(90)
under a density function φ(x).

The same formula applies to a space of (pseudo-)Riemannian type, replacing in (90) Pµ with
the conventional mathcal letter M, ou seja x ∈ M, and

∫
M. This gives birth to what can be

called R-valued Brownian random measure.
NB. From here it is possible to provide a subsequent definition of space decomposition of Hilbert

space

H
eqv
== L2

(
M eqv

== Rn,µ
)

(91)

into Hermite-Itô polynomial subspaces.

7.3.2. Natural Isomorphism Allied with the Orthonormal Frame Bundle

Apropos of O̊(M), the orthonormal basis is e(x) in TxM, so that there is a natural isomorphism,
in the Euclidean n-dimensional space,

TxO̊(M) ∼= Rn ⊕ on(R), (92)

thru the medium of the Levi-Civita connection, and the orthogonal Lie algebra

on(R) = {X ∈ gln(R) | X = −Xt} ,a (93)

for a skew symmetric matrix X = −Xt in the Lie algebra gln(R) of the general linear group
GLn(R), set of all real (n× n)-matrices.

a Xt is the transpose of X.
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7.3.3. The II-Type Semi-martingale, and the Laplacian Operator

The semi-martingale мis calculated by the method of Itô–Stratonovich, and it is definable as

м=
d

dε

∣∣∣∣
ε=0

(
рx+ε в

)
, ϑll, (94)

once it is reported that ϑll (ϑl or ϑl) is the habitual
(
1
0

)
-tensor valued 1-form (l is for letter).

Ergo (Section 7.3.2) the Laplacian is so explicable, in relation to the Lie £-derivative,

(△w)O̊(M) =

n∑
λ=1

(£wϑ)
2
. (95)

Implementing a C∞ smooth function г, the Laplace–Beltrami operator on M is

∇2 = (△w)M (г)C∞ = gµν
(

∂2г
∂xµ∂xν

− Γ ξ
µ,ν

∂г
∂xξ

)
, x ∈ M. (96)

For a 4-dimensionality, in order to reconnect with Sections 3.2 and 4, we can straightforwardly
write ∇2 = (△w)M4 .

And to complete the picture, the above-mentioned Łw operator is so representable,

Łwг =
1

2
(△w)M г + ∂wг, w ∈ C2. (97)

8. White Noise on a (4+)D(4+)D(4+)D Space-Time HHH-Geometry: the Paley–Wiener Integral

Section 7.3.1 sets the tone for bringing up Paley–Wiener’s paraphernalia (stochastic calculus
for Brownian motion) [37] [36, chap. IX] [43]. We may surmise that the Hilbert H-space has the
following equivalence:

H
eqv
== L2

(
R4+

1,3,

)
.a (98)

So let
R4+

1,3, = [0,∞)× R4+ (99)

be a space-time, such as that in [28], but still lacking the torsion, with a Minkowski–Lorentzian
inner product g(v, w) viz. g⟨v, w⟩,b

g(v, w)⟨v,w⟩∈H =

∫ +∞

0

∫
R4+

1,3,

dtdx {vt,xwt,x} , t ⩾ 0, x ∈ R4+
1,3,. (100)

Fix
(1) the process Wt = {Ww}w∈Hc as a (continuous time) mean-zero gaussian distribution of the

type of Eq. (90), having a covariance function

φcov(Ww,Wv)
eqv
== g(w, v)⟨w,v⟩∈H, (101)

(2) and the white noise on R4+
1,3, as

Θ
w
t,x =

∂4+1Wt,x

∂t∂x1 · · · ∂x4

. (102)

For a map w 7→Ww, the stochastic Paley–Wiener integration against Θw is

Ww =

∫ +∞

0

∫
R4+

1,3,

dtdx
{
wt,xΘ

w
t,x

}
, w ∈ H. (103)

a Pay attention to the comma after the number 3.
b Isto é g(v, w) = v0w0+v1w1+v2w2+ · · ·+vn−z∗wn−z∗−vn−z∗+1wn−z∗+1−· · ·−vnwn, where z∗ is a non-negative

integer.
c Be careful not to confuse this letter W (via $W$ command) with the letter W (via \Sobolev command), for the Sobolev

vector space, in Sec. 1.2: there is no correlation.
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9. Torsion of the Covariant Derivative

To insert the spin-torsion tensor in gr, à savoir the Einstein–Cartan theory of gravity, see [28].
In detail, the Einstein–Cartan equations are those marked with the numbers (60) (61a) (61b) in
[28], whilst the Einstein–Cartan Lagrangian, for a 4D space-time with spin-torsion (described by a
Clifford k-form field) via Clifford bundles, is the one with the number (82).

Pertaining to the topic examined so far, we can write the torsion of the covariant derivative in
a variety of ways. I will highlight some of these.

9.1. Torsion of ∇∇∇-Connections thru Holonomy

We move on to the study of the holonomy of connections with skew symmetric torsion, as torsion
is the skew symmetric contribution to the affine connection. Interestingly, the Einstein–Cartan
theory can be deciphered as a theory of defects in a space-time with curvature and torsion, or in a
4-dimensional continuum containing defects. In fact, how much distance we keep, conceptually,
between torsion and deformation? That is the question M.L. Ruggiero and A. Tartaglia [35] are
asking.

Let “τ be a torsion
(
1
2

)
-tensor of the ∇-connection on a (pseudo-)Riemannian manifold, so we

will take two C∞ vector fields X⃗ and Y⃗ , for which it holds that

“τ
(
X⃗, Y⃗

)
= ∇X⃗ Y⃗ −∇Y⃗ X⃗ −

[
X⃗, Y⃗

]
, (104)

where
∇X⃗ Y⃗ is the covariant derivative of Y⃗ along X⃗,
∇Y⃗ X⃗ is the covariant derivative of X⃗ along Y⃗ ,[
X⃗, Y⃗

]
is the commutator of X⃗ and X⃗.

Going to apply “τ to X⃗, one acquires a
(
1
1

)
-tensor “τ(X⃗); if “τ(X⃗) is applied to Y⃗ , one acquires a(

1
0

)
-tensor “τ(X⃗, Y⃗ ).
In the presence of a scalar field a/o scalar function ϝ“τ , which is distinctly differentiable, the

equivalence is
∇X⃗

[
ϝ

“τ
Y⃗

]
= X⃗(ϝ“τ )Y⃗ + ϝ“τ∇X⃗ Y⃗. (105)

9.2. DDD-differentiation in Gravity Spin-Torsion Interaction thru Cartan–Einstein Model
(in Riemann–Cartan Geometry)

Let
ч4 be a 4-form (which is the exterior derivative of a projective 3-form),
Θ“τ be the torsion form, or the vector-valued 2-form,
“τ be the torsion tensor (in this paper I use the notation \tau plus an inverted breve, to avoid

confusion with the notation \tau connoting the proper time, see above).
Since

Dч4
µνξ = ч4

µνξϱΘ
ϱ
“τ , (106)

adopting the algebraic Bianchi identities, one has initially these covariant exterior derivatives

8πDTµ =
1

2
ч4
µνξϱΘ

ν
“τ ∧Ωξϱ, (107)

8πDŜµν
= ч4

νϱ ∧Ωϱ
µ − ч4

µϱ ∧Ωϱ
ν , (108)

where
Tµ = Tµνч4

ν is the tensor-valued 3-form, implying the energy-momentum tensor,
Ωll, Ωl

l is the curvature 2-form on space-time (l is for letter, as already seen above),
Ŝµν is the spin (density) tensor.
By selecting some suitable field equations, such as

1

2
gξϱч4

µνξ ∧Ων
ϱ = −8πTµ, (109)

ч4
µνξ ∧Ωξ = 8πŜµν , (110)
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it is possible to draw the following rewriting of the previous Eqq. (107) (108),

DTµ = “τ ξµνθ
ν ∧ Tξ −

1

2
Rξ

ϱµνϑ
ν ∧ Ŝϱ

ξ, (111)

DŜµν
= ϑν ∧ Tµ − ϑµ ∧ Tν , (112)

where θll is a 1-form, or a vector-valued 1-form.

9.3. Quantum-like Fluctuations: a Stochastically Gravitational Fabric of Space-Time

In this background it is subsequently permissible to include in our discussion
(1) quantum-like fluctuations of the (pseudo-Euclidean) metric tensor η(1,3)

+

µν , η(1,3)
−

µν of Minkowski
space-time, and of the metric tensor gµν in Einstein’s general relativity theory,

(2) quantum-like fluctuations of the energy-momentum tensor Tµν , Tµν , oka stress-energy tensor,
or stress-energy-momentum tensor,a depicting the fluctuations of quantum matter fields in curved
space-times,

(3) quantum-like fluctuations of the whole gravitational field, taken in small (but how small?)
pieces.

coda: inspiring snippet

This paper has an essential bibliography as it is (was) a private communication, an échange
de vues, in order to be able to work with a certain lightness. Which results in a prehensility of
the cerveau rêveur. Rigor betwixt fantasy & imagination. Is there a mathematical stream of
consciousness? If so, this writing is a tiny epiphany of it.

There’s a passage from A. Grothendieck [13, 6.2. (6). Le Rêveur, p. 12 otm] that reads:
Si nous pouvons communiquer avec nous-mêmes par le truchement du rêve, nous révélant à nous-mêmes, sûrement il

doit être possible de façon toute aussi simple de communiquer à autrui le message nullement intime du rêve mathématique
[ . . . ]. Et à vrai dire, qu’ai-je fait d’autre dans mon passé de mathématicien, si ce n’est suivre, “rêver” jusqu’au bout, jusqu’à
leur manifestation la plus manifeste, la plus solide: irrécusable, des lambeaux de rêve se détachant un à un d’un lourd et
dense tissu de brumes? Et combien de fois ai-je trépigné d’impatience devant ma propre obstination à polir jalousement
jusqu’à sa dernière facette chaque pierre précieuse ou précieuse à demi en quoi se condensaient mes rêves — plutôt que de
suivre une impulsion plus profonde: celle de suivre les arcanes multiformes du tissu-mère — aux confins indécis du rêve et
de son incarnation patente, “publiable” en somme, suivant les canons en vigueur! J’étais d’ailleurs sur le point de suivre
cette impulsion-là, de me lancer dans un travail de “science-fiction mathématique”, “une sorte de rêve éveillé”.

a Tµν , or Tµν , composes the kinetic energy of matter, since it acts as a matter-energy flow.
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