Processing of hyperspectral aerial images to characterize the bathymetry of rivers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Processing of hyperspectral aerial images to characterize the bathymetry of rivers

Julien Godfroy
Jérôme Lejot
Kristell Michel
Hervé Piégay

Résumé

Fluvial remote sensing of river bathymetry is crucial for characterizing the topography of the riverbed and monitor changes in habitat at large scales. Hyperspectral data enables bathymetric retrieval through optical models. On the Ain River (France), multiple hyperspectral aerial campaigns with different sensors were conducted and processed to create bathymetric maps of the river for different flow conditions. In particular, a continuous bathymetric map was produced for a 20 km reach of the river with a median error of 20 centimetres for depths up to 2.5 metres. Despite the uncertainties of the models tested, the results are more robust spatially and over a wider range of depth and flow conditions than optical models based on traditional colour imagery.
Fichier principal
Vignette du fichier
Godfroy-MERS2022.pdf (1.91 Mo) Télécharger le fichier
Godfroy-MERS-2022-extendedabstract.pdf (211.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04081325 , version 1 (25-04-2023)

Identifiants

Citer

Julien Godfroy, Jérôme Lejot, Luca Demarchi, Kristell Michel, Hervé Piégay. Processing of hyperspectral aerial images to characterize the bathymetry of rivers. Methods for Ecohydraulics: Remote Sensing, IAHR, May 2022, Warsaw, Poland. ⟨10.25171/InstGeoph_PAS_Publs-2022-0016⟩. ⟨hal-04081325⟩
51 Consultations
57 Téléchargements

Altmetric

Partager

More