Convergence of a TPFA scheme for a diffusion-convection equation with a multiplicative stochastic noise - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Convergence of a TPFA scheme for a diffusion-convection equation with a multiplicative stochastic noise

Résumé

The aim of this paper is to address the convergence analysis of a finite-volume scheme for the approximation of a stochastic non-linear parabolic problem set in a bounded domain of R 2 and under homogeneous Neumann boundary conditions. The considered discretization is semi-implicit in time and TPFA in space. By adapting well-known methods for the time-discretization of stochastic PDEs, one shows that the associated finite-volume approximation converges towards the unique variational solution of the continuous problem strongly in L 2 (Ω; L 2 (0, T ; L 2 (Λ))).
Fichier principal
Vignette du fichier
BSZ_submitted.pdf (593.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04077628 , version 1 (21-04-2023)

Identifiants

  • HAL Id : hal-04077628 , version 1

Citer

Caroline Bauzet, Kerstin Schmitz, Aleksandra Zimmermann. Convergence of a TPFA scheme for a diffusion-convection equation with a multiplicative stochastic noise. 2023. ⟨hal-04077628⟩
18 Consultations
38 Téléchargements

Partager

More