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Abstract

The aim of this paper is to address the convergence analysis of a finite-volume
scheme for the approximation of a stochastic non-linear parabolic problem set in a
bounded domain of R2 and under homogeneous Neumann boundary conditions. The
considered discretization is semi-implicit in time and TPFA in space. By adapting
well-known methods for the time-discretization of stochastic PDEs, one shows that
the associated finite-volume approximation converges towards the unique variational
solution of the continuous problem strongly in L2(Ω;L2(0, T ;L2(Λ))).
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1 Introduction
Let Λ be a bounded, open, connected, and polygonal set of R2. Moreover let (Ω,A,P)
be a probability space endowed with a right-continuous, complete filtration (Ft)t≥0 and
let (W (t))t≥0 be a standard, one-dimensional Brownian motion with respect to (Ft)t≥0 on
(Ω,A,P).
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For T > 0, we consider the following non-linear parabolic problem forced by a multiplica-
tive stochastic noise:

du−∆u dt+ divx(vu) dt = g(u) dW (t) + β(u) dt, in Ω× (0, T )× Λ;

u(0, ·) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

(1.1)

where divx is the divergence operator with respect to the space variable and n denotes
the unit normal vector to ∂Λ outward to Λ. We assume the following hypotheses on the
data:

A1: u0 ∈ L2(Ω;H1(Λ)) is F0-measurable.

A2: g : R→ R is a Lipschitz-continuous function.

A3: β : R→ R is a Lipschitz-continuous function with β(0) = 0.

A4: v ∈ C 1([0, T ]×Λ;R2), divx(v(t, x)) = 0 for all (t, x) ∈ [0, T ]×Λ and v(t, x)·n(x) = 0
for all (t, x) ∈ [0, T ]× ∂Λ.

1.1 Notations

Let us introduce some notations and make precise the functional setting.

• |x| denotes the euclidian norm of x in R2 and x · y the usual scalar product of x and
y in R2.

• For p ∈ {1, 2, 3}, || · ||∞ denotes the L∞(Rp) norm.

• Lβ ≥ 0 the Lipschitz constant of β.

• Lg ≥ 0 the Lipschitz constant of g.

• CLg ≥ 0 a constant only depending on Lg and g(0), satisfying for all r ∈ R

|g(r)|2 ≤ CLg(1 + |r|2). (1.2)

• E[·] denotes the expectation, i.e. the integral over Ω with respect to the probability
measure P.

• For a given separable Banach space X, we denote by L2
PT

(
Ω×(0, T );X

)
the space of

the predictable X-valued processes ([14] p.94 or [29] p.27). This space is the space
L2
(
Ω × (0, T );X

)
for the product measure dP ⊗ dt on the predictable σ-field PT

(i.e. the σ-field generated by the sets F0×{0} and the rectangles A× (s, t], for any
s, t ∈ [0, T ] with s ≤ t and A ∈ Fs).
For X = L2(Λ), one has L2

PT

(
Ω× (0, T );L2(Λ)

)
⊂ L2

(
Ω× (0, T );L2(Λ)

)
.

Remark 1.1. Note that the existence of the constant CLg is given by Assumption A2.
It allows us to apply our scheme for square integrable, additive noise with appropriate
measurability assumptions.
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1.2 Concept of solution and main result

The theoretical framework associated with Problem (1.1) is well established in the liter-
ature. Indeed, we can find many existence and uniqueness results for various concepts of
solutions associated with this problem such as mild solutions, variational solutions, path-
wise solutions and weak solutions, see, e.g., [14] and [25]. In the present paper we will
be interested in the concept of solution as defined below, which we will call a variational
solution:

Definition 1.2. A stochastic process u in L2
PT

(
Ω×(0, T );L2(Λ)

)
is a variational solution

to Problem (1.1) if it belongs to

L2(Ω; C ([0, T ];L2(Λ))) ∩ L2(Ω;L2(0, T ;H1(Λ)))

and satisfies, for all t ∈ [0, T ],

u(t)− u0 −
∫ t

0

∆u(s) ds+

∫ t

0

divx(v(s, ·)u(s)) ds =

∫ t

0

g(u(s)) dW (s) +

∫ t

0

β(u(s)) ds

in L2(Λ) and P-a.s. in Ω.

Existence, uniqueness and regularity of this variational solution is well-known in the lit-
erature, see, e.g., [28],[24],[25]. The main result of this paper is to propose a finite-volume
scheme for the approximation of such a variational solution and to show its stochastically
strong convergence by passing to the limit with respect to the time and space discretiza-
tion parameters.

Theorem 1.3. Assume that hypotheses A1 to A4 hold. Let (Tm)m∈N be a sequence of
admissible finite-volume meshes of Λ in the sense of Definition 2.1 such that the mesh
size hm tends to 0 and let (Nm)m∈N ⊂ N? be a sequence of positive numbers which tends
to infinity. For a fixed m ∈ N, let urhm,Nm and ulhm,Nm be respectively the right and
left in time finite-volume approximations defined by (2.3), (2.5)-(2.6) with T = Tm and
N = Nm. Then (urhm,Nm)m∈N and (ulhm,Nm)m∈N converge strongly in L2(Ω;L2(0, T ;L2(Λ)))
to the variational solution of Problem (1.1) in the sense of Definition 1.2.

Remark 1.4. The proof of Theorem 1.3 will be done as follows: firstly, we will prove
in Proposition 4.1 that the sequences (urhm,Nm)m∈N and (ulhm,Nm)m∈N weakly converge
in L2(Ω;L2(0, T ;L2(Λ))) towards a common limit denoted by u. Secondly, thanks to
Proposition 4.5 and Proposition 4.9 we will be able on the one hand to identify u as the
unique variational solution of Problem (1.1) in the sense of Definition 1.2, and on the
other hand to prove that the convergence finally holds strongly in L2(Ω;L2(0, T ;L2(Λ))).

1.3 State of the art

As mentioned in a previous paper [8] in collaboration with F. Nabet, the study of nu-
merical schemes for stochastic partial differential equations (SPDEs) has been a very
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fashionable subject in recent decades and for this reason, an extensive literature on this
topic is available. We refer the interested reader to [1], [15] and [27] for a general overview
and associated references.

If we focus on the theoretical study of parabolic SPDEs with a non-linear first order op-
erator, note that the variational techniques developed in [28], [24] and [25] can be applied
whereas the semigroup approach is not available, and therefore the use of mild solutions
is out of range. Note that for the theoretical study of (1.1) in Rd (d ≥ 1) instead of a
bounded domain, we can refer to [31] or the appendix of [13].

Concerning the numerical analysis of these variational solutions, it is clear that in the past
the use of finite-element methods has been favored and extensively employed (we refer to
[10], [11] for a thorough exposition of existing papers). But we note that recently, for first
order scalar conservation laws with multiplicative noise, finite-volume discretizations have
been developed in [4], [5], [6], [22], [26], [16], [3], and [17] by adapting the deterministic
framework. Then, in [7] and [8], convergence of finite-volume scheme for the particular
case of stochastic heat equation (with respectively linear and non-linear multiplicative
noise) has been investigated. As far as we know, stochastic equations of type (1.1) have
not been studied yet from a numerical point of view.

1.4 Goal of the study and outline of the paper

In this work, our aim is to fill the gap left by the previous authors by proposing a conver-
gence result for a both space and time-discretization of the non-linear diffusion-convection
equation forced by a stochastic noise and under homogeneous Neumann boundary condi-
tions (1.1). The added value comparing to existing results is threefold:

• Firstly, the taking into account of a convection term divx(vu) which is very interest-
ing from a modeling point of view and opens the door to many extensions (Stefan’s
problem, porous medium equation...)

• Secondly, the fact that we avoid the use of technical tools from the stochastic frame-
work for the passage to the limit in the non-linear terms (such as the theorem
of Prokhorov, Skorokhod’s representation theorem, concept of martingale solution,
Gyöngy-Krylov argument...) as we did in a previous work [8] for the stochastic heat
equation (which corresponds to (1.1) with v = 0 and β = 0).

• Thirdly, the obtention of a strong convergence result in L2(Ω;L2(0, T ;L2(Λ))) which
is more satisfactory than in [8] where, in spite of the fact that v = 0 and β = 0, we
only proved convergence of the scheme in Lp(Ω;L2(0, T ;L2(Λ))) for any 1 ≤ p < 2.

The main difficulty of the present study is to choose suitable tools of the finite-volume
framework compatible with the stochastic one and the restrictions brought by the multi-
plicative noise. Particularly, we will see that the main challenge will be the identification
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of weak limits coming from the discretization of the non-linear terms g(u) and β(u).

The paper is organized as follows. Section 2 is devoted to the introduction of the finite-
volume framework: definition of the finite-volume mesh employed for the discretization
of Λ, associated notations, definition of discrete norms and construction of the right
and left finite-volume approximations denoted respectively by (urh,N)h,N and (ulh,N)h,N .
In Section 3, we will derive stability estimates in suitable functional spaces satisfied by
the sequences (urh,N)h,N , (ulh,N)h,N , (g(ulh,N))h,N and (β(urh,N))h,N . These estimates will
allow us in Section 4 to extract weakly converging subsequences. The remaining of the
paper will be devoted to the passage to the limit in the numerical scheme: firstly we will
prove the existence of an Itô stochastic process u, the weak limit (up to subsequences) of
(urh,N)h,N and (ulh,N)h,N . Secondly, by taking advantage of the use of exponential weighted
in time norm (which is a known method for the time-discretization of Stochastic PDE) and
adapting it to our TPFA scheme, we will prove that this convergence finally holds strongly.
Thirdly, using this last information, we will be able to identify weak limits coming from
the non-linear terms (g(ulh,N))h,N and (β(urh,N))h,N . Fourthly, we will conclude that u
is the unique variational solution of (1.1) in the sense of Definition 1.2 and fifthly that
subsequences are not needed anymore.

2 The finite-volume framework
The following subsections 2.1, 2.2, 2.3 contain all the definitions and notations related to
finite-volume framework and are the same as in our previous paper [8], but for a matter
of self-containedness we choose to repeat them identically.

2.1 Admissible finite-volume meshes and notations

In order to perform a finite-volume approximation of the variational solution of Prob-
lem (1.1) on [0, T ] × Λ we need first of all to set a choice for the temporal and spatial
discretization. For the time-discretization, let N ∈ N? be given. We define the fixed time
step ∆t = T

N
and divide the interval [0, T ] in 0 = t0 < t1 < ... < tN = T equidistantly

with tn = n∆t for all n ∈ {0, ..., N − 1}. For the space discretization, we refer to [21] and
consider finite-volume admissible meshes in the sense of the following definition.

Definition 2.1. (Admissible finite-volume mesh) An admissible finite-volume mesh T of
Λ (see Fig. 1) is given by a family of open, polygonal, and convex subsets K, called control
volumes of T , satisfying the following properties:

• Λ =
⋃
K∈T K.

• If K,L ∈ T with K 6= L then intK ∩ intL = ∅.

• If K,L ∈ T , with K 6= L then either the one-dimensional Lebesgue measure of
K ∩L is 0 or K ∩L is the edge of the mesh denoted σ = K|L separating the control
volumes K and L.
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• To each control volume K ∈ T , we associate a point xK ∈ K (called the center of
K) such that: if K,L ∈ T are two neighbouring control volumes the straight line
between the centers xK and xL is orthogonal to the edge σ = K|L.

xK xL

σ =K|L

dK|L

nK,σ

Figure 1: Notations of the mesh T associated with Λ

Once an admissible finite-volume mesh T of Λ is fixed, we will use the following notations.

Notations.

• h = size(T ) = sup{diam(K) : K ∈ T } the mesh size.

• dh ∈ N the number of control volumes K ∈ T with h = size(T ).

• λ2 denotes the two-dimensional Lebesgue measure.

• E is the set of the edges of the mesh T and we define Eint := {σ ∈ E : σ * ∂Λ},
Eext := {σ ∈ E : σ ⊆ ∂Λ}.

• For K ∈ T , EK is the set of edges of K and mK := λ2(K).

• For K ∈ T , nK denotes the unit normal vector to ∂K outward to K and for σ ∈ EK ,
we denote the unit vector on the edge σ pointing out of K by nK,σ.

• Let K,L ∈ T be two neighbouring control volumes. For σ = K|L ∈ Eint, let mσ be
the length of σ and dK|L the distance between xK and xL.

• For σ = K|L ∈ Eint, the diamond Dσ (see Fig. 2) is the open quadrangle whose
diagonals are the edge σ and the segment [xK , xL]. For σ ∈ Eext ∩ EK , we define
Dσ := K. Then, Λ =

⋃
σ∈E Dσ.

• mDσ := λ2(Dσ) is the two-dimensional Lebesgue measure of the diamond Dσ. Note

that for σ ∈ Eint, we have mDσ =
mσdK|L

2
.

Using these notations, we introduce a positive number

reg(T ) = max

(
N ,max

K∈T
σ∈EK

diam(K)

d(xK , σ)

)
(2.1)

6



xK xL
Dσ

σ

Figure 2: Notations on a diamond cell Dσ for σ ∈ Eint

(where N is the maximum of edges incident to any vertex) that measures the regularity of
a given mesh and is useful to perform the convergence analysis of finite-volume schemes.
This number should be uniformly bounded by a constant not depending on the mesh size
h for the convergence results to hold. We have in particular ∀K,L ∈ T ,

h

dK|L
≤ reg(T ). (2.2)

2.2 Discrete unknowns and piecewise constant functions

From now on and unless otherwise specified, we consider N ∈ N?, ∆t = T
N

and T an
admissible finite-volume mesh of Λ in the sense of Definition 2.1 with a mesh size h.
For n ∈ {0, ..., N − 1} given, the idea of a finite-volume scheme for the approximation
of Problem (1.1) is to associate to each control volume K ∈ T and time tn a discrete
unknown value denoted by unK ∈ R, expected to be an approximation of u(tn, xK), where
u is the variational solution of (1.1). Before presenting the numerical scheme satisfied by
the discrete unknowns {unK , K ∈ T , n ∈ {0, ..., N − 1}}, let us introduce some general
notations.

For any arbitrary vector (wnK)K∈T ∈ Rdh we can define the piecewise constant function
wnh : Λ→ R by

wnh(x) :=
∑
K∈T

wnK1K(x), ∀x ∈ Λ.

Note that since the mesh T is fixed, by the continuous mapping defined from Rdh to L2(Λ)
by

(wnK)K∈T 7→
∑
K∈T

1Kw
n
K ,

the space Rdh can be considered as a finite-dimensional subspace of L2(Λ) and we may
naturally identify the function and the vector

wnh ≡ (wnK)K∈T ∈ Rdh .
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Then, knowing for all n ∈ {0, . . . , N} the function wnh , we can define the following piece-
wise constant functions in time and space wrh,N , wlh,N : [0, T ]× Λ→ R by

wrh,N(t, x) :=
N−1∑
n=0

wn+1
h (x)1[tn,tn+1)(t) if t ∈ [0, T ) and wrh,N(T, x) := wNh (x),

wlh,N(t, x) :=
N−1∑
n=0

wnh(x)1[tn,tn+1)(t) if t ∈ (0, T ] and wlh,N(0, x) := w0
h(x).

(2.3)

Remark 2.2. The superscripts r and l in (2.3) do not refer to the continuity properties of
the associated functions (which may be chosen either càdlàg or càglàd). The difference
is that in our case, the finite-volume approximation ulh,N will be adapted to the filtration
(Ft)t≥0, whereas urh,N won’t be.

As for the piecewise constant function in space, since T and N are fixed, by the continuous
mapping defined from Rdh×N to L2(0, T ;L2(Λ)) by

(wnK) K∈T
n∈{0,...,N−1}

7→
∑
K∈T

n∈{0,...,N−1}

1K1[tn,tn+1)w
n
K ,

the space Rdh×N can be considered as a finite-dimensional subspace of L2(0, T ;L2(Λ)) and
we may naturally identify

wlh,N ≡ (wnK) K∈T
n∈{0,...,N−1}

∈ Rdh×N ,

wrh,N ≡ (wn+1
K ) K∈T

n∈{0,...,N−1}
∈ Rdh×N .

Remark 2.3. Note that in the rest of the paper, when we will consider a time and space
function α : [0, T ] × Λ → R on all the space Λ (respectively the time interval [0, T ]) at
a fixed time t ∈ [0, T ] (respectively at a fixed x ∈ Λ) we will omit the space (respec-
tively time) variable in the notations and write α(t) (respectively α(x)) instead of α(t, ·)
(respectively α(·, x)).

2.3 Discrete norms and discrete gradient

Fix n ∈ {0, ..., N−1} and consider for the remainder of this subsection an arbitrary vector
(wnK)K∈T ∈ Rdh and use its natural identification with the piecewise constant function in
space wnh ≡ (wnK)K∈T . We introduce in what follows the notions of discrete gradient and
discrete norms for such a function wnh .

Definition 2.4 (Discrete L2-norm). We define the L2-norm of wnh ∈ Rdh as follows

||wnh ||L2(Λ) =

(∑
K∈T

mK |wnK |2
) 1

2

.
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Definition 2.5 (Discrete gradient). We define the gradient operator ∇h that maps scalar
fields wnh ∈ Rdh into vector fields of (R2)eh (where eh is the number of edges in the mesh
T ), we set ∇hwnh = (∇h

σw
n
h)σ∈E with

∇h
σw

n
h :=

2
wnL − wnK
dK|L

nK,σ, if σ = K|L ∈ Eint;

0, if σ ∈ Eext.

We remark that ∇hwhn is considered as a piecewise constant function, which is constant
on the diamond Dσ.

Definition 2.6 (Discrete H1-seminorm). We define the H1-seminorm of wnh ∈ Rdh as
follows

|wnh |1,h :=

 ∑
σ=K|L∈Eint

mσ

dK|L
|wnK − wnL|2

 1
2

.

Remark 2.7. Note that in particular,

‖∇hwnh‖2
(L2(Λ))2 =

∑
σ∈Eint

mDσ |∇h
σw

n
h |2 = 2

∑
σ=K|L∈Eint

mσ

dK|L
|wnK − wnL|2 = 2|wnh |21,h

where the constant 2 corresponds to the space dimension 2.

Remark 2.8. If we consider another arbitrary vector w̃nh ≡ (w̃nK)K∈T ∈ Rdh , by summing
over the edges we may rearrange the sum on the left-hand side and get the following rule
of "discrete partial integration"∑

K∈T

∑
σ=K|L∈EK∩Eint

mσ

dK|L
(wnK − wnL)w̃nK =

∑
σ=K|L∈Eint

mσ

dK|L
(wnK − wnL)(w̃nK − w̃nL). (2.4)

Now, we have all the necessary definitions and notations to present the finite-volume
scheme studied in this paper. This is the aim of the next subsection.

2.4 The finite-volume scheme

Firstly, we define the vector u0
h ≡ (u0

K)K∈T ∈ Rdh by the discretization of the initial
condition u0 of Problem (1.1) over each control volume:

u0
K :=

1

mK

∫
K

u0(x) dx, ∀K ∈ T . (2.5)

The finite-volume scheme we propose reads, for this given initial F0-measurable random
vector u0

h ∈ Rdh as follows:
For any n ∈ {0, . . . , N − 1}, knowing unh ≡ (unK)K∈T ∈ Rdh we search for un+1

h ≡
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(un+1
K )K∈T ∈ Rdh such that, for almost every ω ∈ Ω, the vector un+1

h is a solution to
the following random equations

mK

∆t
(un+1

K − unK) +
∑

σ∈Eint∩EK

mσv
n+1
K,σ u

n+1
σ +

∑
σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )

=
mK

∆t
g(unK)(W n+1 −W n) +mKβ(un+1

K ), ∀K ∈ T ,
(2.6)

where, the (d− 1)-dimensional Lebesgue measure is denoted by γ,

vn+1
K,σ =

1

∆tmσ

∫ tn+1

tn

∫
σ

v(t, x) · nK,σ dγ(x) dt,

and un+1
σ denotes the upstream value at time tn+1 with respect to σ defined as follows: if

σ ∈ Eint ∩ EK is the interface between the control volumes K and L (i.e. σ = K|L), un+1
σ

is equal to un+1
K if vn+1

K,σ ≥ 0 and to un+1
L if vn+1

K,σ < 0. Note also that W n+1 −W n denotes
the increments of the Brownian motion between tn+1 and tn:

W n+1 −W n = W (tn+1)−W (tn) for n ∈ {0, . . . , N − 1}.

Remark 2.9. Note that using the divergence-free property of v (i.e. divx(v(t, x)) = 0 for
all (t, x) ∈ [0, T ]× Λ), the scheme (2.6) can be rewritten in the following way:

mK

∆t
(un+1

K − unK) +
∑

σ∈Eint∩EK

mσv
n+1
K,σ (un+1

σ − un+1
K ) +

∑
σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )

=
mK

∆t
g(unK)

(
W n+1 −W n

)
+mKβ(un+1

K ), ∀K ∈ T . (2.7)

Indeed, ∑
σ∈Eint∩EK

mσv
n+1
K,σ u

n+1
K =

∑
σ∈Eint∩EK

un+1
K

∆t

∫ tn+1

tn

∫
σ

v(t, x) · nK,σ dγ(x) dt

=
un+1
K

∆t

∫ tn+1

tn

∫
∂K

v(t, x) · nK(x) dγ(x) dt

=
un+1
K

∆t

∫ tn+1

tn

∫
K

divx(v(t, x)) dx dt

= 0.

Note that using (2.7) and the fact that∗ vn+1
K,σ = (vn+1

K,σ )+ − (vn+1
K,σ )−, another equivalent

formulation of the scheme (2.6) is given for any K ∈ T by
mK

∆t
(un+1

K − unK) +
∑

σ=K|L∈Eint∩EK

mσ(vn+1
K,σ )−

(
un+1
K − un+1

L

)
+

∑
σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L ) =

mK

∆t
g(unK)

(
W n+1 −W n

)
+mKβ(un+1

K ).
(2.8)

∗For any a ∈ R, a+ = max(a, 0) and a− = −min(a, 0).
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Proposition 2.10 (Existence of a discrete solution). Assume that hypotheses A1 to A4

hold. Let T be an admissible finite-volume mesh of Λ in the sense of Definition 2.1 with
a mesh size h and N ∈ N?. Then, there exists a unique solution (unh)1≤n≤N ∈ (Rdh)N to
Problem (2.6) associated with the initial vector u0

h defined by (2.5). Additionally, for any
n ∈ {0, . . . , N}, unh is a Ftn-measurable random vector.

The solution (unh)1≤n≤N ∈ (Rdh)N of the scheme (2.5)-(2.6) is then used to build the right
and left finite-volume approximations urh,N and ulh,N defined by (2.3) for the variational
solution u of Problem (1.1).

Proof. We refer to the preprint [9] exclusively dedicated to the proof of such an existence
and uniqueness result.

3 Stability estimates
We will derive in this section several stability estimates satisfied by the discrete solution
(unh)1≤n≤N ∈ (Rdh)N of the scheme (2.5)-(2.6) given by Proposition 2.10, and also by the
associated right and left finite-volume approximations (urh,N)h,N and (ulh,N)h,N defined by
(2.3). We start by giving a bound on the discrete initial data.

Lemma 3.1. Let u0 be a given function satisfying assumption A1. Then, the associated
discrete initial data u0

h ∈ Rdh defined by (2.5) satisfies P-a.s. in Ω,

‖u0
h‖L2(Λ) ≤ ‖u0‖L2(Λ).

The proof is a direct consequence of the definition of u0
h and the Cauchy-Schwarz inequal-

ity.

Now, we can give the bounds on the discrete solutions which is one of the key points of
the proof of the convergence theorem.

Proposition 3.2 (Bounds on the discrete solutions). There exists a constant K0 > 0,
depending only on u0, CLg , Lβ, |Λ| and T such that for any N ∈ N? large enough and any
h ∈ R?

+

E
[
‖unh‖2

L2(Λ)

]
+ 2E

[
n−1∑
k=0

‖uk+1
h − ukh‖2

L2(Λ)

]
+ 8∆t

n−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ K0, ∀n ∈ {1, . . . , N}.

Proof. Set N ∈ N?, h ∈ R?
+ and fix n ∈ {1, . . . , N}. For any k ∈ {0, . . . , n − 1},

we multiply the numerical scheme (2.8) with uk+1
K , take the expectation, and sum over

11



K ∈ T to obtain thanks to (2.4)∑
K∈T

mK

∆t
E
[
(uk+1

K − ukK)uk+1
K

]
+

∑
σ=K|L∈Eint

mσ

dK|L
E
[
|uk+1
K − uk+1

L |
2
]

+
∑
K∈T

∑
σ=K|L∈Eint∩EK

mσ(vk+1
K,σ )−E

[(
uk+1
K − uk+1

L

)
uk+1
K

]
=
∑
K∈T

mK

∆t
E
[
g(ukK)uk+1

K

(
W k+1 −W k

)]
+
∑
K∈T

mKE
[
β(uk+1

K )uk+1
K

]
.

(3.1)

We consider the terms of (3.1) separately. Firstly note that∑
K∈T

mK

∆t
E
[
(uk+1

K − ukK)uk+1
K

]
=

1

2

∑
K∈T

mK

∆t
E
[
|uk+1
K |

2 − |ukK |2 + |uk+1
K − ukK |2

]
. (3.2)

Secondly, using the inequality ∀a, b ∈ R, b(b− a) ≥ b2

2
− a2

2
with b = uk+1

K and a = uk+1
L ,

one arrives at (
uk+1
K − uk+1

L

)
uk+1
K ≥ (uk+1

K )2

2
− (uk+1

L )2

2
.

Note that vk+1
L,σ = −vk+1

K,σ , thus using the divergence-free property of v one gets

∑
K∈T

∑
σ=K|L∈Eint∩EK

mσ(vk+1
K,σ )−

(
(uk+1

L )2

2
− (uk+1

K )2

2

)

=
∑
K∈T

∑
σ∈Eint∩EK

mσv
k+1
K,σ

(uk+1
K )2

2

=
∑
K∈T

∑
σ∈Eint∩EK

(uk+1
K )2

2∆t

∫ tn+1

tn

∫
σ

v(t, x) · nK,σ dγ(x) dt

=
∑
K∈T

(uk+1
K )2

2∆t

∫ tn+1

tn

∫
K

divx(v(t, x)) dx dt

=0,

and this leads to∑
K∈T

∑
σ=K|L∈Eint∩EK

mσ(vk+1
K,σ )−E

[(
uk+1
K − uk+1

L

)
uk+1
K

]
≥ 0. (3.3)

Thirdly, since ukK and
(
W k+1 −W k

)
are independent one obtains∑

K∈T

mK

∆t
E
[
g(ukK)ukK

(
W k+1 −W k

)]
= 0,

12



and so by applying Young’s inequality and using the Itô isometry one arrives at∑
K∈T

mK

∆t
E
[
g(ukK)uk+1

K

(
W k+1 −W k

)]
=
∑
K∈T

mK

∆t
E
[
g(ukK)(uk+1

K − ukK)
(
W k+1 −W k

)]
≤
∑
K∈T

mK

∆t
E
[
|g(ukK)

(
W k+1 −W k

)
|2
]

+
1

4

∑
K∈T

mK

∆t
E
[
|uk+1
K − ukK |2

]
≤∆t

∑
K∈T

mK

∆t
E
[
|g(ukK)|2

]
+

1

4

∑
K∈T

mK

∆t
E
[
|uk+1
K − ukK |2

]
.

(3.4)

Fourthly, using the Lipschitz property of β, the following holds∑
K∈T

mKE
[
β(uk+1

K )uk+1
K

]
≤ Lβ

∑
K∈T

mKE
[
|uk+1
K |

2
]
. (3.5)

Combining (3.2)-(3.3)-(3.4) and (3.5) and multiplying the obtained inequality with 2∆t,
one gets∑

K∈T

mKE
[
|uk+1
K |

2 − |ukK |2 + |uk+1
K − ukK |2

]
+ 2∆t

∑
σ=K|L∈Eint

mσ

dK|L
E
[
|uk+1
K − uk+1

L |
2
]

≤ 2∆t
∑
K∈T

mKE
[
|g(ukK)|2

]
+

1

2

∑
K∈T

mKE
[
|uk+1
K − ukK |2

]
+ 2∆tLβ

∑
K∈T

mKE
[
|uk+1
K |

2
]
.

Then, from (1.2)

(1− 2∆tLβ)
∑
K∈T

mKE
[
|uk+1
K |

2 − |ukK |2
]

+
1

2

∑
K∈T

mKE
[
|uk+1
K − ukK |2

]
+ 2∆t

∑
σ=K|L∈Eint

mσ

dK|L
E
[
|uk+1
K − uk+1

L |
2
]
≤ 2CLg∆t|Λ|+ 2∆t(CLg + Lβ)

∑
K∈T

mKE
[
(ukK)2

]
.

For ∆t small enough so that 1− 2∆tLβ ≥ 1
4
, after summing over k ∈ {0, . . . , n− 1}, one

arrives at

1

4
E
[
‖unh‖2

L2(Λ) − ‖u0
h‖2

L2(Λ)

]
+

1

2

n−1∑
k=0

E
[
‖uk+1

h − ukh‖2
L2(Λ)

]
+ 2∆t

n−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ 2CLgT |Λ|+ 2∆t(CLg + Lβ)

n−1∑
k=0

E
[
‖ukh‖2

L2(Λ)

]
.

(3.6)

Then, it follows that

E
[
‖unh‖2

L2(Λ)

]
≤ E

[
‖u0

h‖2
L2(Λ)

]
+ 8CLg |Λ|T + 8∆t(CLg + Lβ)

n−1∑
k=0

E
[
‖ukh‖2

L2(Λ)

]
.

13



Applying the discrete Gronwall lemma yields

E
[
‖unh‖2

L2(Λ)

]
≤
(
E
[
‖u0

h‖2
L2(Λ)

]
+ 8CLg |Λ|T

)
e8T (CLg+Lβ). (3.7)

From (3.7) and Lemma 3.1 we may conclude that there exists a constant Υ > 0 such that

sup
n∈{1,...,N}

E
[
‖unh‖2

L2(Λ)

]
≤ Υ. (3.8)

Thanks to (3.8) and (1.2) one gets that for all n ∈ {1, . . . N}

∆t
n−1∑
k=0

E
[
‖g(ukh)‖2

L2(Λ)

]
≤ CLg |Λ|T + CLg∆t

n−1∑
k=0

E
[
‖ukh‖2

L2(Λ)

]
≤ CLgT (Υ + |Λ|). (3.9)

From (3.6), Lemma 3.1 and (3.8) it now follows that for all n ∈ {1, . . . , N}

E
[
‖unh‖2

L2(Λ)

]
+ 2

n−1∑
k=0

E
[
‖uk+1

h − ukh‖2
L2(Λ)

]
+ 8∆t

n−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ E

[
‖u0‖2

L2(Λ)

]
+ 8CLgT |Λ|+ 8ΥT (CLg + Lβ).

We are now interested in the bounds on the right and left finite-volume approximations
defined by (2.3).

Lemma 3.3. The sequences (urh,N)h,N and (ulh,N)h,N are bounded in L2(Ω;L2(0, T ;L2(Λ)))
independently of the discretization parameters N ∈ N? and h ∈ R?

+. Additionally,
(ulh,N)h,N is bounded in L2

PT

(
Ω× (0, T );L2(Λ)

)
.

Proof. The boundedness of the sequences in L2(Ω;L2(0, T ;L2(Λ))) is a direct consequence
of Proposition 3.2. The predictability of (ulh,N)h,N with values in L2(Λ) is a consequence of
the Ftn-measurability of unK for all n ∈ {0, ..., N} and all K ∈ T . Indeed, by construction,
(ulh,N)h,N is then an elementary process adapted to the filtration (Ft)t≥0 and so it is
predictable.

Thanks to Proposition 3.2 we can also obtain a L2(Ω;L2(0, T ;L2(Λ)))-bound on the dis-
crete gradients of the finite-volume approximations.

Lemma 3.4. There exist a constant K1 ≥ 0 depending only on u0, CLg , Lβ, |Λ|, and
T ,and a constant K2 ≥ 0 additionally depending on the mesh regularity reg(T ) (defined
by (2.1)), such that ∫ T

0

E
[
|urh,N(t)|21,h

]
dt ≤ K1 (3.10)

and ∫ T

0

E
[
|ulh,N(t)|21,h

]
dt ≤ K2. (3.11)
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Proof. Firstly, note that∫ T

0

E
[
|urh,N(t)|21,h

]
dt = ∆t

N−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
and therefore (3.10) follows directly from Proposition 3.2. Secondly, using the definition
of ulh,N and (3.10), we get∫ T

0

E
[
|ulh,N(t)|21,h

]
dt ≤ ∆tE

[
|u0
h|21,h

]
+ ∆t

N−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ ∆tE

[
|u0
h|21,h

]
+K1.

Since u0 is assumed to be in L2(Ω;H1(Λ)), from [21, Lemma 9.4], it follows that there
exists CΛ ≥ 0 depending on the mesh regularity reg(T ) such that

E
[
|u0
h|21,h

]
≤ CΛE

[
‖∇u0‖2

L2(Λ)

]
and therefore (3.11) follows.

Lemma 3.5. The sequences (g(urh,N))h,N , (g(ulh,N))h,N , (β(urh,N))h,N , and (β(ulh,N))h,N
are bounded in L2(Ω;L2(0, T ;L2(Λ))) independently of the discretization parameters N ∈
N? and h ∈ R?

+.

Proof. It is a direct consequence of the boundedness of the sequences (urh,N)h,N and
(ulh,N)h,N in L2(Ω;L2(0, T ;L2(Λ))) given by Lemma 3.3 and of the Lipschitz nature of
g and β.

Lemma 3.6. There exists a constant K3 ≥ 0 depending only on u0, Lg, Lβ, |Λ|, and T ,
and a constant K4 ≥ 0 additionally depending on the mesh regularity reg(T ) (defined by
(2.1)), such that ∫ T

0

E
[
|g(urh,N(t))|21,h

]
dt ≤ K3 (3.12)

and ∫ T

0

E
[
|g(ulh,N(t))|21,h

]
dt ≤ K4. (3.13)

Proof. After noticing that:∫ T

0

E
[
|g(urh,N(t))|21,h

]
dt ≤ L2

g

∫ T

0

E
[
|urh,N(t)|21,h

]
dt

and
∫ T

0

E
[
|g(ulh,N(t))|21,h

]
dt ≤ L2

g

∫ T

0

E
[
|ulh,N(t)|21,h

]
dt,

the result is immediate thanks to Lemma 3.4.
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4 Convergence of the finite-volume scheme
Now, we have all the necessary material to pass to the limit in the numerical scheme.
In the sequel, let (Tm)m∈N be a sequence of admissible meshes of Λ in the sense of Definition
2.1 such that the mesh size hm tends to 0 when m tends to +∞ and let (Nm)m∈N ⊂ N?

be a sequence with limm→+∞Nm = +∞, and ∆tm := T
Nm

.
For the sake of simplicity, for m ∈ N, we shall use the notations T = Tm, h = size(Tm),
∆t = ∆tm, and N = Nm when the m-dependency is not useful for the understanding of
the reader.

4.1 Weak convergence of finite-volume approximations

Firstly, thanks to the bounds on the discrete solutions, we obtain the following weak
convergences.

Proposition 4.1. There exist not relabeled subsequences of (urh,N)m and of (ulh,N)m re-
spectively and a process u ∈ L2(Ω;L2(0, T ;H1(Λ))) ∩ L2

PT

(
Ω× (0, T );L2(Λ)

)
such that

ulh,N → u and urh,N → u weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. From Lemma 3.3 it follows that the sequences (urh,N)m, (ulh,N)m respectively are
bounded in L2(Ω;L2(0, T ;L2(Λ))), thus, up to a not relabeled subsequence, they are
weakly convergent in L2(Ω;L2(0, T ;L2(Λ))) towards possibly distinct elements u, ũ re-
spectively. Moreover, from Lemma 3.4 and Remark 2.7, it follows that

‖∇hurh,N‖2
L2(Ω;L2(0,T ;L2(Λ))) ≤ 2K1.

Consequently, there exists χ ∈ L2(Ω;L2(0, T ;L2(Λ))) such that, passing to a not relabeled
subsequence if necessary, ∇hurh,N → χ weakly in L2(Ω;L2(0, T ;L2(Λ))) for m → +∞.
With similar arguments as in [20, Lemma 2] and [21, Theorem 14.3] we get the additional
regularity u ∈ L2(Ω;L2(0, T ;H1(Λ))) and χ = ∇u. Since, by Proposition 3.2,

E
[
‖urh,N − ulh,N‖2

L2(0,T ;L2(Λ))

]
= ∆tE

[
N−1∑
n=0

‖un+1
h − unh‖2

L2(Λ)

]
≤ K0∆t, (4.1)

it follows that (urh,N − ulh,N)m converges strongly to 0 in L2(Ω;L2(0, T ;L2(Λ))) for m →
+∞, hence also weakly and therefore u = ũ. Note that the predictability property of u
with values in L2(Λ) is inherited from (ulh,N)m at the limit.

Lemma 4.2. There exist not relabeled subsequences of (g(urh,N))m and (g(ulh,N))m, and a
process gu in L2(Ω;L2(0, T ;H1(Λ))) ∩ L2

PT

(
Ω× (0, T );H1(Λ)

)
such that

g(urh,N)→ gu and g(ulh,N)→ gu weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.
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Proof. The existence of a common weak limit gu in L2(Ω;L2(0, T ;L2(Λ))) is a direct
consequence of the boundedness results on (g(urh,N))m and (g(ulh,N))m in the same space
stated in Lemma 3.5, the Lipschitz property of g and Inequality (4.1). Moreover, from
Lemma 3.6 and Remark 2.7, it follows that

‖∇hg(ulh,N)‖2
L2(Ω;L2(0,T ;L2(Λ))) ≤ 2K3.

Consequently, there exists χ̃ ∈ L2(Ω;L2(0, T ;L2(Λ))) such that, passing to a not relabeled
subsequence if necessary, ∇hg(ulh,N) → χ̃ weakly in L2(Ω;L2(0, T ;L2(Λ))) as m → +∞.
With similar arguments as in [20, Lemma 2] and [21, Theorem 14.3] we get the additional
regularity gu ∈ L2(Ω;L2(0, T ;H1(Λ))) and χ̃ = ∇gu. Note that the predictability property
of gu with values in H1(Λ) is inherited from (g(ulh,N))m at the limit.

Remark 4.3. Note that the information gu ∈ L2
PT

(
Ω × (0, T );H1(Λ)

)
will be one of the

keys points in the proof of Proposition 4.5 below.

Lemma 4.4. There exist not relabeled subsequences of (β(urh,N))m and (β(ulh,N))m , and
a process βu in L2(Ω;L2(0, T ;L2(Λ))) such that

β(urh,N)→ βu and β(ulh,N)→ βu weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. The weak convergence in L2(Ω;L2(0, T ;L2(Λ))) of the sequences (β(urh,N))m and
(β(ulh,N))m is a direct consequence of their boundedness properties in such a space stated
in Lemma 3.5. The fact that the weak limit βu is common is due to Inequality (4.1) and
again the Lipschitz property of β.

Proposition 4.5. The weak limit u of our finite-volume scheme (2.5)-(2.6) introduced
in Proposition 4.1 has P-a.s. continuous paths with values in L2(Λ) and satisfies for all
t ∈ [0, T ],

u(t) = u0 +

∫ t

0

∆u(s) ds−
∫ t

0

divx
(
v(s, ·)u(s)

)
ds+

∫ t

0

gu(s) dW (s) +

∫ t

0

βu(s) ds,

in L2(Λ) and P-a.s. in Ω, where gu and βu respectively are given by Lemmas 4.2 and 4.4.

Proof. Let A ∈ A, ξ ∈ D(R) with ξ(T ) = 0 and ϕ ∈ D(R2) with ∇ϕ · n = 0 on ∂Λ,
where we denote D(D) := C∞c (D) for any open subset D ⊆ Rd, d ∈ N. We introduce the
discrete function ϕh : Λ→ R defined by ϕh(x) =

∑
K∈T

1K(x)ϕ(xK) for any x ∈ Λ.

For K ∈ T , n ∈ {0, . . . , N − 1} and t ∈ [tn, tn+1) we multiply (2.7) with 1Aξ(t)ϕ(xK) to
obtain

1Aξ(t)
mK

∆t

(
un+1
K − unK − g(unK)

(
W n+1 −W n

))
ϕ(xK)

+ 1Aξ(t)
∑

σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )ϕ(xK)

+ 1Aξ(t)
∑

σ∈Eint∩EK

mσv
n+1
K,σ

(
un+1
σ − un+1

K

)
ϕ(xK)

=1Aξ(t)mKβ(un+1
K )ϕ(xK).

(4.2)
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Firstly, we sum (4.2) over each control volumeK ∈ T , we integrate over each time interval
[tn, tn+1], then we sum over n = 0, . . . , N−1, and finally we take the expectation to obtain

S1,m + S2,m + S3,m + S4,m = S5,m (4.3)

where

S1,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mK
un+1
K − unK

∆t
ϕ(xK) dt

]

S2,m = −E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKg(unK)
W n+1 −W n

∆t
ϕ(xK) dt

]

S3,m = E

N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)
∑

σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )ϕ(xK) dt


S4,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)
∑

σ∈Eint∩EK

mσv
n+1
K,σ

(
un+1
σ − un+1

K

)
ϕ(xK) dt

]

S5,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKβ(un+1
K )ϕ(xK) dt

]
.

Let us study separately the limit as m goes to +∞ of S1,m, S2,m, S3,m, S4,m and S5,m.

• Study of S1,m: By using Proposition 4.1 and a discrete integration by parts formula,
one shows that up to a subsequence denoted in the same way

S1,m −−−−→
m→+∞

−E
[
1A

∫ T

0

∫
Λ

u(t, x)ξ′(t)ϕ(x) dx dt

]
− E

[
1A

∫
Λ

u0(x)ξ(0)ϕ(x) dx

]
.

Indeed, if we consider the following discrete integration by parts formula
N∑
n=1

an(bn − bn−1) = aNbN − a0b0 −
N−1∑
n=0

bn(an+1 − an)

applied to an = unK and bn = ξ(tn), one has since ξ(T ) = 0

E
[
1A

∫ T

∆t

∫
Λ

ulh,N(t, x)ξ′(t−∆t)ϕ(x) dx dt

]
= E

[
1A

N−1∑
n=1

∑
K∈T

∫ tn+1

tn

∫
K

unKξ
′(t−∆t)ϕ(x) dx dt

]

= E

[
1A

N−1∑
n=1

∑
K∈T

unK(ξ(tn)− ξ(tn−1))

∫
K

ϕ(x) dx

]

= −E

[
1A
∑
K∈T

u0
Kξ(0)

∫
K

ϕ(x) dx

]
− E

[
1A
∑
K∈T

N−1∑
n=0

(un+1
K − unK)ξ(tn)

∫
K

ϕ(x) dx

]
.
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Firstly, thanks to the weak convergence of (ulh,N)m towards u in L2(Ω;L2(0, T ;L2(Λ)))
given by Proposition 4.1, one gets

E
[
1A

∫ T

∆t

∫
Λ

ulh,N(t, x)ξ′(t−∆t)ϕ(x) dx dt

]
−−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

u(t, x)ξ′(t)ϕ(x) dx dt

]
.

Secondly, we have∣∣∣∣∣E
[
1A
∑
K∈T

u0
Kξ(0)

∫
K

ϕ(x) dx

]
− E

[
1A

∫
Λ

u0(x)ξ(0)ϕ(x) dx

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1A
∑
K∈T

ξ(0)

∫
K

(u0
K − u0(x))ϕ(x) dx

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1A
∑
K∈T

ξ(0)

∫
K

(
1

mK

∫
K

u0(y)− u0(x) dy

)
ϕ(x) dx

]∣∣∣∣∣
≤ ||ξ||∞||ϕ||∞E

[∑
K∈T

∫
K

(
1

mK

∫
K

|u0(y)− u0(x)| dy
)
dx

]
,

and since u0 belongs particularly to L1(Ω;L1(Λ)), this last term tends to 0 as m goes to
+∞ thank’s to Lebesgue’s dominated convergence theorem.

• Study of S2,m: Thanks to Lemma 4.2 and the properties of the stochastic integral, one
shows that, up to a subsequence denoted in the same way,

S2,m −−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

∫ t

0

gu(s, x) dW (s)ξ′(t)ϕ(x) dx dt

]
.

To do so, we introduce the following terms

S̃2,m = −E

[
N−1∑
n=0

∑
K∈T

mK1Aξ(tn)g(unK)
(
W n+1 −W n

)
ϕ(xK)

]

Ŝ2,m = −E
[
1A

∫
Λ

∫ T

0

ξ(t)g(ulh,N(t, x)) dW (t)ϕ(x) dx

]

and decompose S2,m as

S2,m = (S2,m − S̃2,m) + (S̃2,m − Ŝ2,m) + Ŝ2,m

and study separately each term of this decomposition.
Firstly, we have by applying successively Cauchy-Schwarz inequality on Ω and then on
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the sum over n ∈ {0, .., N − 1} and K ∈ T :

|S2,m − S̃2,m|2

=

∣∣∣∣∣E
[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

mK1A
(
ξ(t)− ξ(tn)

)
g(unK)

W n+1 −W n

∆t
ϕ(xK) dt

]∣∣∣∣∣
2

≤

(
E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

mK

∣∣∣∣1A(ξ(t)− ξ(tn)
)
g(unK)

W n+1 −W n

∆t
ϕ(xK)

∣∣∣∣ dt
])2

≤ (∆t)2

(∆t)2
||ξ′||2∞||ϕ||2∞

(
N−1∑
n=0

∆t
∑
K∈T

mKE
[ ∣∣1Ag(unK)

(
W n+1 −W n

)∣∣ ])2

≤ ||ξ′||2∞||ϕ||2∞

(
N−1∑
n=0

∑
K∈T

∆tmK (E[1A])
1
2 ×

{
E
[
g2(unK)

(
W n+1 −W n

)2
]} 1

2

)2

≤ ||ξ′||2∞||ϕ||2∞

(
N−1∑
n=0

∑
K∈T

∆tmK

)
×

(
N−1∑
n=0

∑
K∈T

∆tmKE
[
g2(unK)

(
W n+1 −W n

)2
])

≤ ||ξ′||2∞||ϕ||2∞T |Λ|
N−1∑
n=0

∑
K∈T

∆tmKE
[
g2(unK)

]
× E

[(
W n+1 −W n

)2
]

≤ ∆t||ξ′||2∞||ϕ||2∞|Λ|TCLg
(
1 + ||ulh,N ||2L2(Ω;L2(0,T ;L2(Λ)))

)
,

which tends to 0 as m goes to +∞.
Secondly, we start by rewriting S̃2,m − Ŝ2,m in the following manner

−(S̃2,m − Ŝ2,m) = E

[
1A

N−1∑
n=0

∑
K∈T

mK

∫ tn+1

tn

ξ(tn)g(unK) dW (t)ϕ(xK)

]

− E

[
1A

N−1∑
n=0

∑
K∈T

mK

∫ tn+1

tn

ξ(t)g(unK) dW (t)ϕ(xK)

]

+ E

[
1A

N−1∑
n=0

∑
K∈T

mK

∫ tn+1

tn

ξ(t)g(unK) dW (t)ϕ(xK)

]

− E
[
1A

∫
Λ

∫ T

0

ξ(t)g(ulh,N(t, x)) dW (t)ϕ(x) dx

]
.

(4.4)

Our aim is to analyse the difference between the two first terms (the two last terms,
respectively) on the right hand side of (4.4). To do so, we involve the discrete function ϕh
introduced at the beginning of the proof. Using successively Cauchy-Schwarz inequality
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on Ω× Λ and Itô isometry, one gets since P(A) ≤ 1∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

mK

∫ tn+1

tn

(
ξ(tn)− ξ(t)

)
g(unK) dW (t)ϕ(xK)

]∣∣∣∣∣
≤

N−1∑
n=0

∣∣∣∣E [1A ∫
Λ

∫ tn+1

tn

(
ξ(tn)− ξ(t)

)
g(ulh,N(t, x))ϕh(x) dW (t) dx

]∣∣∣∣
≤

√
|Λ|

N−1∑
n=0

(
E

[∫
Λ

{∫ tn+1

tn

(
ξ(tn)− ξ(t)

)
g(ulh,N(t, x))ϕh(x) dW (t)

}2

dx

]) 1
2

=
√
|Λ|

N−1∑
n=0

(
E
[∫

Λ

∫ tn+1

tn

{(
ξ(tn)− ξ(t)

)
g(ulh,N(t, x))ϕh(x)

}2

dt dx

]) 1
2

≤
√

∆t
√
|Λ|||ξ′||∞||ϕ||∞Lg

N−1∑
n=0

∆t

(
sup
t∈[0,T ]

E
[∫

Λ

|ulh,N(t, x)|2 dx
]) 1

2

which tends to 0 thanks to the bound given by Proposition 3.2. Let us now study the
difference between the two last terms of the right hand side of (4.4). Using again Cauchy-
Schwarz inequality on Ω× Λ and Itô isometry, one arrives at∣∣∣∣E [1A ∫

Λ

∫ T

0

ξ(t)g(ulh,N(t, x))
(
ϕh(x)− ϕ(x)

)
dW (t) dx

]∣∣∣∣2
≤ |Λ| × E

[∫
Λ

{∫ T

0

ξ(t)g(ulh,N(t, x))
(
ϕh(x)− ϕ(x)

)
dW (t)

}2

dx

]

= |Λ| × E
[∫

Λ

∫ T

0

{
ξ(t)g(ulh,N(t, x))

(
ϕh(x)− ϕ(x)

)}2
dt dx

]
≤ h2||ξ||2∞||∇ϕ||2∞|Λ|E

[∫
Λ

∫ T

0

CLg(1 + |ulh,N(t, x)|2) dt dx

]
,

which tends to 0 as m goes to +∞ thanks to the control on E
[∫

Λ

∫ T
0
|ulh,N(t, x)|2 dt dx

]
given by Lemma 3.3. Finally, one can affirm that S̃2,m − Ŝ2,m −−−−→

m→+∞
0.

Thirdly, we show that the following convergence result holds:

Ŝ2,m −−−−→
m→+∞

−E
[
1A

∫
Λ

∫ T

0

ξ(s)gu(s, x) dW (s)ϕ(x) dx

]
.

To do so, recall that, thanks to Itô isometry, the linear application
IT : L2

PT

(
Ω× (0, T );L2(Λ)

)
→ L2(Ω;L2(Λ)) defined by

IT : X 7→
∫ T

0

X(ω, t, x) dW (t)
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is continuous. Set (Xm)m = (g(ulh,N)ξ)m, then thanks to Lemma 4.2, up to a subsequence
denoted in the same way, (Xm)m converges weakly towards guξ in L2

PT

(
Ω× (0, T );L2(Λ)

)
and so since ϕ1A ∈ L2(Ω;L2(Λ)) one gets

Ŝ2,m = −
∫

Ω

∫
Λ

IT (Xm)(x, ω)ϕ(x)1A(ω) dx dP(ω)

−−−−→
m→+∞

−
∫

Ω

∫
Λ

IT (guξ)(ω, x)ϕ(x)1A(ω) dx dP(ω)

= −E
[
1A

∫
Λ

∫ T

0

ξ(s)gu(s, x) dW (s)ϕ(x) dx

]
Finally, thanks to Itô formula (see [14] Theorem 4.17 p.105) we may apply a rule of
stochastic integration by parts to conclude

−E
[
1A

∫
Λ

∫ T

0

ξ(s)gu(s, x) dW (s)ϕ(x) dx

]
=E

[
1A

∫
Λ

∫ T

0

∫ t

0

gu(s, x) dW (s)ξ′(t)ϕ(x) dt dx

]
.

• Study of S3,m: Following the arguments we developed in [8] (proof of Proposition 4.16),
one shows that

S3,m −−−−→
m→+∞

−E
[
1A

∫ T

0

∫
Λ

ξ(t)∆ϕ(x)u(t, x) dx dt

]
.

Indeed, thanks to a discrete integration by part formula, S3,m can be written as

S3,m = E

N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

un+1
K

∑
σ=K|L∈Eint∩EK

mσ

(
ϕ(xK)− ϕ(xL)

dK|L

)
dt

 .
Then, since ∇ϕ · n = 0 on ∂Λ, thanks to the Green-Ostrogradski Theorem one has,∫

K

∆ϕ(x) dx =

∫
∂K

∇ϕ(x) · n(x) dγ(x) =
∑

σ∈Eint∩EK

∫
σ

∇ϕ(x) · nK,σ dγ(x).

Thus, we have

S3,m = E

N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

un+1
K

∑
σ=K|L∈Eint∩EK

mσ

(
ϕ(xK)− ϕ(xL)

dK|L

)
dt


− E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

un+1
K

(∫
K

∆ϕ(x) dx−
∑

σ∈Eint∩EK

∫
σ

∇ϕ(x) · nK,σ dγ(x)

)
dt

]

= −E
[∫ T

0

1Aξ(t)

∫
Λ

urh,N(t, x)∆ϕ(x) dx dt

]

+ E

N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑

σ=K|L∈Eint

mσ(un+1
K − un+1

L )Rϕ
σ dt

 ,
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with
Rϕ
σ =

1

mσ

∫
σ

∇ϕ(x) · nK,σ dγ(x)− ϕ(xL)− ϕ(xK)

dK|L
.

Using Proposition 4.1 and up to a subsequence denoted in the same way, one gets

−E
[∫ T

0

∫
Λ

1Aξ(t)u
r
h,N(t, x)∆ϕ(x) dx dt

]
−−−−→
m→+∞

−E
[∫ T

0

∫
Λ

1Aξ(t)u(t, x)∆ϕ(x) dx dt

]
.

Note that one is able to control the deterministic rest Rϕ
σ since for any σ = K|L ∈ Eint, the

orthogonality condition implies xL − xK = dK|LnK,σ, thus thanks to the Taylor formula
there exists a constant Cϕ > 0 only depending on ϕ such that for any σ ∈ Eint one has

|Rϕ
σ | ≤ Cϕh.

Therefore, thanks to the Cauchy-Schwarz inequality and Lemma 3.4, one finally obtains∣∣∣∣∣∣E
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑

σ=K|L∈Eint

mσ(un+1
K − un+1

L )Rϕ
σ dt

∣∣∣∣∣∣
≤ CϕhE

N−1∑
n=0

∫ tn+1

tn

1A|ξ(t)|

 ∑
σ=K|L∈Eint

mσdK|L

 1
2
 ∑
σ=K|L∈Eint

mσ
|un+1
K − un+1

L |2

dK|L

 1
2

dt


≤
√

2Cϕ|Λ|
1
2hE

[∫ T

0

1A|ξ(t)||urh,N(t)|1,h dt
]

≤ h
√

2Cϕ|Λ|
1
2‖ξ1A‖L2(Ω×(0,T ))

(
E
[∫ T

0

|urh,N(t)|21,h dt
]) 1

2

−−−−→
m→+∞

0.

• Study of S4,m: Adapting to the stochastic case arguments exposed in [21] p.774-776 in
the deterministic and elliptic case, one shows that

S4,m −−−−→
m→+∞

−E
[
1A

∫ T

0

∫
Λ

(
v(t, x)u(t, x)

)
· ∇ϕ(x)ξ(t) dx dt

]
.

To do so, we decompose the term

S4,m = E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

∑
σ∈Eint∩EK

mσv
n+1
K,σ

(
un+1
σ − un+1

K

)
ϕ(xK) dt

]

in the following manner: S4,m = S4,m − S̃4,m + S̃4,m − Ŝ4,m + Ŝ4,m where

S̃4,m = E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

∑
σ∈Eint∩EK

(
un+1
σ − un+1

K

) 1

∆t

∫ tn+1

tn

∫
σ

v(s, x) · nK,σϕ(x) dγ(x)dsdt

]

Ŝ4,m = −E
[
1A

∫ T

0

∫
Λ

ξ(t)urh,N(t, x) divx
(
v(t, x)ϕ(x)

)
dx dt

]
.
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Firstly, one shows that |S4,m − S̃4,m| tends to 0 as m goes to +∞. Indeed, by noticing
that ∣∣∣∣ 1

mσ∆t

∫ tn+1

tn

∫
σ

v(s, x) · nK,σ
(
ϕ(xK)− ϕ(x)

)
dγ(x)ds

∣∣∣∣ ≤ h||v||∞||∇ϕ||∞

one obtains

|S4,m − S̃4,m| =

∣∣∣∣E[N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

∑
σ∈Eint∩EK

mσ

(
un+1
σ − un+1

K

)
× 1

mσ∆t

∫ tn+1

tn

∫
σ

v(s, x) · nK,σ
(
ϕ(xK)− ϕ(x)

)
dγ(x) ds dt

]∣∣∣∣
≤ ||v||∞||∇ϕ||∞||ξ||∞h

N−1∑
n=0

∑
K∈T

∑
σ∈Eint∩EK

∆tmσE
[
|un+1
σ − un+1

K |
]

≤ ||v||∞||∇ϕ||∞||ξ||∞h

N−1∑
n=0

∑
σ=K|L∈Eint

∆tmσdK|L

 1
2

×

N−1∑
n=0

∑
σ=K|L∈Eint

∆t
mσ

dK|L
E
[
|un+1
K − un+1

L |2
] 1

2

≤ h||v||∞||∇ϕ||∞||ξ||∞
√

2T |Λ|
(∫ T

0

E
[
|urh,N(t)|21,h

]
dt

) 1
2

−−−−→
m→+∞

0.

Secondly, one shows that |S̃4,m − Ŝ4,m| tends to 0 as m goes to +∞. Indeed, for any
σ = K|L ∈ Eint, since nK,σ = −nL,σ then vn+1

K,σ = −vn+1
L,σ and so one remarks that S̃4,m can

be rewritten as

S̃4,m = −E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

∑
σ∈Eint∩EK

un+1
K

1

∆t

∫ tn+1

tn

∫
σ

v(s, x) · nK,σϕ(x) dγ(x) ds dt

]
.

In this way, using the divergence-free property of v, one gets

S̃4,m = −E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

un+1
K

1

∆t

∫ tn+1

tn

∫
∂K

v(s, x) · nK(x)ϕ(x) dγ(x) ds dt

]

= −E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

un+1
K

1

∆t

∫ tn+1

tn

∫
K

divx
(
v(s, x)ϕ(x)

)
dx ds dt

]

= −E

[
N−1∑
n=0

∫ tn+1

tn

1Aξ(t)
∑
K∈T

un+1
K

1

∆t

∫ tn+1

tn

∫
K

v(s, x) · ∇ϕ(x) dx ds dt

]
.
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In the same manner, we write Ŝ4,m as

Ŝ4,m = −E
[
1A

∫ T

0

∫
Λ

ξ(t)urh,N(t, x)v(t, x) · ∇ϕ(x) dx dt

]
and then∣∣∣S̃4,m − Ŝ4,m

∣∣∣
=

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

un+1
K

∫ tn+1

tn

ξ(t)

∫
K

{
v(t, x)·∇ϕ(x)− 1

∆t

∫ tn+1

tn

v(s, x) ·∇ϕ(x) ds

}
dxdt

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

un+1
K

∫ tn+1

tn

ξ(t)

∫
K

1

∆t

∫ tn+1

tn

{
v(t, x)− v(s, x)

}
· ∇ϕ(x) ds dx dt

]∣∣∣∣∣
≤ ∆t||ξ||∞||∂tv||∞||∇ϕ||∞||urh,N ||L2(Ω;L2(0,T ;L2(Λ)))

√
T |Λ| −−−−→

m→+∞
0.

Thirdly, owing to the weak convergence of (urh,N)m towards u in L2(Ω;L2(0, T ;L2(Λ)))
given by Proposition 4.1, one gets directly that

Ŝ4,m = −E
[
1A

∫ T

0

∫
Λ

urh,N(t, x) divx
(
v(t, x)ϕ(x)

)
ξ(t) dx dt

]
−−−−→
m→+∞

−E
[
1A

∫ T

0

∫
Λ

u(t, x) divx
(
v(t, x)ϕ(x)

)
ξ(t) dx dt

]
= −E

[
1A

∫ T

0

∫
Λ

(
v(t, x)u(t, x)

)
· ∇ϕ(x)ξ(t) dx dt

]
• Study of S5,m: Thanks to Lemma 4.4, one shows that

S5,m −−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

βu(t, x)ϕ(x)ξ(t) dx dt

]
.

Indeed, let us remark that S5,m can be decomposed as S5,m = S5,m − S̃5,m + S̃5,m where

S̃5,m = E
[
1A

∫ T

0

∫
Λ

ξ(t)β(urh,N)ϕ(x) dx dt

]
−−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

βu(t, x)ϕ(x)ξ(t) dx dt

]
and

|S5,m − S̃5,m| =

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

ξ(t)β(un+1
K )

(
ϕ(xK)− ϕ(x)

)
dx dt

]∣∣∣∣∣
≤ h||ξ||∞||∇ϕ||∞Lβ||urh,N ||L1(Ω;L1(0,T ;L1(Λ))) −−−−→

m→+∞
0.
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Gathering all the previous convergence results, we pass to the limit in (4.3) to get that P-
a.s. in Ω, for all ξ ∈

{
φ ∈ D(R) : φ(T ) = 0

}
and all ϕ ∈

{
ψ ∈ D(R2) : ∇ψ ·n = 0 on ∂Λ

}
,

−
∫ T

0

∫
Λ

(
u(t, x)−

∫ t

0

gu(s, x) dW (s)

)
ξ′(t)ϕ(x) dx dt−

∫
Λ

u0(x)ξ(0)ϕ(x) dx

−
∫ T

0

∫
Λ

(
v(t, x)u(t, x)

)
· ∇ϕ(x)ξ(t) dx dt

=

∫ T

0

∫
Λ

u(t, x)∆ϕ(x)ξ(t) dx dt+

∫ T

0

∫
Λ

βu(t, x)ϕ(x)ξ(t) dx dt

(4.5)

which can be rewritten as

−
∫ T

0

∫
Λ

(
u(t, x)−

∫ t

0

gu(s, x) dW (s)

)
ξ′(t)ϕ(x) dx dt−

∫
Λ

u0(x)ξ(0)ϕ(x) dx

+

∫ T

0

∫
Λ

divx
(
v(t, x)u(t, x)

)
ϕ(x)ξ(t) dx dt

=−
∫ T

0

∫
Λ

∇u(t, x) · ∇ϕ(x)ξ(t) dx dt+

∫ T

0

∫
Λ

βu(t, x)ϕ(x)ξ(t) dx dt,

(4.6)

since v(t, x) ·n(x) = 0 and ∇ϕ(x) ·n(x) = 0 for any (t, x) ∈ [0, T ]×∂Λ. By [19, Theorem
1.1] the set {ψ ∈ D(R2) | ∇ψ ·n = 0 on ∂Λ} is dense in H1(Λ) and therefore (4.6) applies
to all ϕ ∈ H1(Λ). In the following, we denote the dual space of H1(Λ) by H1(Λ)∗. Recall
that we have the following continuous and dense embeddings

H1(Λ) ↪→ L2(Λ) ↪→ H1(Λ)∗.

Let us denote the H1(Λ)-H1(Λ)∗ duality bracket by 〈·, ·〉 and the L2(Λ) scalar product by
(·, ·). From Proposition 4.1, we know that the weak limit u belongs to L2(Ω;L2(0, T ;H1(Λ)))
and thus it follows that

∆u ∈ L2
(
Ω;L2(0, T ;H1(Λ)∗)

)
which yields

−
∫ T

0

∫
Λ

∇u(t, x) · ∇ϕ(x)ξ(t) dx dt =

∫ T

0

〈∆u(t, ·), ϕ〉ξ(t) dt (4.7)

P-a.s. in Ω, for all ξ ∈
{
φ ∈ D(R) : φ(T ) = 0

}
and all ϕ ∈ H1(Λ). Combining (4.6) with

(4.7) and with the identity

−
∫

Λ

u0(x)ϕ(x)ξ(0) dx =

∫ T

0

∫
Λ

u0(x)ϕ(x)ξ′(t) dx dt (4.8)

(see, [30, Lemma 7.3]), from Fubini’s theorem it follows that〈
−
∫ T

0

(
u(t)−

∫ t

0

gu(s) dW (s)− u0

)
ξ′(t) dt, ϕ

〉
=

〈∫ T

0

(
∆u(t)− divx

(
v(t, ·)u(t)

)
+ βu(t)

)
ξ(t) dt, ϕ

〉
,
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P-a.s. in Ω, for all ξ ∈
{
φ ∈ D(R) : φ(T ) = 0

}
and all ϕ ∈ H1(Λ). Therefore

−
∫ T

0

(
u(t)−

∫ t

0

gu(s) dW (s)− u0

)
ξ′(t) dt =

∫ T

0

(
∆u(t)−divx

(
v(t, ·)u(t)

)
+βu(t)

)
ξ(t) dt

in H1(Λ)∗, for all ξ ∈
{
φ ∈ D(R) : φ(T ) = 0

}
, P-a.s. in Ω since, by a separability

argument, the exceptional set in Ω may be chosen independently of ϕ. Consequently,
(see, e.g. [12, Proposition A6])(

u−
∫ ·

0

gu dW − u0

)
∈ W 1,2(0, T ;H1(Λ)∗) P-a.s. in Ω

and so

d

dt

(
u(t)−

∫ t

0

gu(s) dW (s)− u0

)
= ∆u− divx(vu) + βu in L2(Ω;L2(0, T ;H1(Λ)∗). (4.9)

Since gu ∈ L2
PT

(
Ω × (0, T );H1(Λ)

)
, it follows thanks to the properties of the stochastic

integral that (see [14] Proposition 4.15 p.104 or [29] Lemma 2.4.1 p.35)

∇
(∫ ·

0

gu dW

)
=

∫ ·
0

∇gu dW,

hence u −
∫ ·

0

gu dW is an element of L2(Ω;L2(0, T ;H1(Λ))). Note that the remaining

of the proof is very similar to the one exposed in our previous paper [8], but for the
sake of clarity, we decide to detail it again. From [30, Lemma 7.3] we obtain at first
that u ∈ L2

(
Ω; C ([0, T ];L2(Λ))

)
and together with (4.9), the following rule of partial

integration for all 0 ≤ t ≤ T , P-a.s. in Ω:(
u(t)−

∫ t

0

gu(τ) dW (τ)− u0, ζ(t)

)
− (u(0)− u0, ζ(0))

=

∫ t

0

〈
∆u(s)− divx

(
v(s, ·)u(s)

)
+ βu(s), ζ(s)

〉
ds

+

∫ t

0

〈
∂tζ(s), u(s)−

∫ s

0

gu(τ) dW (τ)− u0

〉
ds

(4.10)

for all ζ ∈ L2(0, T ;H1(Λ)) with ∂tζ ∈ L2(0, T ;H1(Λ)∗)). Choosing ζ : (t, x) 7→ ξ(t)ϕ(x)
with ϕ ∈ H1(Λ), ξ ∈

{
φ ∈ D(R) : φ(T ) = 0

}
in (4.10), we get(

u(t)−
∫ t

0

gu(τ) dW (τ)− u0, ϕ

)
ξ(t)− (u(0)− u0, ϕ)ξ(0)

=

∫ t

0

ξ(s)
〈
∆u(s)− divx

(
v(s, ·)u(s)

)
+ βu(s), ϕ

〉
ds

+

∫ t

0

ξ′(s)

(
u(s)−

∫ s

0

gu(τ) dW (τ)− u0, ϕ

)
ds

(4.11)
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P-a.s. in Ω. The particular choice of t = T and ξ ∈ D(R) with ξ(T ) = 0 and ξ(0) = 1 in
(4.11) combined with (4.5), (4.7) and (4.8) yields

(u(0)− u0, ϕ) = 0 for all ϕ ∈ H1(Λ), P-a.s. in Ω

and therefore u(0) = u0 P-a.s. in Ω.
Now, we fix t ∈ [0, T ) and choose ξ ∈ D(R) with ξ(T ) = 0 and ξ(s) = 1 for all s ∈ [0, t].
With this choice, from (4.11) we obtain(
u(t)−

∫ t

0

gu(s) dW (s)− u(0), ϕ

)
=

∫ t

0

〈
∆u(s)− divx

(
v(s, ·)u(s)

)
+ βu(s), ϕ

〉
ds (4.12)

P-a.s. in Ω for all ϕ ∈ H1(Λ). Since, for fixed ϕ ∈ H1(Λ),

t 7→
(
u(t)−

∫ t

0

gu(s) dW (s)− u(0), ϕ

)

and t 7→
∫ t

0

〈
∆u(s)− divx

(
v(s, ·)u(s)

)
+ βu(s), ϕ

〉
ds

are continuous on [0, T ], P-a.s. in Ω, the exceptional set in Ω in (4.12) may be chosen
independently of t ∈ [0, T ) and (4.12) also holds for t = T . This yields

u(t)− u(0)−
∫ t

0

gu(s) dW (s) +

∫ t

0

divx
(
v(s, ·)u(s)

)
ds−

∫ t

0

βu(s) ds =

∫ t

0

∆u(s) ds,

in H1(Λ)∗ and P-a.s. in Ω. To conclude, let us mention that since the left-hand side of
the above equality is in L2(Λ), it also holds in L2(Λ).

Lemma 4.6. (Stochastic energy equality) For any c > 0, the stochastic process u intro-
duced in Proposition 4.1 satisfies the following stochastic energy equality:

e−ctE
[
||u(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE
[
||∇u(s)||2L2(Λ)

]
ds

=E
[
||u0||2L2(Λ)

]
− c

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds+

∫ t

0

e−csE
[
||gu(s)||2L2(Λ)

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

βu(s, x)u(s, x) dx

]
ds, ∀t ∈ [0, T ].

(4.13)

Proof. It is a direct application of Itô formula to the stochastic process u and the func-
tional Ψ : (t, v) 7→ e−ct||v||2L2(Λ) defined on [0, T ] × L2(Λ). Le us precise that in the
application of Itô formula , the following contribution of the flux term appears

2

∫ t

0

e−csE
[∫

Λ

(
v(s, x)u(s, x)

)
· ∇u(s, x) dx

]
ds
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and since v is divergence-free and satisfies v · n = 0 on [0, T ]× ∂Λ, one gets∫ t

0

e−csE
[∫

Λ

(
v(s, x)u(s, x)

)
· ∇u(s, x) dx

]
ds

=

∫ t

0

e−csE

[∫
Λ

v(s, x) · ∇

(∫ u(s,x)

0

zdz

)
dx

]
ds

= 0.

4.2 Identification of weak limits coming from the non-linear terms

The next result gives a lower bound on the inferior limit of the integral over the in-
terval [0, T ] of an exponential weight in time norm of E[|urhm,Nm(·)|21,h]. This result is
needed for the identification of the weak limits gu and βu of respectively (g(ulh,N))m
and (β(urh,N))m. Indeed, in such an identification procedure, we are led to make appear
the term

∫ T
0

∫ t
0
e−csE

[∫
Λ
|∇u(s, x)|2 dx

]
ds dt (with a constant c > 0), and the following

lemma is essential for that.

Lemma 4.7. For any c > 0, the stochastic process u introduced in Proposition 4.1 satisfies
the following inequality:∫ T

0

∫ t

0

e−csE
[∫

Λ

|∇u(x, s)|2 dx
]
ds dt ≤ lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urhm,Nm(s)|21,hm ] ds dt. (4.14)

Proof. The idea is to generalize the Lemma 2.2 of [23] to the evolutionary in time and
stochastic case. Following their work, we start by introducing an approximation of u
constructed from several density results. For this we will need the following functional
spaces:

D(Λ) =
{
ϕ|Λ , ϕ ∈ C∞c (R2)

}
V =

{
ϕ ∈ D(Λ) : ∇ϕ · n = 0 on ∂Λ

}
V =

{ ∑
k finite

ξkϕk, ξk ∈ C∞c (0, T ) and ϕk ∈ V

}
.

Firstly, note that from [2] (Chapter 6, Remark 6.2.1.p.223), V is a dense part of H1(Λ),
and secondly, from [18] (Corollary 1.3.1 p.13), V is dense in L2(0, T ;H1(Λ)). Now owing
to [18] (Proposition 1.3.1 p.13), since u belongs to L2(Ω;L2(0, T ;H1(Λ))), then there

exists a sequence (up)p∈N? of simple random variables up =

p∑
i=1

1Aiϑi, where for any i in

{1, ..., p}, Ai ∈ A, ϑi ∈ L2(0, T ;H1(Λ)) and such that

up −−−−→
p→+∞

u in L2(Ω;L2(0, T ;H1(Λ))).
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Set p ∈ N?, then for i ∈ {1, ..., p} since ϑi ∈ L2(0, T ;H1(Λ)) there exists a sequence
(ϑi,εi)εi>0 ⊂ V such that

ϑi,εi −−−→
εi→0

ϑi in L2(0, T ;H1(Λ)).

Note that since p is finite, we can introduce a common ε > 0 such that

ϑi,ε −−→
ε→0

ϑi in L2(0, T ;H1(Λ)).

Then we define up,ε =

p∑
i=1

1Aiϑi,ε and we have for any fixed p,

up,ε −−→
ε→0

up in L2(Ω;L2(0, T ;H1(Λ))).

Set c > 0, p ∈ N? and ε > 0. We denote un,Kp,ε = up,ε(tn, xK) P-a.s. in Ω, for any
n ∈ {0, ..., N − 1} and any K ∈ T . Due to the weak convergence of the finite-volume
approximation (urh,N)m towards u in L2(Ω;L2(0, T ;L2(Λ))), we have

E
[∫ T

0

e−ct
∫

Λ

∇u(t, x) · ∇up,ε(t, x) dx dt

]
= − E

[∫ T

0

e−ct
∫

Λ

u(t, x) divx (∇up,ε(t, x)) dx dt

]
= − lim

m→+∞
E
[∫ T

0

e−ct
∫

Λ

urh,N(t, x) divx (∇up,ε(t, x)) dx dt

]
.

(4.15)

Note that

E
[∫ T

0

e−ct
∫

Λ

urh,N(t, x) divx (∇up,ε(t, x)) dx dt

]
= E

[
N−1∑
n=0

∑
K∈T

∫ tn+1

tn

e−ct
∫
K

un+1
K divx (∇up,ε(t, x)) dx dt

]

= E

[
N−1∑
n=0

∑
K∈T

un+1
K

∫ tn+1

tn

e−ct
∫
∂K

∇up,ε(t, x) · nK(x) dγ(x) dt

]

= E

N−1∑
n=0

∑
σ=K|L∈Eint

(un+1
K − un+1

L )

∫ tn+1

tn

e−ct
∫
σ

∇up,ε(t, x) · nK,L dγ(x) dt


= T1,m − T2,m + T2,m

where

T1,m = E

N−1∑
n=0

∑
σ=K|L∈Eint

(un+1
K − un+1

L )

∫ tn+1

tn

e−ct
∫
σ

∇up,ε(t, x) · nK,L dγ(x) dt


and T2,m = E

N−1∑
n=0

∑
σ=K|L∈Eint

(un+1
K − un+1

L )

∫ tn+1

tn

e−ct
mσ

dK|L
(un+1,L

p,ε − un+1,K
p,ε ) dt

 .
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Firstly, one shows that |T1,m − T2,m| −−−−→
m→+∞

0. To show this, we rewrite T1,m − T2,m as

T1,m − T2,m = E

N−1∑
n=0

∑
σ=K|L∈Eint

∆tmσ(un+1
K − un+1

L )×Rn+1
σ (up,ε)


where

Rn+1
σ (up,ε) =

1

∆tmσ

∫ tn+1

tn

e−ct
∫
σ

(
∇up,ε(t, x) · nK,L −

un+1,L
p,ε − un+1,K

p,ε

dK|L

)
dγ(x) dt(4.16)

which can be rewritten as

Rn+1
σ (up,ε) =

1

∆tmσ

∫ tn+1

tn

e−ct
∫
σ

(
∇up,ε(t, x) · nK,L −

up,ε(t, xL)− up,ε(t, xK)

dK|L

)
dγ(x) dt

+
1

∆t

∫ tn+1

tn

e−ct

(
up,ε(t, xL)− up,ε(t, xK)

dK|L
−
un+1,L
p,ε − un+1,K

p,ε

dK|L

)
dt.

Let us denote by Hup,ε the Hessian matrix of up,ε defined for any i, j ∈ {1, .., d} by

(Hup,ε)ij =
∂2up,ε
∂xi∂xj

. Then, thanks to a Taylor’s expansion, for any t ∈ [0, T ] and any

x ∈ σ, we have

up,ε(t, xL) = up,ε(t, x) + (xL − x) · ∇up,ε(t, x) +
1

2
(xL − x)THup,ε(t, x)(xL − x)

up,ε(t, xK) = up,ε(t, x) + (xK − x) · ∇up,ε(t, x) +
1

2
(xK − x)THup,ε(t, x̂)(xK − x),

where x = λxL + (1 − λ)x and x̂ = αxK + (1 − α)x for λ, α ∈ [0, 1]. Remind that the
orthogonality condition on the mesh implies that for any σ = K|L ∈ Eint, xL − xK =
dK|LnK,σ and so, using (2.2)∣∣∣∣∇up,ε(t, x) · nK,L −

up,ε(t, xL)− up,ε(t, xK)

dK|L

∣∣∣∣
=

∣∣∣∣12 (xK − x)THup,ε(t, x̂)(xK − x)− (xL − x)THup,ε(t, x)(xL − x)

dK|L

∣∣∣∣
≤h reg(T ) sup

(t,y)∈[0,T ]×Λ

|Hup,ε(t, y)|.

(4.17)

Additionally, using the following equalities for any t in [tn, tn+1]

un+1,K
p,ε = up,ε(tn+1, xK) = up,ε(t, xK) +

∫ tn+1

t

∂tup,ε(s, xK) ds

and

un+1,L
p,ε = up,ε(tn+1, xL) = up,ε(t, xL) +

∫ tn+1

t

∂tup,ε(s, xL) ds,
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and the fact that for any s in [0, T ]

∣∣∂tup,ε(s, xK)− ∂tup,ε(s, xL)
∣∣ =

∣∣∣∣∫ 1

0

(
∇
(
∂tup,ε

)
(s, µxK + (1− µ)xL)

)
· (xK − xL) dµ

∣∣∣∣
≤ 2h sup

(s,x)∈[0,T ]×Λ

|∇(∂tup,ε)(s, x)|,

we obtain using again (2.2)∣∣∣∣∣up,ε(t, xL)− up,ε(t, xK)

dK|L
−
un+1,L
p,ε − un+1,K

p,ε

dK|L

∣∣∣∣∣
=

∣∣∣∣∫ tn+1

t

∂tup,ε(s, xK)− ∂tup,ε(s, xL)

dK|L
ds

∣∣∣∣
≤∆t reg(T ) sup

(s,x)∈[0,T ]×Λ

|∇(∂tup,ε)(s, x)|.

(4.18)

Noticing that
∫ tn+1

tn

e−ct dt ≤ ∆t and combining (4.17) and (4.18), we obtain the existence

of a constant Kp,ε > 0 only depending on up,ε such that

E
[
|Rn+1

σ (up,ε)|2
]
≤

(
Kp,ε(∆t+ h) reg(T )

)2
. (4.19)

Applying Cauchy-Schwarz inequality yields

|T1,m − T2,m|2

=

∣∣∣∣∣∣E
N−1∑
n=0

∑
σ=K|L∈Eint

∆t
mσ√
dK|L

(un+1
K − un+1

L )×
√
dK|LR

n+1
σ (up,ε)

∣∣∣∣∣∣
2

≤E

N−1∑
n=0

∑
σ=K|L∈Eint

∆t
mσ

dK|L

∣∣un+1
K − un+1

L

∣∣2
× 2E

N−1∑
n=0

∑
σ=K|L∈Eint

∆t
mσdK|L

2
|Rn+1

σ (up,ε)|2


≤ 2T |Λ|
(
Kp,ε(∆t+ h) reg(T )

)2E
[∫ T

0

|urh,N(t)|21,h dt
]
,

(4.20)

which tends to 0 as m → +∞. We can thus affirm that T2,m admits a limit which is
known thanks to (4.15)

lim
m→+∞

T2,m = lim
m→+∞

T1,m = E
[∫ T

0

e−ct
∫

Λ

∇u(t, x) · ∇up,ε(t, x) dx dt

]
.
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Secondly, thanks to Cauchy-Schwarz inequality, we have

|T2,m|2 ≤E

N−1∑
n=0

∑
σ=K|L∈Eint

∫ tn+1

tn

e−ct
mσ

dK|L

∣∣un+1
K − un+1

L

∣∣2 dt


× E

N−1∑
n=0

∑
σ=K|L∈Eint

∫ tn+1

tn

e−ct
mσ

dK|L

∣∣un+1,K
p,ε − un+1,L

p,ε

∣∣2 dt
 (4.21)

=E
[∫ T

0

e−ct|urh,N(t)|21,h dt
]
× E

N−1∑
n=0

∑
σ=K|L∈Eint

∫ tn+1

tn

e−ct
mσ

dK|L

∣∣un+1,K
p,ε − un+1,L

p,ε

∣∣2dt
 .

Now, due to the regularity of up,ε, by adapting previous arguments applied to urh,N , one
can show that

lim
m→+∞

E

N−1∑
n=0

∑
σ=K|L∈Eint

∫ tn+1

tn

e−ct
mσ

dK|L

∣∣un+1,K
p,ε − un+1,L

p,ε

∣∣2 dt


= E
[∫ T

0

e−ct
∫

Λ

|∇up,ε(t, x)|2 dx dt
]
.

Using this convergence result, one obtains by passing to the inferior limit in (4.21)

(
E
[∫ T

0

e−ct
∫

Λ

∇u(t, x) · ∇up,ε(t, x) dx dt

])2

≤ lim inf
m→+∞

E
[∫ T

0

e−ct|urh,N(t)|21,h dt
]
× E

[∫ T

0

e−ct
∫

Λ

|∇up,ε(t, x)|2 dx dt
]
.

Then, using strong convergences in L2(Ω;L2(0, T ;H1(Λ))) of (up,ε)ε towards up (for a fixed
p) as ε goes to 0 and of (up)p towards u as p goes to +∞, the following holds

E
[∫ T

0

e−ct
∫

Λ

|∇u(t, x)|2 dx dt
]
≤ lim inf

m→+∞
E
[∫ T

0

e−ct|urh,N(t)|21,h dt
]
.

Note that using the same reasoning we show that for any t ∈ [0, T ],

E
[∫ t

0

e−cs
∫

Λ

|∇u(s, x)|2 dx ds
]
≤ lim inf

m→+∞
E
[∫ t

0

e−cs|urh,N(s)|21,h ds
]
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and thanks to Fatou’s Lemma, we finally have∫ T

0

∫ t

0

e−csE
[∫

Λ

|∇u(x, s)|2 dx
]
ds dt =

∫ T

0

E
[∫ t

0

e−cs
∫

Λ

|∇u(s, x)|2 dx ds
]
dt

≤
∫ T

0

lim inf
m→+∞

E
[∫ t

0

e−cs|urh,N(s)|21,h ds
]
dt

≤ lim inf
m→+∞

∫ T

0

E
[∫ t

0

e−cs|urh,N(s)|21,h ds
]
dt

= lim inf
m→+∞

∫ T

0

∫ t

0

e−csE
[
|urh,N(s)|21,h

]
ds dt,

and the proof is complete.

Remark 4.8. Let us detail here why we do consider such an approximation of u in the
previous proof. Firstly, we need to have the following equality:

E
[∫ T

0

e−ct
∫

Λ

∇u(t, x) · ∇up,ε(t, x) dx dt

]
= −E

[∫ T

0

e−ct
∫

Λ

u(t, x) divx(∇up,ε(t, x)) dx dt

]
,

and if ∇up,ε ·n 6= 0 then the boundary term appears in the application of the Gauss-Green
formula and our argumentation fails. For this reason, we choose the density of V in H1(Λ).
Secondly, we need a control of the term E

[
|Rn+1

σ (up,ε)|2
]
, and for this reason we choose a

particular approximation (up,ε)p,ε of elementary processes’s type. Indeed, if we consider
another approximation (Up,ε)p,ε with the only information (Up,ε)p,ε ⊂ L2(Ω; V ), we don’t
know if we control or not the expectation of the following quantities:(

sup
(t,y)∈[0,T ]×Λ

∣∣HUp,ε(t, y)
∣∣)2

and

(
sup

(s,x)∈[0,T ]×Λ

∣∣∇(∂tUp,ε)(s, x)
∣∣)2

.

Now, we have all the necessary tools on the one hand for the identification of gu and βu,
and on the other hand for completing the proof of Theorem 1.3.

Proposition 4.9. The sequences (urh,N)m and (ulh,N)m converge strongly in
L2(Ω;L2(0, T ;L2(Λ))) to the unique variational solution of Problem (1.1) in the sense
of Definition 1.2.

Proof. Let us fix n ∈ {0, ..., N−1}, K ∈ T , and multiply (2.8) by ∆tun+1
K , use the formula

a(a − b) = 1
2
(a2 − b2 + (a − b)2) with a = un+1

K and b = unK , take the expectation, and
proceed as for the obtention of (3.4) to arrive at

mK

2
E
[
(un+1

K )2 − (unK)2
]

+
mK

2
E
[
(un+1

K − unK)2
]

+∆t
∑

σ=K|L∈Eint∩EK

mσ(vn+1
K,σ )−E

[
(un+1

K − un+1
L )un+1

K

]
+∆t

∑
σ=K|L∈Eint∩EK

mσ

dK|L
E
[
(un+1

K − un+1
L )un+1

K

]
≤ mK

2
E
[
(un+1

K − unK)2
]

+
mK∆t

2
E
[
g2(unK)

]
+ ∆tmKE

[
β(un+1

K )un+1
K

]
.
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Now, we multiply the last inequality by e−ctn for arbitrary c > 0. Then, summing over
K ∈ T and n ∈ {0, ..., k} for k ∈ {0, ..., N − 1}, using (2.4) and reasoning as in the proof
of (3.3) one gets

1

2

k∑
n=0

∑
K∈T

mKe
−ctnE

[
(un+1

K )2 − (unK)2
]

+ ∆t
k∑

n=0

e−ctn
∑

σ=K|L∈Eint

mσ

dK|L
E
[
|un+1
K − un+1

L |2
]

≤ ∆t

2

k∑
n=0

∑
K∈T

mKe
−ctnE

[
g2(unK)

]
+ ∆t

k∑
n=0

∑
K∈T

mKe
−ctnE

[
β(un+1

K )un+1
K

]
.

Let us focus on each sum of this last inequality separately.
• Note that the general term of the first sum can be decomposed in the following way:

e−ctnE
[
(un+1

K )2 − (unK)2
]

= e−ctnE
[
(un+1

K )2
]
− e−ctn−1E

[
(unK)2

]
− E

[
(unK)2

] (
e−ctn − e−ctn−1

)
,

where t−1 := −∆t. Firstly, we have

1

2

k∑
n=0

∑
K∈T

mK

(
e−ctnE

[
(un+1

K )2
]
− e−ctn−1E

[
(unK)2

])
=

1

2

∑
K∈T

mKe
−ctkE

[
(uk+1

K )2
]
− 1

2

∑
K∈T

mKE
[
(u0

K)2
]
ec∆t.

(4.22)

Secondly, since there exists ξ ∈
(
− ctn,−ctn−1

)
such that

e−ctn − e−ctn−1 = eξ(−ctn + ctn−1) = −c∆teξ < −c∆te−ctn ,

the following inequality holds

−
k∑

n=1

∑
K∈T

mKE
[
(unK)2

] (
e−ctn − e−ctn−1

)
> c∆t

k∑
n=1

∑
K∈T

mKe
−ctnE

[
(unK)2

]
.

In particular, we have since for any s ∈ [tn, tn+1], e−cs ≤ e−ctn ,

c∆t
k∑

n=1

∑
K∈T

mKe
−ctnE

[
(unK)2

]
= c∆t

k−1∑
n=0

∑
K∈T

mKe
−ctn+1E

[
(un+1

K )2
]

= ce−c∆t
k−1∑
n=0

∑
K∈T

mK∆te−ctnE
[
(un+1

K )2
]

≥ ce−c∆t
k−1∑
n=0

∑
K∈T

mK

∫ tn+1

tn

e−csE
[
(un+1

K )2
]
ds

= ce−c∆t
∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds.
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In this manner

− 1

2

k∑
n=0

∑
K∈T

mKE
[
(unK)2

] (
e−ctn − e−ctn−1

)
>− 1

2

∑
K∈T

mKE
[
(u0

K)2
] (

1− ec∆t
)

+
c

2
e−c∆t

∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds

>
c

2
e−c∆t

∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds.

(4.23)

• The second sum can be handled in the following manner

∆t
k∑

n=0

e−ctn
∑

σ=K|L∈Eint

mσ

dK|L
E
[
|un+1
K − un+1

L |2
]

= ∆t
k∑

n=0

e−ctnE[|un+1
h |21,h]

≥
∫ tk+1

0

e−csE[|urh,N(s)|21,h] ds.

(4.24)

Indeed, since for any s ∈ [tn, tn+1], e−cs ≤ e−ctn one gets∫ tk+1

0

e−csE[|urh,N(s)|21,h] ds =
k∑

n=0

∫ tn+1

tn

e−csE[|un+1
h |21,h] ds

≤
k∑

n=0

E[|un+1
h |21,h]e−ctn

∫ tn+1

tn

1 ds

= ∆t
k∑

n=0

e−ctnE[|un+1
h |21,h].

• We have the following majoration of the third sum:

∆t

2

k∑
n=0

∑
K∈T

mKe
−ctnE

[
g2(unK)

]
≤ ∆t

2

∑
K∈T

mKE
[
g2(u0

K)
]

+
1

2

∫ tk

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds.

(4.25)

Indeed,

∆t

2

k∑
n=1

∑
K∈T

mKe
−ctnE

[
g2(unK)

]
=

∆t

2

k−1∑
n=0

∑
K∈T

mKe
−ctn+1E

[
g2(un+1

K )
]

≤ 1

2

k−1∑
n=0

∑
K∈T

mK

∫ tn+1

tn

e−csE
[
g2(un+1

K )
]
ds

=
1

2

∫ tk

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds.
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• The last sum can be handled in the following manner:

∆t
k∑

n=0

∑
K∈T

mKe
−ctnE

[
β(un+1

K )un+1
K

]
≤ c∆tLβ||urh,N ||2L2(Ω;L2(0,T ;L2(Λ))) +

∫ tk+1

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds.

(4.26)

Indeed,∣∣∣∣∣∆t
k∑

n=0

∑
K∈T

mKe
−ctnE

[
β(un+1

K )un+1
K

]
−
∫ tk+1

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds

∣∣∣∣∣
=

∣∣∣∣∣
k∑

n=0

∑
K∈T

∫ tn+1

tn

∫
K

(e−ctn − e−cs)E
[
β(un+1

K )un+1
K

]
dx ds

∣∣∣∣∣ ≤ c∆tLβ||urh,N ||2L2(Ω;L2(0,T ;L2(Λ))).

Combining (4.22), (4.23), (4.24), (4.25) and (4.26) one gets

∑
K∈T

mKe
−ctkE

[
(uk+1

K )2
]

+ 2

∫ tk+1

0

e−csE[|urh,N(s)|21,h] ds

≤ ec∆t
∑
K∈T

mKE
[
(u0

K)2
]

+ ∆t
∑
K∈T

mKE
[
g2(u0

K)
]

+

∫ tk

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds

−ce−c∆t
∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds+ 2c∆tLβ||urh,N ||2L2(Ω;L2(0,T ;L2(Λ)))

+2

∫ tk+1

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds.

For t ∈ [tk, tk+1) since e−ct ≤ e−ctk and (t−∆t)+ ≤ tk, one gets

e−ctE
[
||urh,N(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE[|urh,N(s)|21,h] ds

≤ ec∆t
∑
K∈T

mKE
[
(u0

K)2
]

+ ∆t
∑
K∈T

mKE
[
g2(u0

K)
]

+

∫ t

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds

−ce−c∆t
∫ (t−∆t)+

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds+ 2c∆tLβ||urh,N ||2L2(Ω;L2(0,T ;L2(Λ)))

+2

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds

+2

∫ tk+1

t

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds

Using the fact that (urh,N)m is bounded in L∞ (0, T ;L2(Ω;L2(Λ)))n by Proposition 3.2 one
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gets ∫ t

(t−∆t)+

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds+ 2

∫ tk+1

t

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds

≤ ∆t(1 + 2Lβ)||urh,N ||2L∞(0,T ;L2(Ω;L2(Λ)))

and so (since −
∫ (t−∆t)+

0
= −

∫ t
0

+
∫ t

(t−∆t)+)

e−ctE
[
||urh,N(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE[|urh,N(s)|21,h] ds

≤ ec∆tE[||u0||2L2(Λ)] + ∆tL2
gE[||u0||2L2(Λ)] +

∫ t

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds (4.27)

− ce−c∆t
∫ t

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds+ 2c∆tLβ‖urh,N‖2

L2(Ω;L2(0,T ;L2(Λ)))

+ ∆t(1 + 2Lβ)||urh,N ||2L∞(0,T ;L2(Ω;L2(Λ))) + 2

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds.

Moreover,∫ t

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds =

∫ t

0

e−csE
[
||g(urh,N)(s)− g(u)(s)||2L2(Λ)

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

g(urh,N)(s, x)g(u)(s, x)dx

]
ds−

∫ t

0

e−csE
[
||g(u)(s)||2L2(Λ)

]
ds.

(4.28)

In the same manner,

− ce−c∆t
∫ t

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds = −ce−c∆t

∫ t

0

e−csE
[
||urh,N(s)− u(s)||2L2(Λ)

]
ds

− 2ce−c∆t
∫ t

0

e−csE
[∫

Λ

urh,N(s, x)u(s, x) dx

]
ds+ ce−c∆t

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds.

(4.29)

At last∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds =

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))u(s, x) dx

]
ds

+

∫ t

0

e−csE
[∫

Λ

(
β(urh,N(s, x))− β(u(s, x))

)
(urh,N(s, x)− u(s, x)) dx

]
ds (4.30)

+

∫ t

0

e−csE
[∫

Λ

β(u(s, x))(urh,N(s, x)− u(s, x)) dx

]
ds.

Note that there exists c > 0 depending only on Lg and Lβ such that for any N big enough∫ t

0

e−csE
[
||g(urh,N(s))− g(u(s))||2L2(Λ)

]
ds− ce−c∆t

∫ t

0

e−csE
[
||urh,N(s)− u(s)||2L2(Λ)

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

(
β(urh,N(s, x))− β(u(s, x))

)
(urh,N(s, x)− u(s, x)) dx

]
ds ≤ 0.
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From now on, we will consider such a choice of c. After injecting (4.28), (4.29) and (4.30)
in (4.27), we arrive at

e−ctE
[
||urh,N(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE[|urh,N(s)|21,h] ds

≤E[||u0||2L2(Λ)] + ∆tL2
gE[||u0||2L2(Λ)] + 2

∫ t

0

e−csE
[∫

Λ

g(urh,N)(s, x)g(u)(s, x) dx

]
ds

−
∫ t

0

e−csE
[
||g(u)(s)||2L2(Λ)

]
ds− 2ce−c∆t

∫ t

0

e−csE
[∫

Λ

urh,N(s, x)u(s, x) dx

]
ds

+ ce−c∆t
∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds+ 2c∆tLβ‖urh,N‖2

L2(Ω;L2(0,T );L2(Λ)))

+ ∆t(1 + 2Lβ)||urh,N ||2L∞(0,T ;L2(Ω;L2(Λ))) +
(
ec∆t − 1

)
E
[
||u0||2L2(Λ)

]
+ 2

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))u(s, x) dx

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

β(u(s, x))
(
urh,N(s, x)− u(s, x)

)
dx

]
ds.

Then, integrating this last inequality from 0 to T the following holds∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

≤
∫ T

0

E[||u0||2L2(Λ)] dt+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

g(urh,N)(s, x)g(u)(s, x) dx

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||g(u(s))||2L2(Λ)

]
ds dt

− 2ce−c∆t
∫ T

0

∫ t

0

e−csE
[∫

Λ

urh,N(s, x)u(s, x) dx

]
ds dt

+ ce−c∆t
∫ T

0

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds dt+ T

(
ec∆t − 1

)
E[||u0||2L2(Λ)]

+ T∆t
(

(1 + 2Lβ)||urh,N ||2L∞(0,T ;L2(Ω;L2(Λ))) + L2
gE[||u0||2L2(Λ)] + 2cLβ‖urh,N‖2

L2(Ω;L2(0,T ;L2(Λ)))

)
+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))u(s, x) dx

]
ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

β(u(s, x))
(
urh,N(s, x)− u(s, x)

)
dx

]
ds dt.

39



Firstly, by passing to the superior limit one gets

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2 lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

≤
∫ T

0

E[||u0||2L2(Λ)] dt− c
∫ T

0

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

gu(s, x)g(u)(s, x) dx

]
ds dt−

∫ T

0

∫ t

0

e−csE
[
||g(u(s))||2L2(Λ)

]
ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

βu(s, x)u(s, x) dx

]
ds dt.

Secondly, thanks to the stochastic energy equality (4.13) one arrives at

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2 lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

≤
∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt+ 2

∫ T

0

∫ t

0

e−csE
[
||∇u(s)||2L2(Λ)

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||gu(s)||2L2(Λ)

]
ds dt+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

gu(s, x)g(u(s, x)) dx

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||g(u(s))||2L2(Λ)

]
ds dt,

which yields to

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2 lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

≤
∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt+ 2

∫ T

0

∫ t

0

e−csE
[
||∇u(s)||2L2(Λ)

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||g(u(s))− gu(s)||2L2(Λ)

]
ds dt.

Thirdly, owing to (4.14) one obtains

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+

∫ T

0

∫ t

0

e−csE
[
||g(u(s))− gu(s)||2L2(Λ)

]
ds dt

≤
∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt.

Note that by weak convergence of (urh,N)m towards u in L2(Ω;L2(0, T ;L2(Λ))), the fol-
lowing inequality is always true∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt ≤ lim inf

m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt,
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and so this allows us to conclude firstly that gu = g(u), secondly that (urh,N)m, (ulh,N)m
converges strongly to u in L2(Ω;L2(0, T ;L2(Λ))), that βu = β(u) and at last that u is the
unique variational solution of Problem (1.1) in the sense of Definition 1.2.

Acknowledgments The authors would like to thank T. Gallouët for his valuable sug-
gestions. This work has been supported by the German Research Foundation project
(ZI 1542/3-1), the Institut de Mécanique et d’Ingenierie of Marseille and various Procope
programs: Project-Related Personal Exchange France-Germany (49368YE), Procope Mo-
bility Program (DEU-22-0004 LG1) and Procope Plus Project.

References
[1] R. Anton, D. Cohen, and L. Quer-Sardanyons. A fully discrete approximation of

the one-dimensional stochastic heat equation. IMA J. Numer. Anal., 40(1):247–284,
2020.

[2] H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev and BV
Spaces. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[3] C. Bauzet, V. Castel, and J. Charrier. Existence and uniqueness result for an hyper-
bolic scalar conservation law with a stochastic force using a finite volume approxi-
mation. J. Hyperbolic Differ. Equ., 17(2):213–294, 2020.

[4] C. Bauzet, J. Charrier, and T. Gallouët. Convergence of flux-splitting finite vol-
ume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic
perturbation. Math. Comp., 85(302):2777–2813, 2016.

[5] C. Bauzet, J. Charrier, and T. Gallouët. Convergence of monotone finite volume
schemes for hyperbolic scalar conservation laws with multiplicative noise. Stoch.
Partial Differ. Equ. Anal. Comput., 4(1):150–223, 2016.

[6] C. Bauzet, J. Charrier, and T. Gallouët. Numerical approximation of stochastic con-
servation laws on bounded domains. ESAIM Math. Model. Numer. Anal., 51(1):225–
278, 2017.

[7] C. Bauzet and F. Nabet. Convergence of a finite-volume scheme for a heat equation
with a multiplicative stochastic force. In Finite volumes for complex applications
IX—methods, theoretical aspects, examples—FVCA 9, Bergen, Norway, June 2020,
volume 323 of Springer Proc. Math. Stat., pages 275–283. Springer, Cham, 2020.

[8] C. Bauzet, F. Nabet, K. Schmitz, and A. Zimmermann. Convergence of a finite-
volume scheme for a heat equation with a multiplicative Lipschitz noise. ESAIM
Math. Model. Numer. Anal., 57(2):745–783, 2022.

41



[9] C. Bauzet, F. Nabet, K. Schmitz, and A. Zimmermann. Finite Volume Approxima-
tions for Non-Linear Parabolic Problems with Stochastic Forcing, arXiv.2303.13125.

[10] Ľ. Baňas, Z. Brzeźniak, M. Neklyudov, and A. Prohl. Stochastic ferromagnetism,
volume 58 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2014. Analysis
and numerics.

[11] D. Breit, M. Hofmanová, and S. Loisel. Space-time approximation of stochastic p-
Laplace-type systems. SIAM J. Numer. Anal., (4):2218–2236, 2021.

[12] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. North-Holland
Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New
York, 1973.

[13] P. Wittbold C. Bauzet, G. Vallet. The cauchy problem for a conservation law with a
multiplicative stochastic perturbation. Journal of Hyperbolic Differential Equations,
9:661–709, 2012.

[14] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44
of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, second edition, 1992.

[15] A. Debussche and J. Printems. Weak order for the discretization of the stochastic
heat equation. Math. Comp., 78(266):845–863, 2009.

[16] S. Dotti and J. Vovelle. Convergence of approximations to stochastic scalar conser-
vations laws. Archive for Rational Mechanics and Analysis, 1(1):1–53, 2018.

[17] S. Dotti and J. Vovelle. Convergence of the finite volume method for scalar conser-
vation laws with multiplicative noise: an approach by kinetic formulation. Stochastic
and Partial Differential Equations : Analysis and Computations, 8(4):265–310, 2020.

[18] J. Droniou. Intégration et Espaces de Sobolev à Valeurs Vectorielles. https://hal.
archives-ouvertes.fr/hal-01382368/document, 2001.

[19] J. Droniou. A density result in Sobolev spaces. J. Math. Pures App., 81(7):697–714,
2002.

[20] R. Eymard and T. Gallouët. H-convergence and numerical scheme for elliptic prob-
lems. SIAM J. Numer. Anal., 41(2):539–562, 2003.

[21] R. Eymard, T. Gallouët, and R. Herbin. Finite Volume Methods. In J. L. Lions
and Philippe Ciarlet, editors, Solution of Equation in Rn (Part 3), Techniques of
Scientific Computing (Part 3), volume 7 of Handbook of Numerical Analysis, pages
713–1020. Elsevier, 2000.

42

https://hal.archives-ouvertes.fr/hal-01382368/document
https://hal.archives-ouvertes.fr/hal-01382368/document


[22] T. Funaki, Y. Gao, and D. Hilhorst. Convergence of a finite volume scheme for a
stochastic conservation law involving a Q-Brownian motion. Discrete Contin. Dyn.
Syst. Ser. B, 23(4):1459–1502, 2018.

[23] R. Herbin and E. Marchand. Finite volume approximation of a class of variational
inequalities. IMA Journal of Numerical Analysis, 21:553–585, 2001.

[24] N. V. Krylov and B. L. Rozovskii. Stochastic evolution equations. Journal of Soviet
Mathematics, 16(4):1233–1277, 1981.

[25] W. Liu and M. Röckner. Stochastic partial differential equations: an introduction.
Universitext. Springer, Cham, 2015.

[26] A. Majee. Convergence of a flux-splitting finite volume scheme for conservation laws
driven by lévy noise. Applied Mathematics and Computation, 338(1):676–697, 2018.

[27] M. Ondrejat, A. Prohl, and N. Walkington. Numerical approximation of nonlinear
SPDE’s. Stochastics and Partial Differential Equations: Analysis and Computations,
2022.

[28] É. Pardoux. Équations aux dérivées partielles stochastiques non linéaires monotones.
Ph.d. thesis, University Paris Sud, 1975.

[29] C. Prévôt and M. Röckner. A concise course on stochastic partial differential equa-
tions, volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007.

[30] T. Roubíček. Nonlinear Partial Differential Equations with Applications. Interna-
tional series of numerical mathematics 153. Birkhäuser, Basel [u.a.], 2. ed edition,
2013.

[31] G. Vallet. Stochastic perturbation of nonlinear degenerate parabolic problems. Differ.
Integral Eqn., 2008.

43


	Introduction
	Notations
	Concept of solution and main result
	State of the art
	Goal of the study and outline of the paper

	The finite-volume framework
	Admissible finite-volume meshes and notations
	Discrete unknowns and piecewise constant functions 
	Discrete norms and discrete gradient
	The finite-volume scheme

	Stability estimates
	Convergence of the finite-volume scheme
	Weak convergence of finite-volume approximations
	Identification of weak limits coming from the non-linear terms


