Pré-Publication, Document De Travail Année : 2023

Rigidly-rotating scalar fields: between real divergence and imaginary fractalization

Résumé

The thermodynamics of rigidly rotating systems experience divergences when the system dimensions transverse to the rotation axis exceed the critical size imposed by the causality constraint. The rotation with imaginary angular frequency, suitable for numerical lattice simulations in Euclidean imaginary-time formalism, experiences fractalization of thermodynamics in the thermodynamic limit, when the system's pressure becomes a fractal function of the rotation frequency. Our work connects two phenomena by studying how thermodynamics fractalizes as the system size grows. We examine an analytically-accessible system of rotating massless scalar matter on a one-dimensional ring and the numerically treatable case of rotation in the cylindrical geometry and show how the ninionic deformation of statistics emerges in these systems. We discuss a no-go theorem on analytical continuation between real- and imaginary-rotating theories. Finally, we compute the moment of inertia and shape deformation coefficients caused by the rotation of the relativistic bosonic gas.

Mots clés

Fichier principal
Vignette du fichier
Ninion_in_a_cylinder_Overleaf.pdf (3.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04068448 , version 1 (13-04-2023)
hal-04068448 , version 2 (26-10-2023)

Identifiants

Citer

Victor E. Ambruş, Maxim N. Chernodub. Rigidly-rotating scalar fields: between real divergence and imaginary fractalization. 2023. ⟨hal-04068448v1⟩
65 Consultations
72 Téléchargements

Altmetric

Partager

More