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Rigidly-rotating scalar fields: between real divergence and imaginary fractalization
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1Department of Physics, West University of Timis,oara,
Bd. Vasile Pârvan 4, Timis,oara 300223, Romania∗

2Institut Denis Poisson UMR 7013, Université de Tours, 37200 France†

The thermodynamics of rigidly rotating systems experience divergences when the system dimen-
sions transverse to the rotation axis exceed the critical size imposed by the causality constraint.
The rotation with imaginary angular frequency, suitable for numerical lattice simulations in Eu-
clidean imaginary-time formalism, experiences fractalization of thermodynamics in the thermody-
namic limit, when the system’s pressure becomes a fractal function of the rotation frequency. Our
work connects these two phenomena by studying how thermodynamics fractalizes as the system
size grows. We examine an analytically-accessible system of rotating massless scalar matter on a
one-dimensional ring and the numerically treatable case of rotation in the cylindrical geometry and
show how the ninionic deformation of statistics emerges in these systems. We discuss a no-go theo-
rem on analytical continuation between real- and imaginary-rotating theories. Finally, we compute
the moment of inertia and shape deformation coefficients caused by the rotation of the relativistic
bosonic gas.

I. INTRODUCTION

Effects of rotation on the state of physical bodies have
been a subject of passionate interest throughout the
decades. In metals, the uniform rotation acts on electrons
via a centrifugal force that produces a slight but exper-
imentally perceptible gradient of electric potential mea-
sured at ∼ 102−3 Hz [1]. At the level of electronic spins,
one of the numerous examples of rotation-generated phe-
nomena is the Barnett effect [2] which – with its celebrity
reciprocal, the Einstein–de Haas effect [3] – relates the
mechanical torque and magnetization in ferromagnets.
The nuclear analog of the Barnett effect substantially af-
fects the polarization of the protons (ions of hydrogen)
in the water rotating with the frequency ∼ 104 Hz [4].
However, the fastest rotation of matter has been pro-

duced in noncentral collisions of relativistic heavy ions
that create quark-gluon plasma in which the vorticity
reaches the values ∼ 1022 Hz [5–7]. The fast rotation
affects the local properties of quark-gluon plasma, lead-
ing to various spin polarization phenomena, allowing us
to probe experimentally the interior of rapidly rotating
plasma in terms of its local vortical structure [8, 9].

There are various theoretical shreds of evidence
that fast rotation also affects the chiral [10–16] and
(de)confining transitions [17–27] of the quark-gluon
plasma. Theoretical methods, however, prevailingly as-
sume a rigid rotation that makes every physical point
rotate about a fixed axis with the same angular velocity.
While the rigid character of rotation substantially sim-
plifies the analytical treatment of the problem [28, 29],
the consensus on the thermodynamic properties of quark-
gluon plasma, even in this simplest case, is still absent,
thus opening a gap between numerical and various an-
alytical calculations. Moreover, the latest first-principle
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simulation reveals the instability of the rigidly rotating
gluon plasma below the “supervortical” critical tempera-
ture [27], indicating the complexity of rotation in strongly
interacting systems.
First-principle information about the quark-gluon

plasma comes from lattice simulation in the Euclidean
imaginary time formalism where the real angular momen-
tum Ω brings the sign problem [30] which makes the nu-
merical simulations impossible. This inconvenience can
traditionally be overcome by turning the angular momen-
tum into the complex plane and considering the purely
imaginary rotation ΩI = −iΩ in full analogy with the
baryon chemical potential [17, 19, 21, 23, 30, 31].
The imaginary rotation differs, however, from the

imaginary baryonic chemical potential: the analytical
continuation to real rotation used in numerical lattice
simulations has some unusual features including the
emergence of (stable) ghost-like excitations [19] charac-
terized by “ninionic” deformation of statistics and the ap-
pearance of the fractal features of thermodynamics under
imaginary rotation. The fractalization imposes a no-go
theorem on an analytical continuation for rotating sys-
tems in the thermodynamic limit [32].
In our work, we discuss the effect of rotation on the

thermodynamics of the simplest possible system repre-
sented by the massless scalar fields. First, we briefly in-
troduce the real and imaginary rotation in Sec. II. Then,
in Sec. III, we analyze the interrelation between the frac-
tal features, analytical continuation, and the causality
constraint for the model formulated on a one-dimensional
ring which can be treated analytically.
Section IV approaches real and imaginary rotation

within the scope of the relativistic kinetic theory applied
to the three-dimensional rotating gas. It also addresses
the mechanical features of the rotating gas, including
its moment of inertia and shape-deformation coefficients.
This analysis is followed by Sec. V, where we pursue,
for simplicity, a “hybrid” quantization approach based
on the cylindrical waves with continuous momentum in
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a spatially unbounded region.
We show the advantages of both discussed approaches

in Sec. VI, where the rotating gas in the cylindrically-
bounded region and the discrete quantization of the
transverse modes is treated numerically in great de-
tail. Furthermore, we reveal the analytical fractaliza-
tion of the thermodynamics numerically in the three-
dimensional rotating gas and explicitly show strong par-
allels with the fractalization of thermodynamics in the
one-dimensional ring accessible analytically.

Our last section is devoted to conclusions and a sum-
mary of our results. Throughout the article, we work
with the conventions ℏ = c = kB = 1.

II. IMAGINARY ROTATION AND STATISTICS

A. Real rotation and imaginary rotation

Let us consider a quantum-mechanical system of
bosonic particles rotating uniformly (rigidly, as a solid
body) with the constant angular frequency Ω about the
z axis. For simplicity, we can assume that the system of
particles is rotating inside a cylinder possessing reflective
boundary conditions. In the co-rotating frame, the free
energy of the system takes the following form:

Fβ =
V

β

∑∫
α,m

∑
c=±1

ln
(
1−e−β(ωα,m+cmΩ)

)
, (1)

where β = 1/T is the inverse temperature, V is the vol-
ume of the system, ωα,m is the energy spectrum of the
particles in the laboratory reference frame, and α is a
collective notation of quantum numbers other than the
projection of angular momentum, m ≡ mz ∈ Z. We work
with zero-charge systems so that the chemical potential
does not enter the free energy of the system (1). We
also ignore the zero-point contribution associated with
the vacuum Casimir energy since it does not affect the
thermodynamics of the system.

In order to determine the thermodynamic characteris-
tics (for example, energy, pressure, entropy, angular mo-
mentum, moment of inertia, etc), it is sufficient to evalu-
ate the statistical integral (1). For bosonic particles, the
contribution of each quantum level to the thermodynamic
quantities is given by the Bose-Einstein distribution

n(bos)ω =
1

eβω − 1
, [bosonic statistics], (2)

where ω is the energy of the quantum level. In a rigidly
rotating system, the statistical weight is determined by
the energy in the co-rotating reference frame:

ω = ω̃α,m ≡ ωα,m −mΩ , (3)

thus demonstrating explicitly how rotation with Ω ̸= 0
affects the statistical particle distribution.

It is convenient to calculate the thermodynamic prop-
erties of rotating particles using the imaginary-time for-
malism in which the time coordinate is turned to a com-
plex variable via the Wick transformation, t → τ = it.
The imaginary time τ is compactified to a circle of the
length β = 1/T related to thermal equilibrium tempera-
ture T . The compactification imposes the matching con-
ditions on the fields: all scalar fields ϕ are periodic func-
tions along the thermal direction,

ϕ(x, τ) = ϕ (x, τ + β) , (4)

while all fermionic fields (not considered in this arti-
cle) obey anti-periodic boundary conditions. The Bose-
Einstein statistical distribution (2) for bosonic fields can
be recovered automatically from the periodic boundary
conditions (4) [33].
The imaginary-time approach is intensively used in

numerical lattice simulations of quantum field theories
where the partition function is formulated in terms of
a statistical integral in Euclidean spacetime [34]. The
lattice simulations are especially useful for obtaining in-
formation about non-perturbative effects that cannot be
treated with standard perturbative methods [34].
However, the imaginary-time techniques cannot be di-

rectly applied to rotating systems because the action of
the Euclidean theory becomes a complex quantity at a
nonzero angular frequency, Ω ̸= 0, thus exhibiting the
so-called “sign problem” [30]. The latter property does
not allow us to treat the partition function of a rotating
system as a statistical integral bringing us to an incon-
venient similarity with finite-density systems where the
(baryonic) chemical potential also makes the Euclidean
action a complex quantity [34]. The only practical way
to avoid the sign problem for rotation is to consider the
angular frequency as a purely imaginary variable:

Ω = iΩI . (5)

The shift of the angular frequency to the complex
plane (5) restores the real-valuedness of the Euclidean
action [17, 30]. Having calculated the desired quantities
at a set of imaginary ΩI , one can then apply an analytical
continuation to map the results obtained with the imagi-
nary rotation to the realistic case of real rotation [17, 21].
This prescription, applied to the angular frequency Ω, fol-
lows a standard set of practices invoked to avoid the sign
problem in simulations of finite-density systems [35].
In the context of the imaginary-time formalism, there

are two methods how one can implement the imaginary
rotation (5). The first approach, originally proposed in
Ref. [30] and adopted in various numerical Monte Carlo
simulations of (quark-) gluon plasmas [21, 26, 27, 30],
consists in (i) considering the system in a non-inertial
co-rotating reference frame in Minkowski spacetime; (ii)
turning the system, via a Wick transformation, to the
curved Euclidean spacetime with a complex metric ten-
sor; (iii) implementing the substitution (5) which makes
the metric tensor real-valued again; (iv) simulating the



3

thermodynamics at a set of non-zero ΩI with the stan-
dard periodic boundary conditions (4); (v) fitting the ob-
tained numerical results by a reasonable analytical func-
tion and, finally, (vi) making an analytical continuation
of the lattice results to the real-valued frequency by set-
ting

Ω2
I → −Ω2 . (6)

The second approach implements the imaginary rota-
tion in the imaginary-time formalism in a more straight-
forward way using the property that the imaginary fre-
quency ΩI corresponds, after all, to a uniform rotation
of a subspace of a timeslice of the Euclidean spacetime
about a certain fixed axis [19, 23]. As the imaginary time
variable τ advances for a full period from τ = 0 to τ = β,
the system experiences a spatial rotation by the angle:

χ = βΩI ≡ 2πν , ν =
βΩI

2π
. (7)

The turn of the space necessitates a modification of the
standard bosonic boundary conditions (4) which should
now incorporate a translation in imaginary time with the
uniform rotation of the Euclidean spacetime.

Under the imaginary rotation, the bosonic wavefunc-
tion appears to satisfy the rotwisted boundary condition:

ϕ(x, τ) = ϕ
(
R̂χx, τ + β

)
, (8)

where the 3× 3 matrix

R̂χ =

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

 , (9)

written in Cartesian coordinates, corresponds to the
global rotation of the whole spatial Euclidean subspace,
x → x′ = R̂χx, by the angle (7). In the absence of rota-
tion, the transformation (9) becomes a unit matrix and
the boundary condition (8) reduces to the standard pe-
riodic condition for bosons (4). The rotwisted boundary
conditions, visualized in Fig. 1, have already been dis-
cussed in the context of the Euclidean lattice simulations
of field theories [23, 26].

The boundary conditions (8) are obviously invariant
under 2π shifts of χ, or equivalently, shifts by one unit
in ν:

χ→ χ+ 2π , ν → ν + 1 , (10)

and, in the parity-unbroken systems, under the reversal
of the rotation angle:

χ→ −χ , ν → −ν . (11)

The latter condition holds for a system of neutral par-
ticles that we consider. The symmetry under clockwise
and counterclockwise rotations (11) can be broken, for
example, for charged particles subjected to a background
magnetic field which leads, in particular, to a rotation
diode effect in semiconductors [36].

τ

x

y

τ = 0

τ = β

χ = βΩI

FIG. 1. The rotwisted boundary conditions (8) characterized
by the statistical angle (7) produced by the imaginary angular
velocity ΩI .

B. Imaginary rotation and ninionic statistics

The differences between the two implementations of
the imaginary rotation are two-fold: one can either con-
sider the curved Euclidean spacetime with corotating co-
ordinates and ordinary boundary conditions (4) imple-
mented along the compactified time (the first approach)
or use Cartesian coordinates with the rotwisted bound-
ary conditions (8) following the second approach. In our
article, we consider field theories subjected to imaginary
rotation introduced via the rotwisted boundary condi-
tion.
The boundary conditions imposed on the fields in the

imaginary time direction have one-to-one correspondence
with the statistical distribution of the particles. For ex-
ample, the equal-time commutation relations for bosonic
fields imply the periodic boundary conditions (4), which
lead to the Bose-Einstein distribution for bosons (2).
Analogously, anti-commuting fermionic variables possess
anti-periodic conditions in the compactified time direc-
tion which correspond to the Fermi-Dirac statistics [33].
Therefore, it is appropriate to ask which statistical dis-
tribution corresponds to the rotwisted boundary condi-
tions (8)?
It turns out that the imaginary rotation deforms the

statistical distribution of fermions and bosons, leading
to a “ninionic” deformation which matches neither the
bosonic nor the fermionic statistical distributions [32].
For example, for bosons, the ninionic deformation takes
the following form:

n(nin)ω (ξ) =
eβω cos ξ − 1

1− 2eβω cos ξ + e2βω
, (12)

where ω ≡ ωα,m is associated with the energy of the
quantum state in the laboratory reference frame and
ξ = mχ = 2πmν is the deformation parameter associ-
ated with the “statistical angle” χ, Eq. (7). The lat-
ter depends on the angular velocity ΩI of the imagi-
nary rotation in Euclidean spacetime. Notice that at



4

the zero (modulo 2π) statistical angle, the ninionic de-
formation (12) of the bosonic distribution (2) disappears:

n
(n)
ω (ξ = 2πk) = n

(b)
ω with an integer k ∈ Z.

The ninionic deformation (12) can be understood as
the real part of the bosonic occupation number (2),

n(nin)ω (ξ) = Ren
(bos)
ω+iξ/β , (13)

at an imaginary chemical potential µ = ξ/β.
Given the unusual form of the ninionic deformation of

the bosonic statistical distribution (12), it is appropri-
ate to ask how this deformation modifies the statistical
properties of the thermal state? What are the conse-
quences which are brought to the theory by the introduc-
tion of the new dimensionless parameter, the statistical
angle (7)? The answer to this question, which depends
on the volume of the rotating system, is one of the aims
of our article.

In respect of the causality, the rigid rotation with
real-valued angular velocity is a well-defined notion only
for transversely-bounded systems. On the contrary, the
imaginary rotation does not impose any bounds on the
size of the system due to the absence of the notion of the
light cone in the Euclidean space (in other words, there
is no causality constraint in the imaginary time formal-
ism because it has no notion of real time). Therefore,
the imaginary rotation does not lead to causality prob-
lems [30] and can be formulated in the thermodynamic
limit in the whole Euclidean space [23]. The relation
between imaginary and real rotation in terms of the an-
alytical continuation is another aim of our paper.

C. Ninionic statistics and fractal thermodynamics

Sticking to an infinite-volume system, one can show,
both in the scope of a classical interacting field theory [31]
as well as in a free bosonic quantum field theory [32], that
the imaginary rotation characterized by the nonvanish-
ing value of the statistical angle χ modifies the relation
between the physical temperature T and the length of
the compactified direction β:

T (β, χ) =
1

β
fT

( χ
2π

)
, (14)

where

fT(x) =

{
1
q if x = p

q ∈ Q, with p, q ∈ N coprimes,

0 if x /∈ Q ,

(15)

is the Thomae function. In other words, function (15)
gives zero for all irrational numbers and equals to a
nonzero number 1/q determined by the denominator q
of the rational argument x = p/q ∈ Q with two natural
coprime numbers p, q ∈ N.
The Thomae function (15), shown in Fig. 2, is known

also under other names, such as the raindrop function,

FIG. 2. Thomae function (15).

the modified Dirichlet function, the popcorn function,
etc. This function has the amazing counter-intuitive
property stating that the function is discontinuous if its
argument x is rational, and it is continuous provided x is
irrational. The Thomae function possesses a nontrivial
fractal structure [37, 38] which equips the thermodynam-
ics of imaginary rotation with fractal properties. The
fractalization (and “defractalization”) of thermodynam-
ics of imaginary rotating systems will also be addressed
in this paper.

Notice that the behavior of the physical tempera-
ture (14) as a function of the statistical angle (7) is deter-
mined solely by the denominator q of the rational number
χ/(2π) and not by its numerator. Irrational (in units of
2π/β) frequencies correspond to zero temperature (14).

In the absence of the imaginary rotation, χ = 0, one
gets the standard relation between temperature T and
the length of the imaginary time direction β, as expected:

T (β, 0) =
1

β
. (16)

The ninionic deformation of bosonic statistics can be
readily understood in the imaginary time formalism for
free massless bosons in the thermodynamic limit (on an
infinite spatial line) where the particles possess the linear
energy dispersion, ωk = |k|. In this conformal system,
the thermal pressure of bosons P is equal to their energy
density, E ≡ P , taking a well-known expression in the
absence of imaginary rotation:

P0 =

∫ ∞

−∞

dk

2π
n(bos)ωk

ωk =
π

6β2
, [ΩI = 0] . (17)

The temperature of the system is given by the in-
verse length β of the compactified imaginary-time direc-
tion (16).

Looking ahead a little, one can also discuss the ther-
modynamics of the same system compactified into a ring
of an infinitely large radius R which is subjected to the
imaginary rotation with the angular velocity ΩI . The
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pressure can be derived via the ninionic statistics (13):

P = lim
R→∞

1

R

∑
m∈Z

n(nin)ωm
(ξm)ωm =

π

6β2
fT

(
βΩI

2π

)
,

(18)

where the ninionic parameter ξm = χm ≡ βΩIm is ex-
pressed via the angular momentum m and the statis-
tical angle (7). The energy spectrum in the statistical
sum (18),

ωm =
1

R
|m| , (19)

corresponds to the laboratory frame. In the thermody-
namic limit, R → ∞, the energy gaps of the discrete
spectrum (19) shrink, the variablem/R becomes the con-
tinuum momentum k, and the sum in Eq. (18) reduces to
an integral thus bridging the gap between the exotic (18)
and standard (17) statistical sums in the thermodynamic
limit.

However, the presence of the imaginary rotation ΩI

makes the system nontrivial even in the thermodynamic
limit. Indeed, the pressure of the imaginary rotating sys-
tem (18) has the same expression as the pressure of the
non-rotating one (17) with only one important difference
that the temperature of the former (14) becomes a fractal
function (15) of the imaginary angular frequency ΩI . In
the next section, we discuss the particularities of fractal-
ization of thermodynamics by imaginary rotation work-
ing with an analytically-solvable example of a free mass-
less particle confined to a one-dimensional ring.

III. REAL AND IMAGINARY ROTATIONS ON
THE RING

A. Relativistic rotation, particle spectrum

In this section, we consider a free massless particle on
a ring of a fixed radius R with the angle coordinate φ as
shown in Fig. 3. For a static ring, the particle wavefunc-
tion is described by the Klein-Gordon equation:(

∂2

∂t2
− 1

R2

∂2

∂φ2

)
Φ(t, φ) = 0 , (20)

which is formulated in the inertial, laboratory frame.
Let us consider the ring rotating with the constant an-

gular velocity Ω. The coordinates associated with the
co-rotating reference frame (denoted by a tilde) are re-
lated to the laboratory coordinates as follows:

t = t̃ , φ̃ = φ− Ωt mod 2π . (21)

In the co-rotating frame, the Klein-Gordon equation (20)
transforms into the following equation:[(

∂

∂t̃
− Ω

∂

∂φ̃

)2

− 1

R2

∂2

∂φ̃2

]
Φ(t̃, φ̃) = 0 , (22)

R φ

Ω

FIG. 3. Illustration of a particle on a ring of the radius R and
the angular coordinate φ. The ring rotates with the angular
velocity Ω counterclockwise.

which possesses the energy spectrum in the rotating ref-
erence frame:

ω̃m =
1

R
|m| − Ωm, m ∈ Z , (23)

corresponding to the following eigenfunctions:

Φ(t̃, φ̃) =
1√
2πR

e−iω̃t̃+imφ̃ . (24)

The energy spectrum (23) is bounded from below pro-
vided the causality condition is satisfied:

R|Ω| < 1 . (25)

The thermodynamics of the system is determined in the
rotating reference frame where all statistical distributions
are set by the energy in the co-rotating frame ω̃m rather
than by its laboratory-frame counterpart (19).

B. Free energy of rotating scalar field

We consider statistical mechanics of scalar particles in
the rotating environment. The corresponding statistical
sum,

Z ≡ e−βF =
∏
m∈Z

∞∑
nm=0

e−β(ωm−Ωm)nm

=
∏
m∈Z

[
1− e−β(ωm−Ωm)

]−1

, (26)

is formulated via the sum over states labeled by the angu-
lar momentum m with the occupation number nm of sys-
tem’s levels that possess the total energy Ẽm,nm

= ω̃mnm
in the rotating reference frame and the total angular mo-
mentum Ln,mn

= mnm. In Eq. (26), F stands for the
free energy in the co-rotating reference frame. In the
statistical sum, we do not take into account a m = 0
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contribution which corresponds to the zero-energy mode
and contributes to the zero-point (Casimir) vacuum en-
ergy [39]. We concentrate on the thermal part of the free
energy which possesses interesting fractal properties in
the thermodynamic limit.

The thermodynamic free energy (26),

F(Ω) =
1

β

∞∑
m=1

ln
[(

1− e−β(1/R−Ω)m
)

·
(
1− e−β(1/R+Ω)m

)]
, (27)

can be evaluated explicitly:

F(Ω) =
1

12R
+

1

β
ln

{
η

[
iβ

2π

(
1

R
− Ω

)]
· η
[
iβ

2π

(
1

R
+Ω

)]}
, (28)

via the Dedekind η function:

η(z) = e
iπz
12

∞∏
n=1

(
1− e2πinz

)
. (29)

Notice that the Dedekind function (29) is defined only
in the upper complex plane Im z > 0, which implies that
the free energy (28) is well-defined if and only if the
causality condition (25) is satisfied. The causality condi-
tion is absent for the case of the imaginary rotation (5),
when the angular frequency Ω becomes a purely imagi-
nary quantity. Indeed, according to the analytical prop-
erties of the Dedekind function (29), the free energy (28)
is a well-defined analytical function for any real value
of the imaginary angular frequency ΩI at any radius of
the ring R. Consequently, the rigid imaginary rotation,
contrary to rotation in Minkowski spacetime, can be for-
mulated in the thermodynamic limit.

For convenience of our subsequent analysis, we con-
sider all physical quantities in units of the inverse length
1/β of the imaginary time direction. We introduce the
dimensionless length of the ring (the one-dimensional vol-
ume) L and the frequency of rotation ν, respectively:

L =
2πR

β
, ν =

βΩI

2π
≡ χ

2π
. (30)

The normalized frequency ν corresponds to the normal-
ized statistical angle (7).

The free energy density F = F/2πR is given by

F = −P =
π

6β2L2
(31)

+
1

β2L
ln

[
η

(
i

L
− ν

)
η

(
i

L
+ ν

)]
.

After taking the thermodynamic limit R → ∞ and in
the absence of rotation, F → F0 = −P0 = −π/6β2, as
established by Eq. (17).

The first term in Eq. (31) could be erroneously taken
for the regularized zero-point (Casimir) energy contribu-
tion to the free energy. To show that this identification
is not correct, let us consider the trivial case ν = 0 which
corresponds to a vanishing statistical angle, χ = 0 (non-
trivial angles will be considered shortly after). The low-
temperature limit, β → ∞, for a ring with a fixed radius
R corresponds to a vanishing parameter L. Using the
following relation, valid for vanishingly-small positive L,

ln η

(
i

L

)
= − π

12L
+ . . . , (32)

(where the ellipsis denote subleading terms in the limit
L → 0), one gets from Eq. (31) that the normalized free
energy vanishes in the low-temperature limit:

lim
β→∞

F = 0. (33)

For the sake of convenience, we present here the ex-
pressions for the normalized Casimir energy, the Casimir
pressure and the Casimir free energy, respectively:

FCas = −PCas =
1

24πR2
. (34)

The thermodynamic contribution (28) does not contain
the zero-point energy since the latter, in the normaliza-
tion (31), should diverge in the L→ 0 limit (34) which is
not the case (33). Therefore, Eq. (31) represents a purely
thermodynamic contribution which we address below.

C. Fractalization of thermodynamics

Using the property η(−z∗) = [η(z)]∗ valid for any
complex number z from the upper complex semi-plane,
Im z > 0, one gets for the thermodynamic part of the
free energy density (31), the following expression:

F =
π

6β2L2
+

2

β2L
ln

∣∣∣∣η(ν + i

L

)∣∣∣∣ , (35)

where we used the notations in (30).
The thermodynamic limit, L → ∞, of the free energy

on the ring (35) can be deduced from the beautiful result
of Ref. [38], which relates the Dedekind η function (29)
with the Thomae fT function (15) as the following limit:

lim
ϵ→+0

ϵ |η(x+ iϵ)| = − π

12
f2T(x) . (36)

Applying (36) to the thermal part of the free energy
density (35), we get that the (normalized) thermody-
namic energy density “fractalizes” in the thermodynamic
limit:

lim
L→∞

F = − π

6β2
f2T(ν). (37)
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The non-analyticity of the Thomae function fT has a
fractal nature [38] implying the fractalization of thermo-
dynamics under imaginary rotation [32]. The result in
Eq. (37) implies that close to the thermodynamic limit,
L≫ 1, the non-analytical fractal part of the free energy
density dominates over the analytical term in the ther-
modynamic free energy (35). Interpreting the expression
for F in light of Eq. (17), we are led to define a rotation-
dependent temperature TT(ν) via

TT(ν) = β−1fT(ν), (38)

which depends on the statistical parameter ν ≡
βΩI/2π = p/q via the discontinuous Thomae function fT
as given in Eq. (14). Notice that in the thermodynamic
limit, the thermodynamics of the system is determined
by the ninionic statistics (12). This fact can be seen from
the expression for pressure (31), given in Eq. (38), which
coincides with Eq. (18).

The fractalization (38), characterized by the non-
analytical behaviour of free energy, is achieved only in
the thermodynamic limit when the radius R of the ring
becomes infinitely large. At any finite R, all thermody-
namic characteristics of the systems are analytical. Thus,
it is instructive to see how thermodynamics acquires its
fractal properties under imaginary rotation as the radius
of the ring increases.

In Fig. 4 we show the (normalized) thermodynamic
pressure of bosons (31) as a function of the normal-
ized statistical angle ν, Eq. (30), at various (normalized)
lengths L of the ring. Pressure, which is a smooth ana-
lytical function of ν at small radius of the ring, develops
a series of minima and maxima as the length of the ring
increases. For large sizes L ∼ 103, pressure of bosonic
particles develops self-similar features. At L ∼ 5 × 103,
the pressure becomes almost indistinguishable from its
limiting form (L → ∞) given by Eq. (18) and governed
by the fractal properties of the Thomae function (15). In
this limit, the thermodynamic pressure becomes a fractal
dictated by the ninionic statistics (12).

D. Analytical continuation: the disk of analyticity

Finally, let us discuss how the fractalization of ther-
modynamics in the thermodynamic limit leads to the ab-
sence of the analytical continuation from the imaginary
angular frequencies to the real ones. In other words, we
would like to see that the thermodynamic quantities ob-
tained in an infinite volume limit at imaginary rotation
cannot be directly connected to the thermodynamics of
real rotation. Qualitatively, the validity of this statement
can be deduced from both mathematical and physical ar-
guments.

Mathematically, it is clear that a non-analytical func-
tion cannot be analytically continued to an analytical
domain because the result will depend on the prescrip-
tion used for the continuation procedure. Moreover, at
the imaginary-rotating side in the thermodynamic limit,

FIG. 4. Fractalization of thermodynamics of scalar particles
on the ring under the imaginary rotation ΩI : pressure P ,
Eq. (31), shown in units of pressure P0 for an infinite ring
L → ∞ in the absence of rotation, Eq. (17), as a function of
the normalized statistical angle ν = χ/(2π) ≡ βΩI/(2π) for
various (normalized) lengths L of the ring (30). The plots at
finite values of L are given for the analytical behaviour (31)
in terms of the Dedekind η function (29). The behaviour in
the thermodynamic limit, L → ∞, corresponds to the non-
analytical fractal result (38) expressed via the Thomae func-
tion (15). The behaviour near the points ν = 0 and ν = 1 is
not shown to preserve a convenient vertical scale.

the pressure P cannot be expressed as a function of the
imaginary velocity squared, Ω2

I , Eq. (18), which renders
inapplicable the continuation prescription to the real ro-
tation summarized in Eq. (6).

Physically, the causality condition (25) is incompatible
with the continuation prescription (6) in the thermody-
namic limit, R→ ∞, for any finite ΩI . However, outside
of the thermodynamic limit at any finite R, the analyt-
ical continuation does exist. Let us briefly discuss this
point for the example of the ring.

Since the length of the ring is always a positive num-
ber, L > 0, the argument of the Dedekind η function in
the free energy density (35) always belongs to the upper
part of the complex plane, where the Dedekind function
is an analytical and well-defined function. Therefore, the
imaginary rotation is well-defined at any imaginary an-
gular frequency ν, contrary to its real counterpart (28).

It is convenient to write explicitly the normalized pres-
sures P̄ ≡ β2P = −β2F for real (P̄ Re) and imaginary
(P̄ Im) angular frequencies, respectively:

P̄ Re(xR, y) = −πy
2

6
− y ln

[
η (ixR + iy) η (−ixR + iy)

]
,

(39)
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P̄ Im(xI , y) = −πy
2

6
− y ln

[
η (xI + iy) η (−xI + iy)

]
.

(40)

Here we defined the following real-valued quantities:

xR =
βΩ

2π
, xI =

βΩI

2π
, y =

β

2πR
, (41)

which represent the normalized angular frequencies for
real and imaginary rotation (xR and xI , respectively),
and the inverse size of the ring y > 0. The analytical
continuation can be formulated in terms of the relation
between pressures (39) and (40).

Despite similarity of Eqs. (39) and (40), these quanti-
ties have different properties. The pressure for real ro-
tation (39) is defined only in the strip −y < xR < y
because the Dedekind eta function is defined only in the
upper part of the complex plane (excluding the real axis).
Physically, the same condition coincides with the causal-
ity requirement (25). The pressure of the gas under imag-
inary rotation (40) is defined for any real-valued xI ∈ R.

Equations (39) and (40) can be written in the following
unified form:

−P̄ (z, z0) = −πz
2
0

6
+ y ln

[
η (iz + z0) η (−iz + z0)

]
,

(42)

with

z = xR + ixI ≡ β (Ω + iΩI)

2π
, z0 = iy ≡ i

L
. (43)

For any y > 0, the analyticity properties of the free en-
ergy density at real rotation (39) imply that function (42)
can be expanded in series of powers of z around the point
z0 in the disk |z| < |z0| of radius |z0| = y > 0. In the
original notations, the disk of analyticity can be defined
as the generalization of the causality condition (25) in
the plane of complex angular frequencies:(

Ω2 +Ω2
I

)
R2 < 1 . (44)

The dimensionless pressure P̄ can be written as the
following series

P̄ (z, z0) =

∞∑
n=0

P̄
(2n)
β (z0)z

2n , |z| < |z0| , (45)

with the first two coefficients in the explicit form:

P̄
(0)
β (iy) = −πy

2

6
− y log

(
η2(iy)

)
. (46)

P̄
(2)
β (iy) = y

(
η′′(iy)

)2
η(iy)−

(
η′(iy)

)2
η2(iy)

. (47)

One can check explicitly that the coefficients of the se-
ries (45) diverge in the thermodynamic limit which is
consistent with the shrinking radius of convergence (44)

P̄(4)

P̄(2)

P̄(0)

P̄(i)

1/L ≡ β/(2πR)thermodynamic limit

FIG. 5. The first three nonzero coefficients in the series (45)
of pressure of the ring as a function of the (inverse) normal-
ized radius 1/L. The direction of the thermodynamic limit is
shown by the arrow.

as R→ ∞. We show the first three non-zero coefficients
P̄

(n)
β in Fig. 5.

One can also rewrite the normalized pressure (45) in
terms of physical variables:

P̄β(Ω , R) =

∞∑
n=0

P2n(β,R)Ω
2n, |ReΩ |R < 1 , (48)

where Ω = Ω+ iΩI and

P2n(β,R) ≡
(
β

2π

)2n

P̄
(2n)
β

(
iβ

2πR

)
, (49)

and the radius of convergence in the complex Ω plane is
determined by Eq. (44): Ωc = 1/R. The radius shrinks
zero, Ωc → 0 as R → ∞, thus implying the absence of
the direct analytical continuation between real and imag-
inary angular frequencies in the thermodynamic limit.
Thus, thermodynamics of an infinite-volume system sub-
jected to imaginary rotation is not directly connected to
the thermodynamics of real rotation.

E. How fractalization emerges as volume grows

Figure 4 shows that at any fixed statistical angle
χ = 2πν (or, equivalently, at any imaginary frequency
ΩI) and any finite radius L, thermodynamic pressure is
described by a smooth analytical function of χ. For a
rational normalized angle ν = p/q with coprime inte-
ger numbers p and q (0 < p < q), the pressure depends
both on the numerator p and the denominator q (we re-
mind that in these units, ΩI = (2π/β)p/q). However,
as the length L of the ring increases, the pressure turns
into a fractal, implying that it loses the sensitivity to
the numerator p and keeps only the dependence on the
denominator q that defines the imaginary frequency.
This curious fractalization transition is shown in Fig. 6

for the particular set of imaginary frequencies ΩI ≡



9

0 50 100 150 200 250
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

l=2πR/β

P

L = 2πR /β

P
P0

ν : {

0 2 4 6 8 10

-0.1

0.0

0.1

0.2

1

1
22
1
52

1
102

ν = 0

ν = 2
10 = 1

5

ν = 1
10

ν = 5
10 = 1

2

ν = 4
10 = 2

5

ν = 3
10

ν = βΩI

2π
≡ χ

2π

FIG. 6. The thermal contribution to the pressure, P ≡ P (L, ν), as a function of the (normalized) length of the ring L = 2πR/β
for various (normalized) statistical angles ν = χ/(2π) with the rational values ν = n/10 at n = 0, 1, . . . , 5. The pressure is
normalized to its value P0, Eq. (17), for a nonrotating ring, in the infinite-volume limit, L → ∞. For rational ν, the pressure (35),
(38) in the infinite-volume limit takes fractal values (shown by the arrows) dictated by the Thomae function (15). The inset
shows the zoom in on the small-radius region.

2πν/β = pπ/(5β) with p = 0, 1, . . . , 9. Given the pe-
riodicity (10) under ν → ν + 1, as well the reflec-
tion symmetry (11) with respect to ν → −ν, applied
to the pressure, this particular choice leaves us with
six distinct values of the normalized statistical angle:
ν = 0/10, 1/10, . . . , 5/10.

At small and moderate ring sizes up to L ≃ 4, the
pressure P = P (L, ν) depends on the normalized statis-
tical angle ν monotonically, with P (L, νa) < P (L, νb) for
1/2 > νa > νb in the mentioned set of values. In other
words, in the analytical region, the thermodynamics of
the system behaves analytically, exhibiting a dependence
on the actual value of the rational-valued normalized sta-
tistical angle and not on its numerator or denominator
separately.

As we have seen above, the transition to the fractal
regime is associated with the loss of the analytical con-
tinuation from imaginary to real rotation. For purely
imaginary rotation, the convergence segment (44) for the
variable ν is defined by the condition:

|ν|L < 1 , (50)

implying that for the largest value, ν = 1/2, the non-
analytical regime should come into play at the ring length
L = 2, while for the smallest nonzero value, ν = 1/10,
the critical length is larger, L = 10. This region of the
lengths – shown in the inset of Fig. 6 – is characterized
by the breaking of the monotonic behavior of pressure on
the statistical angle, which is a precursor of the fractal
features observed at larger lengths of the ring.

At higher values of L, the behavior of pressure on ν be-
comes more peculiar. To see this in detail, it is convenient

to start from the non-rotating case, ν = 0/10 = 0, and
associate it to the pair (p, q) = (1, 1) since ν = 0/10 ≡ 0
and ν = 1/1 ≡ 1 correspond to the same static case re-
lated to each other by the translation symmetry, ν →
ν + 1. The ν = 0 pressure, characterized by the de-
nominator q = 1, is shared both by real, Ω = 0, and
imaginary, ΩI = 0, static cases. In Fig. 4, it provides us
with a benchmark value for the pressure in the large-L
limit.

The values of the statistical angle ν = 1/10 and
ν = 3/10 correspond to rotations with different imagi-
nary angular frequencies ΩI = π/(5β) and 3π/(5β), re-
spectively, but they share the same denominator q = 10.
According to the fractalization property (14), both these
cases – which are characterized by the pairs of coprimes
(p, q) = (1, 10) and (p, q) = (3, 10), respectively – should
correspond, in the thermodynamic limit, to the pressure
of free bosonic gas at the same temperature T = 1/(10β)
which is ten times smaller than the temperature in the
non-rotating ΩI = 0 (ν = 0) case. The pressure for
ν = 1/10 and ν = 3/10 is, consequently, 1/q2 ≡ 1/100
of the gas pressure in the absence of imaginary rotation.
The described features are clearly seen in Fig. 4: the
ν = 1/10 and ν = 3/10 pressures, very different at low
L ∼ 1, start to approach each other at L ∼ 10, converging
into a single curve already at L ∼ 50. This asymptotic
behaviour has fractal features as the thermodynamics of
the gas is sensitive only to the denominator of the ratio-
nal (properly normalized) angular frequency.

The cases ν = 2/10 ≡ 1/5 and ν = 4/10 ≡ 2/5 cor-
respond to the coprime pairs (p, q) = (1, 5) and (p, q) =
(2, 5) that share the same denominator q = 5. The pres-
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sure for these imaginary angular frequencies collapse to
a single line even earlier, at L ∼ 7, as it can be seen from
the inset of Fig. 6. In both cases, pressure approaches the
result for a free bosonic gas with temperature T = 1/(5β)
which is q2 = 25 times smaller than the pressure of the
non-rotating gas.

Finally, the normalized statistical angle ν = 5/10 ≡
1/2 gives the denominator q = 2, temperature T =
1/(2β) and a gas pressure which is q2 = 4 times smaller
than the one of the non-rotating gas.

The monotonic analytical behaviour of the pressure
P (ν) ≡ P (ν, l), seen at small lengths of the ring L,

[small L (analytical)] : (51)

P (0)>P
( 1

10

)
>P
( 2

10

)
>P
( 3

10

)
>P
( 4

10

)
>P
( 5

10

)
,

is completely lost for large L giving us the fractal non-
analytical hierarchy:

[large L (fractal)] : (52)

P (0)>P
( 5

10

)
>P
( 2

10

)
= P

( 4

10

)
>P
( 1

10

)
= P

( 3

10

)
,

as it is clearly seen in Fig. 4.

F. Negative thermodynamic pressure of ninions

Apart from the fractal features of the thermody-
namic limit – already anticipated from the analytical ap-
proach discussed earlier – the pressure at finite volumes
L ∼ 1 . . . 10 appears to possess an unexpected feature.
Namely, there are the regions of the statistical angle χ
where the thermal contribution to pressure is negative,
as it is clearly seen in Fig. 4. In this sense, the “ninions”
– the auxiliary particles which are associated with the
ninionic deformation of the standard statistical distribu-
tion (12) – provide us with the similar phenomenon as the
Casimir effect with one important difference: the nega-
tive “ninionic” pressure is produced by thermal, and not
quantum, fluctuations. As temperature rises, the nega-
tive pressure rises as well.

The effect of the negative pressure appears in the an-
alytical region (50) as it is seen in Fig. 6 and especially
in the inset of this figure. This unusual behavior is an
exotic property of ninions which is not associated with
the fractal statistics.

IV. RIGIDLY-ROTATING BOSE-EINSTEIN
DISTRIBUTION

We now move on and consider a 3+1-D rigidly-rotating
system comprised of uncharged, massless boson particles.
In this section, we consider such a system from the per-
spective of relativistic kinetic theory, which is introduced
briefly in Subsec. IVA. In Subsect. IVB, we discuss the

thermodynamic properties of a rigidly-rotating system
with real rotation parameter Ω, veawhose properties for
slow rotation are discussed in Sec. IVC. Finally, Sub-
sec. IVD is dedicated to the case of imaginary rotation.

A. Relativistic kinetic theory

Although throughout this article we consider non-
interacting bosonic systems, it is instructive to discuss,
for a brief moment, an interacting model. This approach
will allow us to elucidate thermal distributions in thermo-
dynamic equilibrium and shed some light on the physical
nature of imaginary rotating systems.
In relativistic kinetic theory, the system dynamics are

described using the relativistic Boltzmann equation [40–
42]:

kµ∂µfk = C[f ], (53)

where fk ≡ fk(x) is the one-particle distribution function
and kµ = (k0,k) is the on-shell momentum satisfying
k2 = 0. The macroscopic properties of the system can be
described using the energy-momentum tensor,

Tµν =

∫
dK kµkνfk, (54)

where dK = gd3k/[(2π)3k0] is the Lorentz-invariant in-
tegration measure and the degeneracy factor of a single
neutral scalar field considered in this paper is g = 1.
The conservation law ∂µT

µν = 0 demands that kµkν be
a collision invariant, i.e.∫

dKC[f ] kµkν = 0. (55)

The prototypical collision term is that corresponding
to 2-to-2 scattering processes [40, 43],

C2→2[f ] =
1

2

∫
dK ′dPdP ′Wkk′→pp′

× (fpfp′ f̃kf̃k′ − fkfk′ f̃pf̃p′), (56)

where f̃k = 1 + fk is the Bose enhancement factor and
the Lorentz-invariant transition rate Wkk′→pp′ can be
written in terms of the quantum-mechanical differential
cross section dσ/dΩ as

Wkk′→pp′ = s
dσ(s,Θs)

dΩs
(2π)6δ4(k + k′ − p− p′), (57)

with s = (k + k′)2 and Θs being the center of mass
squared energy and emission angle, respectively, with

cosΘs =
(k − k′) · (p− p′)

(k − k′)2
. (58)
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According to the H theorem, the collision term C[f ]
drives the system towards local thermal equilibrium, de-
scribed for the case of a free bosonic gas by the Bose-
Einstein distribution:

fBE
k =

1

exp[uµ(x)kµ/T (x)]− 1
, (59)

where T (x) is the local temperature and uµ(x) is the
local four-velocity. It is easy to check that C[f ] = 0
when the gas is in thermal equilibrium, i.e. f∗ = fBE

∗ for
∗ ∈ {k,k′,p,p′}. In global thermal equilibrium, f = fBE

at each space-time point and Eq. (53) becomes:

kµkν∂µβν(x) = 0, (60)

where βµ(x) = uµ(x)/T (x) is the temperature four-
vector. Thus, in global equilibrium, βµ satisfies the
Killing equation, ∂µβν + ∂νβµ = 0. In this paper, we
seek the solution that corresponds to rigid rotation:

βµ(Ω)∂µ = β(∂t − yΩ∂x + xΩ∂y) = β(∂t +Ω∂φ), (61)

where Ω is the angular velocity and β = 1/T0 is a con-
stant corresponding to the inverse temperature on the
rotation axis (where x = y = 0). The equilibrium distri-
bution (59) thus reads:

fBE
k (Ω) =

1

exp[β(k0 +Ωkφ)]− 1
, (62)

where

kφ = −ρ2kφ , kφ = ρ−2(−ykx + xky) , (63)

with ρ =
√
x2 + y2 being the distance from the point at

(x, y, z) to the rotation axis.

B. Thermodynamics of rigid rotation

We now discuss the properties of the rigidly-rotating
global equilibrium state. From the relation βµβµ =
1/T 2(x), we can identify the local temperature as [41]

T (ρ) = β−1γ(ρ), γ(ρ) = (1− ρ2Ω2)−1/2, (64)

where γ(ρ) is the Lorentz factor of a co-rotating parti-
cle at a distance ρ from the rotation axis. Relation (64)
corresponds to the Tolman-Ehrenfest law [44, 45], which
relates local temperature to the metric in a static gravita-
tional field, in the curvilinear background of co-rotating
reference frame. Similarly, the local four-velocity reads

uµ∂µ = γ(∂t +Ω∂φ). (65)

Both the Lorentz factor and the local temperature
T (ρ) = γ(ρ)/β diverge on the light cylinder, as ρΩ → 1.

The energy-momentum tensor Tµν(x) can be obtained
via

Tµν =

∫
dK kµkνf = (E + P )uµuν − Pgµν . (66)

In the case of massless particles, the energy E = 3P is
expressed via the local pressure P , which reads

P (ρ) =
1

3

∫
dK (k · u)2fBE =

π2γ4(ρ)

90β4
. (67)

We now consider the thermodynamic limit of our
rigidly-rotating system. Identifying F (ρ) = −P as the
local free-energy density, we consider the average free
energy F = F/V in a cylindrical volume V = πR2Lz

of height Lz and radius R, centered on the rotation axis.
The mean free-energy density reads

F(Ω, R) = − 2

R2

∫ R

0

dρ ρP (ρ) = − π2

90β4
γ2(R). (68)

The same result can be obtained starting from the ex-
pression for the grand potential F of relativistic bosons
in rotation [46],

F =

∫
V

d3x

∫
d3k

(2π)3
ln[1− e−β(k−ΩJz)] (69)

=

∫
V

d3x

∫
d3k

2(2π)3
ln[1− 2e−βk cosh(βΩkφ) + e−2βk],

where Jz = −kφ is the z component of the particle’s
angular momentum. Other thermodynamic quantities
can be obtained starting from the relation [46]

dF = β−2Sdβ − PdV −MdΩ, (70)

where S and M are the total entropy and angular mo-
mentum, respectively. Taking into account that V =
πR2Lz, it can be seen that the radial and vertical direc-
tions are not equivalent. Therefore, we replace the term
PdV by

PdV → 2πRLzPRdR+ πR2PzdLz, (71)

with the hydrostatic pressure obtained as the weighted
average P = (2PR + Pz)/3. Thus, the thermodynamic
pressures are given by

PR = − 1

2R

∂(FR2)

∂R
, Pz = −F . (72)

Similarly, the average entropy S and average angular mo-
mentum M are given by

S = β2 ∂F
∂β

, M = −∂F
∂Ω

. (73)

The average energy is then given by the Euler relation:

E = F + β−1S +ΩM. (74)

Taking into account the thermodynamic relations in
Eq. (73), the Euler relation can be written as

E =

(
∂(βF)

∂β

)
βΩ

. (75)
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We now evaluate the above quantities using the classical
expression in Eq. (68):

PR =
π2

90β4
γ4(R), E =

π2

90β4
[2γ4(R) + γ2(R)],

S =
2π2

45β3
γ2(R), M =

π2R2Ω

45β4
γ4(R). (76)

We remark that the average energy E can be obtained
from the energy-momentum tensor Tµν via:

E =
2

R2

∫ R

0

dρ ρ T tt, (77)

with

T tt = P (ρ)[4γ2(ρ)− 1] =
π2

90β4

3 + ρ2Ω2

(1− ρ2Ω2)3
, (78)

where we took into account the explicit expressions for
the local hydrostatic pressure (67) and the Lorentz fac-
tor (64).

C. Slow rotation: moment of inertia and shape

Considering now the free energy at small values of the
rotation parameter Ω, we expand the free energy density
in series of the velocity of a corotating particle

vR = ΩR , (79)

at the system boundary ρ = R, following Ref. [27]:

F(Ω) = F(0)

∞∑
n=0

v2nR
(2n)!

K2n, (80)

where K2n are Ω-independent dimensionless coefficients
and we took into account that F(Ω) is an even function
of Ω. By construction, one gets K0 = 1. Comparing
Eqs. (80) and (68), it is clear that

F(0) = − π2

90β4
, K2n =

1

F(0)

∂2nF
∂v2nR

⌋
Ω=0

= (2n)! .

(81)
The results for the coefficientsK2n are also valid in a mul-
ticomponent non-interacting gas since they reflect the ro-
tational response normalized per degree of freedom. The
zero-rotation limit of the moment of inertia, I0 of a one-
component bosonic gas evaluates to

I0 ≡ lim
Ω→0

I(Ω) = − lim
Ω→0

1

Ω

∂F
∂Ω

= −F(0)R2K2 =
π2R2

45β4
, (82)

which follows from the thermodynamic relation (73) for
the average angular momentum M(Ω) = I(Ω)Ω and the

definition of the moment of inertia I = I(Ω) as the pro-
portionality coefficient in the above relation.
It is interesting to notice that recent first-principle sim-

ulations [27] indicate that in the high-temperature limit,
the rotating gluon gas possesses the dimensionless mo-
ment of inertia K2 = 2.23(39) consistent with our esti-
mation (81):

K2 = 2 , [per one bosonic d.o.f.] . (83)

This result is not unexpected since at sufficiently high
temperatures, the gluon plasma becomes a weakly-
interacting gas of gluons.
The next non-zero coefficient in the series (81),

K4 = 24 , [per one bosonic d.o.f.] . (84)

corresponds to the correction to the free energy caused
by the deformation of the rotating gas due to rota-
tion. This correction also affects the moment of iner-
tia, I(Ω) = I0 + I2v

2
R/2 + . . . , with the universal non-

interacting coefficient I2/I0 = 4. The positiveness of
I2 > 0 implies that the rotating matter tends to increase
its angular momentum with an increase in angular fre-
quency. This property signals the change in the shape
of rotating system leading to a spatial redistribution of
energy as a result of the rotation, which can already be
seen from Eq. (78): rotation tends to increase the con-
tributions to the energy density (77) coming from the
outer regions as compared to those coming from the in-
ner ones. The physical situation is somewhat similar –
neglecting viscosity effects – to water rotating in a glass:
its moment of inertia increases with rotation because the
distribution of mass within the glass changes, with the
water particles moving away from the axis of rotation,
increasing the distance of each mass element from the
axis, and, hence, the moment of inertia larger.
Finite-size corrections, related to the finite transverse

size of the system and, consequently, to quantization of
the transverse modes, will be discussed below in Sub-
sect.s VH and VIC.

D. Imaginary rotation

We now turn to the case of imaginary rotation. Setting
Ω = iΩI with real ΩI is not possible directly in fBE,
because that would lead to a complex-valued distribution
function. Instead, we can consider the properties of the
system described by the distribution

f imk =
1

2

[
fBE
k (iΩI) + fBE

k (−iΩI)
]

=
eβk cos(βΩIkφ)− 1

e2βk − 2eβk cos(βΩIkφ) + 1
, (85)

which is nothing but a form of the ninionic deformation
of the Bose-Einstein statistics (12). Since βµ(iΩI)∂µ =
β(∂t + iΩI∂φ) still satisfies the Killing equation, the
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left-hand side of the Boltzmann equation (53) vanishes.
Somewhat unsurprisingly, the collision term on the right-
hand side of the same equation does not vanish. This can
be seen by considering the small-Ω expansion of fBE

k (Ω)
introduced in Eq. (62):

fBE
k (Ω) = f0k

[
1− f̃0kΩkφ

+
Ω2k2φ
2!

f̃0k(f
0
k + f̃0k) +O(Ω3)

]
, (86)

where f0k ≡ fBE
k (Ω = 0) and f̃0k = 1 + f0k. Considering

now Ω → ±iΩI and taking the average as described in
Eq. (85) gives

f imk = f0k

[
1−

Ω2
Ik

2
φ

2!
f̃0k(f

0
k + f̃0k) +O(Ω4

I)

]
,

f̃ imk = f̃0k

[
1−

Ω2
Ik

2
φ

2!
f0k(f

0
k + f̃0k) +O(Ω4

I)

]
. (87)

Taking this substitution back into the collision term (56)
shows that

f imp f imp′ f̃ imk f̃ imk′ − f imk f imk′ f̃ imp f̃ imp′

f0pf
0
p′ f̃0k f̃

0
k′

= −Ω2
I

2

×
[
p2φ(f

0
p + f̃0p) + p′2φ (f

0
p′ + f̃0p′)

−k2φ(f0k + f̃0k)− k′2φ (f
0
k′ + f̃0k′)

]
+O(Ω4). (88)

It can be seen that in general, C[f ] does not vanish when
fk = f imk , hinting that thermal equilibration will generi-
cally reduce the magnitude of Ω2

I .
Keeping in mind that imaginary-rotation states are not

in actual thermal equilibrium – in a sense that their de-
formed distribution (85) does not have the equilibrium
Bose-Einstein form (2) and that the collision integral (88)
does not vanish – we can still derive the macroscopic
energy-momentum tensor, which becomes now diagonal:

Tµν
cl;im = diag(Eim

cl , P
im
cl;ρ, ρ

−2P im
cl;φ, P

im
cl;z), (89a)

with

Eim
cl =

π2

90β4
γ4I (4γ

2
I − 1), (89b)

P im
cl;ρ = P im

cl;z =
π2

90β4
γ4I , (89c)

P im
cl;φ =

π2

90β4
γ4I (4γ

2
I − 3), (89d)

where γI(ρ) is reminiscent of the Lorentz factor of coro-
tating particles,

γI =
1√

1 + ρ2Ω2
I

. (90)

Notice that the Euclidean version of the quantum
Tolman-Ehrenfest effect gives a different Lorentz fac-
tor [26]:

γTE
I =

1√
1 + ρ2β−2[ΩIβ]22π

, (91)

where [x]2π = x+2πk ∈ (−π, π], with k ∈ Z, is invariant
under the 2π symmetry enforced by the natural period-
icity of the imaginary rotation (10). The apparent non-
compliance of the kinetic Euclidean Lorentz factor (90)
with the periodicity requirement (10) can be traced back
to the continuous nature of the angular component kφ of
the moment (63).
From a thermodynamic point of view, the structure

of the energy-momentum tensor reveals an underly-
ing equilibrium (perfect fluid) contribution, Tµν

cl;im;pf =

diag(Eim
cl , P

im
cl , ρ

−2P im
cl , P

im
cl ), with hydrostatic pressure

P im
cl = Eim

cl /3, and a shear-stress tensor πµν
cl;im = Tµν

cl;im −
Tµν
cl;im;pf with components

πµν
cl;im =

2π2γ4I
135

(1− γ2I )× diag(0, 1,−2ρ−2, 1). (92)

It is instructive to note that Eim
cl = Ecl = π2/(30β4)

is independent of ΩI on the rotation axis, while at
ρ =

√
3/ΩI , the energy density reaches 0. At larger

distances, Eim
cl decreases to a minimum (negative) value

−π2/(9720β4) (reached at ρ =
√
5/ΩI) and afterwards

increases asymptotically towards its limit 0. In this large-
ρ limit, Eq. (89) shows that Tµν

cl;im behaves as follows:

Tµν
cl;im ≃ π2

90β4
γ4Idiag(−1, 1,−3ρ−2, 1), (93)

with γI ∼ (ρΩI)
−1. Thus, far away from the rotation

axis, the azimuthal pressure becomes negative and three
times larger than the energy density, while the radial
and vertical pressures remain positive, each being equal
in magnitude to the energy density.
We now consider the large-volume limit of our system.

The average energy inside a cylinder of radius R is simply

E im

cl =
π2

90β4
[2γ4I (R) + γ2I (R)], (94)

which agrees with the expression in Eq. (76) under the
substitution γ(R) → γI(R). Setting F im

cl = −P im
cl and

integrating as in Eq. (68) will clearly give a different re-
sult for the average free energy than Fcl in Eq. (68). To
achieve agreement up to the substitution γ(R) → γI(R),
we must consider F im

cl = −P im
cl;R. This choice is supported

also by the more fundamental expression for the free en-
ergy obtained by setting Ω → iΩI in the second line of
Eq. (69), i.e.

F Im
cl =

∫
V

d3x

∫
d3k

2(2π)3
ln[1− 2e−βk cos(βΩIkφ) + e2βk]
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= − π2V

90β4
γ2I (R), (95)

which is consistent with the expression in Eq. (75). Ap-
plying the same thermodynamic relations as described in
the previous Subsect. for the real case gives expressions
for quantities analogue to the system pressure, entropy
and angular momentum:

P im
cl;R =

π2

90β4
γ4I (R), P im

cl;z = P im
cl;φ =

π2

90β4
γ2I (R),

S im

cl =
2π2

45β3
γ2I (R), Mim

cl = −π
2R2ΩI

45β4
γ4I (R). (96)

The above quantities are compatible with an Euler-like
relation,

E im

cl = F im

cl + β−1S im

cl +ΩIM
im

cl , (97)

formulated now for a system under imaginary rotation.

V. IMAGINARY ROTATION OF THE SCALAR
FIELD VS. REAL ROTATION

A. Mode solutions

We consider a real, massless scalar field ϕ̂. The decom-

position of the field operator ϕ̂(x) reads as follows:

ϕ̂(x) =
∑
j

[âjfj(x) + â†jf
∗
j (x)], (98)

where fj(x) represent a complete basis of orthonormal
mode solutions of the Klein Gordon equation,

(□+m2)fj = 0 . (99)

These modes are taken as eigenfunctions of the Hamil-
tonian H = i∂t, momentum component P z = −i∂z, and
angular momentum component Jz = −i∂φ:

fj =
1

2π
√
2ωj

e−iωjt+ikjz+imjφJmj (qjρ), (100)

with qj =
√
ω2
j − k2j . The one-particle operators âj sat-

isfy the canonical commutation relations,

[âj , âj′ ] = 0, [âj , â
†
j′ ] = δ(j, j′), (101)

where δ(j, j′) = ω−1
j δ(ωj − ωj′)δ(kj − kj′)δmj ,mj′ . The

sum over the quantum numbers is abbreviated as

∑
j

→
∞∑

mj=−∞

∫ ∞

0

dωjωj

∫ ωj

−ωj

dkj . (102)

In this and subsequent subsection, we pursue, for sim-
plicity, a “hybrid” quantization approach: we work in the

basis of the cylindrical waves (100) with continuous trans-
verse momentum qj which is typical for the unbounded
system while restricting the integral (102) over the longi-
tudinal momentum, |kj | ⩽ ωj , to preserve the hermiticity
of the Hamiltonian. This set of modes is not suitable to
describe rigid real rotation, since in that case, the system
must be enclosed inside a boundary in order to preserve
causality [47], as will be discussed in Sec. VI. In this sec-
tion, we will focus primarily on the study of rigid rotation
with imaginary angular velocity, for which no causality
issues arise and the set of eigenmodes presented above is
perfectly applicable.

B. Thermal states

The statistical operator for a thermal state at inverse
temperature β which rotates with angular velocity Ω is

ρ̂(β,Ω) = e−β(:Ĥ:−Ω:Ĵz :), (103)

where we took the normal-ordered operators

: Ĥ :=
∑
j

ωj â
†
j âj , : Ĵz :=

∑
j

mj â
†
j âj . (104)

Using the commutation relations

[Ĥ, â†j ] = ωj â
†
j , [Ĵz, â†j ] = mj â

†
j , (105)

it is not difficult to establish that

ρ̂â†j ρ̂
−1 = e−βω̃j â†j , (106)

where ω̃j ≡ ω̃j(Ω) = ωj −Ωmj represents the co-rotating
energy (3).

The thermal expectation value (t.e.v.) of an arbitrary

operator Â(x) is

A(x) ≡ ⟨Â(x)⟩ = Z−1Tr[ρ̂Â(x)], (107)

where Z = Tr(ρ̂) is the partition function. Using
Eq. (106), the t.e.v. of the product of two one-particle
operators can be seen to satisfy

⟨â†j âj′⟩ = e−βω̃j ⟨âj′ â†j⟩. (108)

Using the commutation relations in Eq. (105) we estab-
lish

⟨â†j âj′⟩ =
δ(j, j′)

eβω̃j − 1
. (109)

Introducing the functions

Gabc =
∑
j

2Re(f∗j fj)

eβω̃j − 1
ωa
j q

b
jm

c
j

=

∞∑
m=−∞

∫ ∞

0

dω

eβω̃ − 1

∫ ω

0

dk

2π2
ωaqbmcJ2

m(qρ), (110)



15

the scalar condensate1 becomes

ϕ2 ≡ ⟨: ϕ̂2 :⟩ = G000. (111)

Considering now the conformal energy-momentum ten-
sor, defined classically as [48]

Tµν =
2

3
∇µϕ∇νϕ− 1

3
ϕ∇µ∇νϕ− 1

6
gµν(∇ϕ)2, (112)

its expectation value Tµν = ⟨: T̂µν :⟩ can be expressed as

T tt = G200 +
1

12ρ2
G

(2)
000, (113a)

T ρρ = G020 −
1

ρ2
G002 +

1

4ρ2
G

(2)
000 +

1

6ρ2
G

(1)
000, (113b)

Tφφ =
1

ρ4
G002 −

1

12ρ4
G

(2)
000 −

1

6ρ4
G

(1)
000, (113c)

T zz = G200 −G020 −
1

12ρ2
G

(2)
000, (113d)

T tφ =
1

ρ2
G101, (113e)

where we introduced the notations:

G
(1)
000 = ρ

dG000

dρ
, G

(2)
000 = ρ

d

dρ
ρ
dG000

dρ
, (114)

while all other components vanish.
Turning back to the definition of the functions Gabc

in Eq. (110), we immediately notice divergences asso-
ciated with the Bose-Einstein factor [eβω̃ − 1]−1. For
each value of m such that Ωm > 0, there will be a value
of ω where this factor diverges. The only notable ex-
ception is the rotation axis, where J2

m(qρ) = δm0 and
[eβω − 1]−1 has the usual Bose-Einstein infrared diver-
gence when ω = 0. Thus, we are led to conclude that
thermal rigidly-rotating states of the scalar field are ill-
defined at each point outside the rotation axis due to long
wavelength (super-horizon) modes, for which ω ≤ Ωm
[49]. We will come back to this issue in Sec. VI when
we will discuss the Klein-Gordon field enclosed inside a
cylindrical boundary.

C. Evaluation for imaginary rotation

We now seek to construct states which undergo imag-
inary rotation, Ω = iΩI , where ΩI ∈ R. As also noted
in Sec. IVD, a state under imaginary rotation leads to
complex values for the expectation values of physical ob-
servables. This problem can be alleviated by considering
the hermiticized version of ρ̂, namely

ρ̂(β,Ω) → 1

2
[ρ̂(β,Ω) + ρ̂†(β,Ω)], (115)

1 For brevity, we use the term “condensate” although the expecta-
tion value of the ordered operator ϕ̂2 does not imply the presence
of a nonvanishing coherent condensate ⟨ϕ⟩.

which is equivalent to averaging over the results obtained
for positive and negative values of ΩI . Under the above
hermitization, the t.e.v. in Eq. (106) becomes

⟨â†j âj′⟩β =
eβω cos(βΩIm)− 1

e2βω − 2eβω cos(βΩIm) + 1
δ(j, j′), (116)

which is similar to the relativistic kinetic theory dis-
tribution f imk in Eq. (85) under the substitution kφ →
−m. The thermodynamic state corresponding to the
t.e.v. (116) is characterized by ninionic statistics (12).
In what follows, we perform the calculations considering
averages using the statistical operator ρ̂(β, iΩI), keeping
in mind that the final result is obtained by taking the
real part.
In order to analyse the functions Gabc, the Bose-

Einstein factor can be expanded in a power series, as
follows:

1

eβω̃ − 1
=

∞∑
j=1

e−jβω̃, (117)

where ω̃ = ω − iΩIm has a positive real part, ω > 0.
Writing

Gabc =

∞∑
j=1

Gj
abc, (118)

it can be seen that the power ofm can be accounted for by
taking derivatives with respect to the rotation parameter:

Gj
abc =

(
− i

jβ

)c
dcGj

ab0

dΩc
I

. (119)

On the other hand, the sum over m can be performed in
Gj

ab0 via

∞∑
m=−∞

e−imxJ2
m(z) = J0

(
2z sin

x

2

)
, (120)

leading to

Gj
ab0 =

∫ ∞

0

dω e−jβωωa

∫ ω

0

dk

2π2
qbJ0

(
2qρ sin

jβΩI

2

)
=

∫ ∞

0

dxe−xxa+b+1

2π2(jβ)a+b+2

∫ π/2

0

dθ(cos θ)b+1J0(αjx cos θ),

(121)

where x = jβω and θ is defined by (k, q) = ω(sin θ, cos θ),
while αj is given by

αj =
2ρ

jβ
sin

jβΩI

2
=

l

πj
sin(πjν), (122)

with

l =
2πρ

β
, L =

2πR

β
, (123a)
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ν ≡ νI =
βΩI

2π
, νR =

βΩ

2π
, (123b)

where we, for convenience, reproduced Eq. (30) and in-
troduced other notations to be used later (notice that
0 ⩽ l ⩽ L).
In order to perform the integral with respect to θ in

Eq. (121), we replace the Bessel function J0(x) by its
series expansion,

J0(x) =

∞∑
k=0

(−1)kx2k

4k(k!)2
. (124)

The integral with respect to θ can be performed now term
by term using the relation (valid for Re γ > −1)∫ π/2

0

cosγ θdθ =

√
πΓ
(
1+γ
2

)
2Γ
(
1 + γ

2

) , (125)

Using the following identities for the gamma functions,

Γ(n+ 1)

∣∣∣∣
n∈N

= n! , (126)

Γ

(
1

2
+ n

) ∣∣∣∣
n∈N

=
√
π
(2n)!

4nn!
, (127)

we arrive at∫ π/2

0

dθ cos θJ0(αjx cos θ) =

∞∑
k=0

(−α2
jx

2)k

(2k + 1)!
, (128a)

∫ π/2

0

dθ cos3 θJ0(αjx cos θ) =

∞∑
k=1

(2k)2(−α2
jx

2)k−1

(2k + 1)!
,

(128b)

corresponding to the cases b = 0 and 2 in Eq. (121). The
summation can be trivially performed,∫ π/2

0

dθ cos θJ0(αjx cos θ) =
sin(αjx)

αjx
, (129a)∫ π/2

0

dθ cos3 θJ0(αjx cos θ) =
cos(αjx)

α2
jx

2

+ (α2
jx

2 − 1)
sin(αjx)

α3
jx

3
, (129b)

finally arriving at

Gj
n00 =

1

2π2αj(jβ)n+2

∫ ∞

0

dxe−xxn sin(xαj),

Gj
n20 =

1

2π2α3
j (jβ)

n+4

∫ ∞

0

dxe−xxn[xαj cos(xαj)

+ (x2α2
j − 1) sin(xαj)]. (130)

Employing the identity∫ ∞

0

dx e−x+iαjxxn =
n!

(1− iα)n+1
, (131)

or equivalently,∫ ∞

0

dx e−xxn sin(αjx) = n! Im

(
1 + iαj

1 + α2
j

)n+1

, (132)

∫ ∞

0

dx e−xxn cos(αjx) = n! Re

(
1 + iαj

1 + α2
j

)n+1

, (133)

with Re(z) = (z + z∗)/2 and Im(z) = (z − z∗)/2i being
the real and imaginary parts of a complex number z, we
obtain

Gj
n00 =

n!

2π2αj(jβ)n+2
Im

(
1 + iαj

1 + α2
j

)n+1

, (134a)

Gj
n20 =

1

2π2α3
j (jβ)

n+4

[
α2
j (n+ 2)!Im

(
1 + iαj

1 + α2
j

)n+3

+ αj(n+ 1)! Im

(
1 + iαj

1 + α2
j

)n+2

− n! Im

(
1 + iαj

1 + α2
j

)n+1 ]
.

(134b)

Specifically, for ϕ2 and Tµν , we require:

Gj
000 =

1

2π2(jβ)2(1 + α2
j )
, (134c)

Gj
100 =

1

π2(jβ)3(1 + α2
j )

2
, (134d)

Gj
200 =

3− α2
j

π2(jβ)4(1 + α2
j )

3
, (134e)

Gj
020 =

2(1− α2
j )

π2(jβ)4(1 + α2
j )

3
. (134f)

Furthermore, Gj
001, G

j
101, and Gj

002 can be obtained by
means of Eq. (119):

Gj
001 =

iρ2 sin(jβΩI)

π2(jβ)4(1 + α2
j )

2
, (134g)

Gj
101 =

4iρ2 sin(jβΩI)

π2(jβ)5(1 + α2
j )

3
, (134h)

Gj
002 =

ρ2 cos(jβΩI)

π2(jβ)4(1 + α2
j )

2
− 4ρ4 sin2(jβΩI)

π2(jβ)6(1 + α2
j )

3
. (134i)

Finally, the functions G
(1);j
000 and G

(2);j
000 corresponding to

the expressions in Eq. (114) are

G
(1);j
000 = 2α2

j

dGj
000

dα2
j

= −
α2
j

π2j2β2(1 + α2
j )

2
, (134j)

G
(2);j
000 = 2α2

j

dG
(1);j
000

dα2
j

=
2α2

j (α
2
j − 1)

π2j2β2(1 + α2
j )

3
. (134k)

Substituting Eq. (134c) into Eq. (111) allows ϕ2 to be
expressed as

ϕ2 =
1

2π2β2

∞∑
j=1

1

j2
1

1 + α2
j

, (135a)
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while the non-vanishing components of Tµν , given in
Eq. (113), reduce to

T tt =

∞∑
j=1

3− α2
j +

2
3 (α

2
j − 1) sin2(πjν)

π2β4j4(1 + α2
j )

3
, (135b)

T ρρ =

∞∑
j=1

3− 2 sin2(πjν)

3π2β4j4(1 + α2
j )

2
, (135c)

Tφφ =

∞∑
j=1

[3− 2 sin2(πjν)](1− 3α2
j )

3π2ρ2β4j4(1 + α2
j )

3
, (135d)

T zz =

∞∑
j=1

3 + 3α2
j + 2(1− α2

j ) sin
2(πjν)

3π2β4j4(1 + α2
j )

3
, (135e)

T tφ =

∞∑
j=1

4i sin(2πjν)

π2(jβ)5(1 + α2
j )

3
. (135f)

The above results show that the diagonal compo-
nents of Tµν are real-valued and even with respect to
ν = βΩI/2π, while T

tφ is imaginary and odd with re-
spect to ν → −ν. Under the hermitization (115), it is
clear that T tφ vanishes and Tµν remains diagonal. As in
the case of the classical relativistic kinetic theory (RKT)
analysis, the resulting state is not isotropic. Identify-
ing as in the classical case E = T tt and the perfect-fluid
contribution Tµν

pf = diag(E,P, ρ−2P, P ) with P = E/3,

the quantum shear-stress tensor πµν = Tµν − Tµν
pf =

diag(0, πρρ, πφφ, πzz) can be obtained as

πρρ =
4

9

∞∑
j=1

3α2
j − (2α2

j + 1) sin2(πjν)

π2β4j4(1 + α2
j )

3
,

πφφ = −4

9

∞∑
j=1

6α2
j − (4α2

j − 1) sin2(πjν)

π2ρ2β4j4(1 + α2
j )

3
,

πzz =
4

9

∞∑
j=1

3α2
j − 2(α2

j − 1) sin2(πjν)

π2β4j4(1 + α2
j )

3
. (136)

At large distances from the rotation axis, αj → ∞, im-
plying that

Tµν = diag(−1, 1,−3ρ−2, 1)

×
∞∑
j=1

3− 2 sin2(πjν)

3π2β4j4(1 + α2
j )

2
. (137)

The structure of the above result is similar to that ob-
tained in Eq. (93), with the important difference that
the quantum field-theoretical (QFT) Tµν depends on ν
through the harmonic function sin(πjν). This property
implies that Tµν obtained in QFT is periodic with respect
to ν, with period ∆ν = 1, in agreement with the sym-
metry (10) expected on general grounds. This periodic
behaviour is fundamentally different from that observed
in RKT (Subsect. IVD), where no periodicity in ν can
be seen.
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FIG. 7. The condensate ϕ2 and the components of the energy-
momentum tensor Tµν on the axis of rotation of the cylinder,
ρ = 0, under (a) imaginary rotation with ν ≡ νI = βΩI/2π
and (b) real rotation with νR = βΩ/2π, normalized with re-
spect to their values in the absence of rotation. All quantities
under imaginary rotation are periodic (ν → ν + 1) in agree-
ment with Eq. (10). The dashed lines extending in the region
|νR| > 1 indicate the expected behaviour if the components
of Tµν were periodic with respect to νR.

D. Values on the rotation axis: no analytical
connection between real and imaginary rotations

On the rotation axis, we have αj = 0. Using the re-
lations

∑∞
j=1 1/j

2 = π2/6 and
∑∞

j=1 1/j
4 = π4/90, we

find that the expectation value of ϕ2 is not affected by
the imaginary rotation while the energy-momentum ten-
sor acquires a nontrivial dependence on the imaginary
angular frequency:

ϕ2
∣∣
ρ=0

= ϕ20, (138a)

T tt
∣∣
ρ=0

= T tt
0

(
1− 10{ν}2

3
+

20{ν}3

3
− 10{ν}4

3

)
,

(138b)

T ρρ|ρ=0 = T tt
0

(
1

3
− 10{ν}2

3
+

20{ν}3

3
− 10{ν}4

3

)
,

(138c)

T zz|ρ=0 = T tt
0

(
1

3
+

10{ν}2

3
− 20{ν}3

3
+

10{ν}4

3

)
,

(138d)
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T tφ
∣∣
ρ=0

= ±4iπ3{ν}
45β5

(
1− 10{ν}2 + 15{ν}3 − 6{ν}4

)
,

(138e)

and ρ2Tφφ
∣∣
ρ=0

= T ρρ|ρ=0. In the above,

ϕ20 =
1

12β2
, T tt

0 =
π2

30β4
, (139)

represent the expectation values when ΩI = 0. The no-
tation {ν} = ν − ⌊ν⌋ represents the fractional part of
ν (0 ≤ {ν} < 1), while ⌊ν⌋ represents its integer part.
The ± sign in the expression for T tφ|ρ=0 corresponds to

the sign of ν. Figure 7(a) confirms that Tµν is periodic
with respect to the imaginary rotation parameter ν, as
implied by the presence of {ν}. The energy density T tt

and the radial pressure T ρρ are decreased by the imagi-
nary rotation, while the azimuthal and vertical pressures
Tφφ = T zz are increased.

An alternative way of characterizing Tµν on the rota-
tion axis is using the Bernoulli polynomial

Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k

= − n!

(2πi)n
[
Lin(e

2πix) + (−1)nLin(e
−2πix)

]
,

(140)

with Lis(x) =
∑∞

k=1 x
k/ks being the polylogarithm and

Bn ≡ Bn(0) being the Bernoulli numbers:

Bn =

n∑
k=0

k∑
v=0

(−1)v
(
k

v

)
vn

k + 1
. (141)

In terms of the Bernoulli polynomials, the components
of the energy-momentum read

T tt
∣∣
ρ=0

= T tt
0

[
8

9
− 10

3
B4({ν})

]
, (142a)

T ρρ|ρ=0 = T tt
0

[
2

9
− 10

3
B4({ν})

]
, (142b)

T zz|ρ=0 = T tt
0

[
4

9
+

10

3
B4({ν})

]
, (142c)

T tφ
∣∣
ρ=0

= − 8i

15π3β5
B5({ν}), (142d)

as well as ρ2Tφφ
∣∣
ρ=0

= T ρρ|ρ=0. These are the results

on the axis of rotation for an infinite-volume system sub-
jected to the imaginary rotation.

We now compare the results in Eq. (138) to those de-
rived on the basis of real rotation in Refs. [50–53] using a
perturbative approach for slow rotation, reproduced be-
low for definiteness:

ϕ2
∣∣
ρ=0

= ϕ20, (143a)

T tt
∣∣
ρ=0

= T tt
0

(
1 +

10ν2R
3

− 10ν4R
3

)
, (143b)

T ρρ|ρ=0 = T tt
0

(
1

3
+

10ν2R
3

− 10ν4R
3

)
, (143c)

T zz|ρ=0 = T tt
0

(
1

3
− 10ν2R

3
+

10ν4R
3

)
, (143d)

T tφ
∣∣
ρ=0

=
4π3νR
45β5

(
1 + 10ν2R − 6ν4R

)
, (143e)

and ρ2Tφφ
∣∣
ρ=0

= T ρρ|ρ=0, with νR defined in Eq. (123).

The above results can be derived from Eq. (138) using
the following replacements:

ν2 → −ν2R, |ν|3 → 0, ν4 → ν4R. (144)

It is remarkable to observe that the diagonal components
of Tµν satisfy

Tµν(νR = ±1) = Tµν(νR = 0) for µ = ν , (145)

however contrary to the same quantities evaluated under
imaginary rotations, they do not exhibit periodicity with
respect to νR. Figure 7(b) shows that when |νR| > 1,
T zz increase dramatically, while T tt and T ρρ = ρ2Tφφ

eventually become negative. The dashed lines extending
in the region |νR| > 1 indicate the expected behaviour if
Tµν were periodic with respect to νR.
Before ending this subsection, we remark that the pres-

ence of odd powers of ν in the expressions for Tµν is
unexpected and seemingly unsupported by the formulas
in Eq. (135). For example, in the case of T tt given by
Eq. (135b), a Taylor expansion of the summand around
ν = 0 fails to capture the ν3 term revealed in Eq. (138b).
Moreover, since ν always appears multiplied by the sum-
mation variable j, such an approach can reliably produce
only the first two terms, proportional to j−4ν0 and j−2ν2.
The third term proportional to j0ν4 cannot be computed
due to the divergence of the sum over j. We are thus led
to believe that the ν3 term appearing in Eq. (138) is re-
lated to an inherent non-analytic behavior of Tµν with
respect to the rotation parameter ν. We remark that the
results quoted in Eqs. (143) for the case of real rotation
were obtained also using a Taylor series approach and
may therefore omit similar non-analytical ν3R-like terms.

E. High temperature expansion

Let us now consider the large temperature expansion,
when β → 0. Since β comes multiplied by j under the
summation sign in Eqs. (135), higher-order terms with
respect to β come with higher powers of j. Since the
summation over j and the power series with respect to
jβ in general do not commute, this procedure allows only
the coefficients of the β−4 and β−2 terms to be extracted.
The results are

ϕ2 =
γ2I

12β2
, T tt =

π2γ4I
90β4

(4γ2I − 1)− Ω2
Iγ

6
I

36β2
(6γ2I − 5),

T ρρ =
π2γ4I
90β4

− Ω2
Iγ

6
I

36β2
, T zz =

π2γ4I
90β4

+
Ω2

Iγ
6
I

36β2
,
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ρ2Tφφ =
π2γ4I
90β4

(4γ2I − 3)− Ω2
Iγ

6
I

36β2
(6γ2I − 5),

T tφ = IΩI

[
2π2γ6I
45β4

− Ω2
Iγ

6
I

18β2
(3γ2I − 1)

]
. (146)

As discussed in the previous subsection, the ν3 terms
revealed in Eq. (138) are not captured by the pertur-
bative series expansion approach. Nevertheless, the re-
sults reported in Eq. (146) are fully consistent with pre-
viously derived results, see Eq. (4.2.51) of Ref. [50];
Eqs. (A.21,A.22) of Ref. [52]; and Eqs. (7.19,7.22,7.23)
of Ref. [53].

F. Emergence of fractal structure

We now consider the case when ν = p/q is a rational
number, where p/q is an irreducible fraction. Writing
j = Qq + j′, with 0 ≤ Q < ∞ and 1 ≤ j′ ≤ q, the
trigonometric functions taking as argument jπν = πpQ+
j′πp/q depend only on j′. Specifically, Eq. (135) becomes

ϕ2 =
1

2π2β2q2

q∑
j=1

∞∑
Q=0

1

(Q+ j
q )

2 + x2j
, (147a)

T tt =
1

3π2β4q4

q∑
j=1

∞∑
Q=0

(9− 2s2j )(Q+ j
q )

2 − (3− 2s2j )x
2
j

[(Q+ j
q )

2 + x2j ]
3

,

(147b)

T ρρ =
1

3π2β4q4

q∑
j=1

∞∑
Q=0

3− 2s2j

[(Q+ j
q )

2 + x2j ]
2
, (147c)

Tφφ =
1

3π2ρ2β4q4

q∑
j=1

∞∑
Q=0

(3− 2s2j )[(Q+ j
q )

2 − 3x2j ]

[(Q+ j
q )

2 + x2j ]
3

,

(147d)

T zz =
1

3π2β4q4

q∑
j=1

∞∑
Q=0

(3 + 2s2j )(Q+ j
q )

2 + (3− 2s2j )x
2
j

[(Q+ j
q )

2 + x2j ]
3

,

(147e)

Tφt =
4i

π2β5q5

q∑
j=1

∞∑
Q=0

2sjcj(Q+ j
q )

[(Q+ j
q )

2 + x2j ]
3
, (147f)

where we introduced the notation

xj =
lsj
πq
, sj = sin

(
πjp

q

)
, cj = cos

(
πjp

q

)
, (148)

while j′ was relabeled as j for convenience.
The sum over Q introduced by the procedure shown in

Eq. (147) can be performed using

∞∑
Q=0

1

(Q+ j
q )

2 + x2j
=

1

xj
Imψj , (149a)

∞∑
Q=0

1

[(Q+ j
q )

2 + x2j ]
2
=

Imψj

2x3j
−

Reψ′
j

2x2j
, (149b)

∞∑
Q=0

1

[(Q+ j
q )

2 + x2j ]
3
=

3Imψj

8x5j
−

3Reψ′
j

8x4j
−

Imψ′′
j

8x3j
,

(149c)

∞∑
Q=0

Q+ j
q

(Q+ j
q )

2 + x2j
= −

Imψ′
j

16x3j
+

Reψ′′
j

16x2j
, (149d)

where

ψj ≡ ψ

(
j

q
+ ixj

)
, (150)

ψ(x) = Γ′(x)/Γ(x) is the digamma function and the
primes denote differentiation with respect to the argu-
ment, e.g. ψ′′(x) = d2ψ(x)/dx2. Also, Im and Re denote
the real and imaginary parts of their arguments, respec-
tively: Imψj = 1

2i (ψj − ψ∗
j ) and Reψ′

j = 1
2 (ψ

′
j + ψ′

j
∗),

with ψ∗
j = ψ( jq − ixj).

When considering the summation over j appearing in
Eq. (147), a special case corresponds to j = q, when
the sine term sj = sin(πjp/q) cancels. In this case, we
employ

∞∑
Q=0

1

(Q+ 1)2
=
π2

6
,

∞∑
Q=0

1

(Q+ 1)4
=
π4

90
. (151)

Since sj = 0 implies also xj = 0, Eqs. (147) show that the
j = q contribution becomes l-independent. This allows
all expectation values to be split as

ϕ2 = ϕ20(qβ) +
δϕ2

2π2q2β2
, Tµν = Tµν

0 (qβ) +
δTµν

2π2q4β4
,

(152)
where the first terms correspond to a bosonic gas at rest
with inverse temperature qβ:

ϕ20(qβ) =
1

12q2β2
,

Tµν
0 (qβ) =

π2

30q4β4
diag

(
1,−1

3
,−1

3
ρ−2,−1

3

)
. (153)

The factor q represents the denominator of the irreducible
fraction ν = p/q. More importantly, because these terms
are independent of the transverse distance to the rotation
axis given by l, they become dominant at large distances
from the rotation axis, giving rise to fractal structures
in the thermodynamic (infinite volume) limit. It is note-
worthy that the fractal terms are completely absent in
the relativistic kinetic theory analysis in Sec. IVD and
thus represent a purely quantum effect.
The second terms in Eq. (152) “defractalize” the result

close to the rotation axis and are computed via:

δϕ2 = Im

q−1∑
j=1

ψj

xj
, (154a)

δT tt = Im

q−1∑
j=1

[
s2j
3

(
ψj

x3j
−
iψ′

j

x2j
−
ψ′′
j

xj

)
+
ψ′′
j

xj

]
,

(154b)
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FIG. 8. Fractalization of thermodynamics with increasing volume: The thermal expectation values of (a) ϕ2 and (b) T tt under
imaginary rotation normalized with respect to their values in the absence of rotation (ϕ2

0 = 1/12β2 and T tt
0 = π2/30β4) as

functions of dimensionless distance l = ρ/(2πβ) from the rotation axis of the cylinder. The lines and points show results
for rational values of ν = βΩI/2π of the form r/10, with 0 ≤ r ≤ 5, corresponding to irreducible fractions p/q with q = 1,
2, 5 and 10, which are identical to the imaginary frequencies used for the rotating ring in Fig. 6. The horizontal dashed
black lines represent the expected large-distance plateau given by (a) 1/q2 and (b) 1/q4, which signal the fractal behaviour of
thermodynamics. The gray dotted lines represent the relativistic kinetic theory prediction in Eq. (89b). A small segment of the
result for T tt when p/q = 1/10 corresponds to negative values and is represented with dashed lines. The values are obtained
using Eq. (154).

δT ρρ = Im

q−1∑
j=1

(
1−

2s2j
3

)(
ψj

x3j
−
iψ′

j

x2j

)
, (154c) ρ2δTφφ = Im

q−1∑
j=1

(
1−

2s2j
3

)(
−2ψj

x3j
+

2iψ′
j

x2j
+
ψ′′
j

xj

)
,

(154d)
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δT zz = Im

q−1∑
j=1

[(
1−

s2j
3

)(
ψj

x3j
−
iψ′

j

x2j

)
+
s2jψ

′′
j

3xj

]
,

(154e)

δT tφ = − i

2qβ
Im

q−1∑
j=1

sin
2πjp

q

(
ψ′
j

x3j
−
iψ′′

j

x2j

)
. (154f)

where ψj , xj and sj were introduced in Eqs. (148) and
(150).

For ν = 1/2, we have:

ϕ2

ϕ20
=

1

4
+

3

8l
tanh

l

2
,

T tt

T tt
0

=
1

16
+

5

4l3

(
tanh

l

2
− l/2

cosh2 l
2

+
l2 tanh l

2

cosh2 l
2

)
,

T ρρ

T tt
0

=
1

48
+

5

4l3

(
tanh

l

2
− l/2

cosh2 l
2

)
,

ρ2Tφφ

T tt
0

=
1

48
− 5

2l3

(
tanh

l

2
− l/2

cosh2 l
2

−
l2 tanh l

2

4 cosh2 l
2

)
,

T zz

T tt
0

=
1

48
+

5

2l3

(
tanh

l

2
− l/2

cosh2 l
2

+
l2 tanh l

2

4 cosh2 l
2

)
,

T tφ = 0. (155)

The behaviour of the scalar condensate ϕ2 and energy
density T tt as functions of l is illustrated in panels (a) and
(b) of Fig. 8, respectively, where we consider the cases
ν = p′/10 with 0 ≤ p′ ≤ 5, corresponding to irreducible
fractions p/q with q = 1, 2, 5 and 10. As l > 1, visible
differences between the curves corresponding to various
values of ν can be seen. Contrary to the classical case
shown in Eq. (93), the far-field behavior of ϕ2 and Tµν

is dominated by quantum effects. An estimate of how
these observables approach their asymptotic values ϕ20
and Tµν

0 can be obtained by considering the decay of
the “classical” part from Eq. (93) to values of the same
order of magnitude as ϕ20 and T

µν
0 , which occurs at values

l ≳ lq, where

lq ∼ q

ν
=
q2

p
. (156)

The q2 dependence of lq is confirmed for both ϕ2 and T tt,
however the p dependence appears to be negligible. The
emerging fractal behaviour exhibits a stark contrast to
the classical result in Eq. (89b) derived within relativistic
kinetic theory, which is also shown in Fig. 8(b) using
dashed gray lines. Sizeable deviations can be seen for the
curves with smaller value of q, which reach the fractalized
plateau at smaller values of L. In the p/q = 1/10 case,
the RKT curve follows closely the QFT one, providing a
good approximation also in the region where T tt becomes
negative. Noting that the RKT result for p/q = 3/10
falls off too rapidly compared to the QFT curve leads us

to conclude that the classical RKT description becomes
valid only in the limit ν → 0.
As discussed above, the fractal behaviour manifests

itself at large distances from the rotation axis, i.e., as
l → ∞. Figure 9 illustrates the expectation values
of ϕ2/ϕ20 (left) and T tt/T tt

0 (right) with respect to ν
for various values of l. We considered ν = p′/q′ with
1 ≤ q′ ≤ 20 and 0 ≤ p′ ≤ ⌊q′/2⌋, covering all irreducible
fractions p/q with 1 ≤ q ≤ 20. These results are repre-
sented with purple circles. We also considered a set νj
(0 ≤ j ≤ n = 20) of “irrational” values of ν, represented
using green squares, obtained as:

νj =
j

n
+ δνj , (157)

where −0.01 < δνj < 0.01 is a random number.2 In order
to employ a logarithmic scale on the vertical axis, we rep-
resented the absolute values of our observables, with the
convention that filled and empty symbols are used when
the observables are positive and negative, respectively.
Since ϕ2 > 0 for all values of ν and L, this discussion
applies only to T tt (see, e.g., the (p, q) = (1, 10) curve in
Fig. 8).
For L ≲ 1, both ϕ2 and T tt exhibit a smooth depen-

dence on ν. As L is increased, the expectation values for
the case when ν = p/q is an irreducible fraction become
frozen on their corresponding asymptotic values (1/q2 for
ϕ2/ϕ20 and 1/q4 for T tt/T tt

0 ), earlier for smaller values of
q than for larger values of q. In contrast, the expecta-
tion values corresponding to the irrational values of ν
continue their decreasing trend towards 0.
Strikingly, the thermodynamic of the scalar field in the

cylinder, obtained numerically and shown in Fig. 9, re-
sembles drastically the one at the ring, obtained analyt-
ically and represented in Fig. 4, with the fractalization
features becoming more pronounced as the size of the
cylinder L approaches the thermodynamic limit.

G. Thermodynamic limit

For the purpose of analyzing the large-volume limit
of our system, we consider a fictitious cylinder of radius
R ≡ βL/2π and of large vertical extent Lz, centered on
the rotation axis. The volume-averaged scalar conden-
sate and energy density can be computed by integrating
Eqs. (152), (154a) and (154b) over this cylinder and di-
viding by the total volume V = πR2Lz:

Φ2 = ϕ20(qβ) +
1

β2L2

q−1∑
j=1

1

s2j
ln

Γ(j/q)

|Γj |
, (158a)

2 For j = 0 and j = 20, we employed ν0 = |δν0| and ν20 =
1− |δν20|, respectively, in order to ensure that 0 ≤ νj ≤ 1.
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FIG. 9. Thermal expectation values of (left) ϕ2 normalized by ϕ2
0 = 1/12β2; and (right) |T tt| normalized by T tt

0 = π2/30β4,
shown with respect to the rotation parameter ν = βΩI/2π, for various values of the distance parameter l = 2πρ/β from the
axis of rotation of the cylinder. The purple circles correspond to the case when ν = p/q is a rational number (we considered all
irreducible fractions with 1 ≤ q ≤ 20). The green squares correspond to the irrational values νj shown in Eq. (157). The empty
symbols indicate the case when T tt < 0. The dashed line shown in the bottom panels (for l = 104) indicate the expected lower
bounds (left) 1/q2 and (right) 1/q4 with q = 20. This figure should be compared with Fig. 4 for particles in the ring: As the
size of the cylinder grows, the thermodynamic expectation values in the cylinder get fractal features similar to the fractalization
of thermodynamics of scalar particles in the ring.
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E = T tt
0 (qβ) +

1

L2q2β4

q−1∑
j=1

[(
1

3
− 1

s2j

)
Reψ′

j

− Imψj

3Xj
+

1

s2j
ψ′
(
j

q

)]
, (158b)

where ϕ20 and T tt
0 were introduced in Eq. (153), sj was

defined in Eq. (148), while Xj corresponds to the old xj
evaluated at the volume boundary:

Xj =
Lsj
πq

. (159)

Furthermore, we keep the notation Γj and ψj introduced
in Eq. (150), but now we understand that these functions

take the argument j
q + iXj .

We now compute the average free energy F from E
starting from Eq. (75):

F = F0(qβ)−
1

β4L2q2

q−1∑
j=1

{(
1

3
− 1

s2j

)
Imψj

Xj

+
1

s2j
ψ′
(
j

q

)
− 1

3Xj

∫ Xj

0

dx

x
Im

[
ψ

(
j

q
+ ix

)]}
,

(160)

where F0(β) = −π2/90β4 is the free energy of a bosonic
gas in the absence of rotation.

The entropy and angular momentum given by Eq. (73)
require taking derivatives of F with respect to β and ΩI

at constant ΩI and β, respectively. This is not possible
at the level of the fractalized form in Eq. (160). Thus,
we seek to obtain the free energy after rewriting E for
general (not necessarily rational) values of ν:

E =

∞∑
j=1

3 + α2
j (R)− 2

3 sin
2(πjν)

π2β4j4[1 + α2
j (R)]

2
. (161)

It can be checked that writing ν = p/q and j = qQ + j′

gives Eq. (158b). Applying now Eq. (75) leads to

F = −
∞∑
j=1

1

π2β4j4

{
α2
j +

1
3 sin

2(πjν)

α2
j (α

2
j + 1)

− sin2 πjν

3α3
j

[
π

2
− arctan

(
1

αj

)]}
, (162)

where the term π/2 appearing on the second line rep-
resents an integration constant such that limΩI→0 F =
−
∑∞

j=1 1/(π
2β4j4) = F0. Using Eq. (73), the average

entropy S and angular momentum M are

S =

∞∑
j=1

1

π2β3j4

{
2(α2

j + 2)

(α2
j + 1)2

+
sin2(πjν)(1− α2

j )

3α2
j (α

2
j + 1)2

+
πjν

tan(πjν)

[
2α2

j

(α2
j + 1)2

+
sin2(πjν)(3α2

j + 1)

3α2
j (α

2
j + 1)2

]

− sin2(πjν)

3α3
j

(
1 +

πjν

tan(πjν)

)(
π

2
− arctan

1

αj

)}
,

M = −
∞∑
j=1

sin(2πjν)

4π2β3j3

[
2L2/π2j2

(1 + α2
j )

2
+

1− α2
j

3(1 + α2
j )

2

− 1

3α3
j

(
π

2
− αj − arctan

1

αj

)]
. (163)

Considering as before that ν = p/q and writing j =
qQ+ j′, with 0 ≤ Q <∞ and 1 ≤ j′ ≤ q, we get

F = F0(qβ)−
1

β4L2q2

q−1∑
j=1

{(
1

3
− 1

s2j

)
Imψj

Xj

+
1

s2j
ψ′
(
j

q

)
− 1

3Xj
SQ

}
, (164a)

S =
S0(qβ)

q
+

1

π2q4j3

q−1∑
j=1

{
2

X2
j

ψ′
(
j

q

)
− Imψj

X3
j

+

(
s2j
3

− 1

)(
Re

ψ′
j

X2
j

− cjpπ

sjXj
Imψ′

j

)

+
cjpπ

sjX2
j

(
s2j
3

− 2

)[
ψ

(
j

q

)
− Reψj

]

− 1

3Xj

(πq
L

)2(
SQ +

πpcj
sj

S′
Q

)}
, (164b)

M = −
q−1∑
j=1

sin(2πjν)

3π2q2β3

{
s2j − 6

s2jX
2
j

[
ψ

(
j

q

)
− Reψj

]

−
s2j − 3

s2jXj
Imψ′

j −
1

X3
j

S′
Q

}
, (164c)

where sj and cj were introduced in Eq. (148), ψj in
Eq. (150) with xj replaced by Xj , while Xj is defined
in Eq. (159). Furthermore, the following notation was
introduced:

SQ =

∞∑
Q=0

1

Q+ j
q

[
π

2
− arctan

(
Q+ j

q

Xj

)]
,

S′
Q =

∞∑
Q=0

[
π

2
− arctan

(
Q+ j

q

Xj

)
− Xj

Q+ j
q

]
. (165)

Comparing Eqs. (164a) and (160), it can be seen that

SQ =

∫ Xj

0

dx

x
Im

[
ψ

(
j

q
+ ix

)]
. (166)

The above identity is easily established by noting that

∂SQ

∂Xj
=

∞∑
Q=0

1

(Q+ j
q )

2 +X2
j

=
Imψj

Xj
. (167)
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Integrating the above expression with respect to Xj and
demanding SQ(Xj = 0) = 0 gives Eq. (166). A similar
expression can be obtained for S′

Q. Taking the derivative
with respect to Xj eliminates the arctangent, such that

∂S′
Q

∂Xj
= −

∞∑
Q=0

X2
j

(Q+ j
q )[(Q+ j

q )
2 +X2

j ]

= ψ

(
j

q

)
− Re

[
ψ

(
j

q
+ iXj

)]
. (168)

Integrating the above relation with respect to Xj gives

S′
Q = Xjψ

(
j

q

)
−
∫ Xj

0

dxRe

[
ψ

(
j

q
+ ix

)]
. (169)

For the case when ν = p/q = 1/2, we find

Φ2

ϕ20
=

1

4
+

6

L2
ln

(
cosh

L

2

)
,

E
T tt
0

=
1

16
+

5

4L2

(
1 + 2 tanh2

L

2
− 2

L
tanh

L

2

)
, (170)

while M = 0.

H. Slow rotation: moment of inertia and shape

In the case of slow rotation, the investigation of the
coefficients K2n introduced in Eq. (81) is difficult be-
cause of the representation (162) of the free energy when
ν is an arbitrary number. A series expansion with re-
spect to Ω = 2πν/β is equivalent to an expansion of the
sine function sin(πjν), such that higher orders in ν bring
positive powers of j. The leading term F(0) and the first
coefficient K2, which corresponds to the dimensionless
moment of inertia, can be computed,

F(0) = − π2

90β4
, K2 = 2

[
1 +

10

3L2
+O

(
L−4

)]
,

(171)
however the rotational shape coefficient K4 involves a
summation over j of j0, which diverges. In the above, we
took into account that Ω2

I = −Ω2. Comparing Eq. (171)
and (81), we see that the classical result K2n = (2n)!
receives an L-dependent correction that vanishes as the
transverse size of the cylinder becomes infinite, L→ ∞.

In Subsect. VIC, we discuss the dimensionless moment
of inertia K2 and the rotational shape change coefficient
K4 in a cylinder of a finite radius, taking into account
the proper quantization of the radial modes. We will
see that the behaviour of K2 qualitatively agrees with
the convergence (171) while the coefficient K4 becomes
finite and also converges to the result (81) in the infinite
volume limit.

VI. BOUNDED KLEIN-GORDON FIELD

A. Eigenspectrum of the system and observables

We now enclose the system inside a cylindrical sur-
face at a distance R from the symmetry axis. Imposing
Dirichlet boundary conditions on the eigenmodes fj leads
to the quantization of the transverse momentum,

Jmj
(qj) = 0. (172)

The resulting normalized modes are [47]

fkmn =
e−iωmnt+ikz+imφ

2πR|Jm+1(qmn/R)|
√
ωmn

Jm(qmnρ). (173)

The t.e.v.s of Φ̂2 and T̂ tt can be expressed in the form
shown in Eqs. (111) and (113a),

ϕ2 = G000, T tt = G200 +
1

12ρ2
G

(2)

000, (174)

where G
(2)

abc = ρ d
dρρ

d
dρGabc and the functions Gabc gener-

alize the functions Gabc in Eq. (110) to the bounded case
considered here:

Gabc =
1

π2R2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk/ωmn

eβω̃mn − 1

× J2
m(qmnρ)

J2
m+1(qmnR)

ωa
mnq

b
mnm

c. (175)

B. Scalar condensate, energy-momentum
expectation values and fractalization

Figure 10 shows the main features of ϕ2 (top panel) and
T tt (lower panel) as functions of l = 2πρ/β for several
different radii R chosen such that the quantity

L =
2πR

β
(176)

takes the values L = 10, 100, and 1000. Only the
case of rational rotation parameter is considered, with
ν = βΩI/2π = p′/10 and 0 ≤ p′ ≤ 5, giving rise to all
irreducible fractions p/q with q = 1, 2, 5, and 10. The
dashed black lines represent the results obtained in the
unbounded case, computed based on Eqs. (152), (154a)
and (154b). As expected, the Dirichlet boundary condi-
tions considered in this section affect the behaviour of the
observables close to the boundary. Specifically, ϕ2 = 0
when ρ = R, since G000(ρ = R) vanishes identically by
virtue of the quantization condition Jm(qmnR) = 0; while
T tt is decreased by about a factor of 10 compared to its
bulk value. In both panels, the bounded and unbounded
results stay in good agreement throughout most of the
cylinder if L is sufficiently large. In particular, ϕ2 ex-
hibits a notably smaller value on the rotation axis when
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FIG. 10. Same as Fig. 8 for the case when the system is enclosed within cylindrical boundaries of three different sizes, shown
using vertical dotted lines, located such that L = 2πR/β = 10, 100 and 1000. The black dashed lines represent the results
obtained in the unbounded case, shown in Fig. 8.

L = 10 compared to the unbounded case, while for the
L = 100 and 1000 cases, good agreement can be seen.

As mentioned in Sec. VB, the boundary permits the
study of a system undergoing rigid rotation, as long as
ΩR = νL ≤ 1 and the light cylinder is excluded from
the system. It is thus interesting to compare expecta-
tion values computed for imaginary and real rotation,
νI and νR. To keep the comparison meaningful, both
νI and νR are restricted to be lower than or equal to
1/L. Fig. 11 shows the radial profile T tt(ρ) for three
cylinders, with L = 1 (a), 10 (b) and 100 (c), in the

case of slow (νL = 0.1, blue), medium (νL = 0.5, red)
and fast (νL = 1, green) rotation. At small L = 2πR/β,
the boundary effects dominate over thermal ones and T tt

decreases monotonically from the rotation axis towards
the boundary. Furthermore, T tt(ρ = 0) is strongly sup-
pressed (by four orders of magnitude at L = 1) compared
to its value for a boson gas at rest, T tt

0 = π2/30β4. The
effect of imaginary rotation is negligible, while in the case
of real rotation, T tt(ρ) increases slightly at νL = 1. At
L ≳ 10, the bulk of the system is dominated by ther-
mal effects. Panels (b) and (c) also show the RKT result
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FIG. 11. Profiles of T tt(ρ)/T tt
0 , represented with respect to the dimensionless radial coordinate ρ/R for a system enclosed within

a cylindrical boundary located at R = βL/2π, with L = 1 (a), 10 (b), and 100 (c). The rotation parameter satisfies νL = 0.1
(blue squares), 0.5 (red circles), and 1 (green triangles). Solid and dashed lines and symbols denote profiles corresponding to
real and imaginary rotation, respectively. The black dotted lines shown in panels (b) and (c) correspond to the RKT results
(see text).
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FIG. 12. Value of T tt(ρ = 0; ν) on the rotation axis with respect to T tt
0 = π2/30β4 for cylindrical systems with the dimensionless

radius L = 2πR/β = 1 (a), 10 (b) and 100 (c). The rotation parameter ν = β|Ω|/2π (shown on the x axis) spans 0 ≤ ν ≤ 1/L.
The blue solid and dashed lines with squares denote results for the case of real and imaginary rotation, respectively. The
black dashed lines in panels (b) and (c) are obtained by reflecting the results corresponding to real and imaginary rotation
with respect to the value T tt(ρ = 0; ν = 0) obtained in the absence of rotation. The red dotted line represents the analytical
expressions from the unbounded case, given in Eqs. (138b) and (143b), scaled by T tt(ρ = 0; ν = 0).

for T tt:

T tt
cl =

π2γ4

90β4
(4γ2 − 1), T tt

cl;im =
π2γ4I
90β4

(4γ2I − 1), (177)

where γ2 = 1/(1 − ν2Rl
2) and γ2I = 1/(1 + ν2I l

2). In the
case when L = 100, the QFT results deviate from the
RKT ones only in a small vicinity of the boundary. Such
good agreement is also a consequence of the fact that at
large L, ν is constrained to be small. As discussed in
Sec. VF, RKT is expected to agree with QFT for small
values of ν and sufficiently far from the boundary (see
also Fig. 8.

Next, the value of T tt(ρ = 0; ν) on the rotation axis for
both real and imaginary rotation is shown in Fig. 12 for
(a) L = 1, (b) L = 10 and (c) L = 100. As before, in the

case L = 1, the value of T tt is suppressed by over three
orders of magnitude. Here, the rotation parameter cov-
ers an entire period of the system undergoing imaginary
rotation. In the case of real rotation, no such periodicity
arises, contrary to the expectation based on the result in
Eq. (143b) for the unbounded case. The inset in panel (a)
shows the effect of rotation on T tt(ρ = 0; ν) for smaller
values of ν. It can be seen that for ν ≲ 0.1, the quantity
|T tt(ν)−T tt(0)| has the same behavior for both real and
imaginary rotation. At L = 10 and 100, T tt(ρ = 0; ν = 0)
approaches T tt

0 = π2/30β4. The maximum value of ν is
greatly reduced. It can be seen that for such a small inter-
val of ν, the result corresponding to imaginary rotation
is approximately equal to that obtained for real rotation,
mirrorred with respect to the value T tt(ρ = 0; ν = 0) ob-
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tained in the absence of rotation (shown with black dot-
ted lines). Furthermore, the red dotted lines indicate the
analytical predictions in Eqs. (138b) and (143b), scaled
by the value T tt(ρ = 0, ν = 0)/T tt

0 on the rotation axis in
the absence of rotation, corresponding to the given value
of L. The agreement with the analytical predictions is
better at larger values of L, which may also be due to
the smaller range allowed for ν.
We now consider the thermodynamic system as a whole

and discuss the volume-averaged free energy F = F/V ,
computed via the equivalent of Eq. (69):

F(Ω, R) =
1

π2R2β

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk ln(1− e−βω̃mn)

= − 4

L2β2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk k2/ωmn

eβω̃mn − 1
. (178a)

Applying Eqs. (72) and (73) leads to the following ex-
pressions for the radial pressure PR, average entropy S
and average angular momentum M:

PR =
2

L2β2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk

eβω̃mn − 1

(
ωmn − k2

ωmn

)
,

(178b)

S =
4

L2β

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk

eβω̃mn − 1

(
ω̃mn +

k2

ωmn

)
,

(178c)

M =
4

L2β2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dkm

eβω̃mn − 1
, (178d)

while Pz = −F . The average energy E and scalar con-
densate Φ2 can be obtained by taking the volume average
of the expressions in Eq. (174):

E =
1

π2R2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk ωmn

eβω̃mn − 1
, (178e)

Φ2 =
1

π2R2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk/ωmn

eβω̃mn − 1
. (178f)

In deriving the above expressions, we employed the inte-
gration formula∫ R

0

dρ ρJ2
m(qρ) =

R2

2
[J2

m(qR) + J2
m+1(qR)]

− mR

q
Jm(qR)Jm+1(qR), (179)

together with the Dirichlet boundary conditions
Jm(qmnR) = 0. Comparing Eqs. (178e), (178a) and
(178b), it is easy to see that E = P/3 with P =
2
3PR + 1

3Pz being the isotropic pressure. Moreover, the
relations in Eq. (178) are compatible with the Euler re-
lation (74).

The relations in Eq. (178) are valid for both real and
imaginary rotation. In the latter case, M becomes

M = − 8

L2β2

∞∑
m=1

∞∑
n=1

∫ ∞

0

dkmeβω sin(βΩIm)

e2βω − 2eβω cos(βΩIm) + 1
.

(180)
Thus, M vanishes in the imaginary rotation case when
ν = 1/2, as was the case also in the unbounded system
[see Eq. (164c)].

The results for Φ2 and E are shown in the top and
bottom panels of Fig. 13. As before, we set ν = p′/10
with 0 ≤ p′ ≤ 5, leading to irreducible fractions p/q with
q ∈ {1, 2, 5, 10}. The horizontal axis shows L = 2πR/β,
where R represents the radius of the bounding cylinder.
The dotted black lines represent the same quantities com-
puted for the unbounded system using Eqs. (158a) and
(158b) for the same value of L. For L ≲ 10, the bound-
ary effects lead to strong quenching of both ϕ2 and T tt,
such that both Φ2 and E tend to 0 as L → 0 in the
bounded case. This is contrary to the unbounded case,
where the L→ 0 limit is finite in both cases. As already
seen in Fig. 10, with increasing L, the boundary effects
become localized around a small vicinity of the boundary
and the bounded and unbounded results approach each
other. While for Φ2, visible discrepancies remain even
for L ≳ 103, in the case of E , the results obtained in the
bounded case start following the ones corresponding to
the unbounded case already when L ≳ 10. As in the pre-
vious sections, the fractal structure reveals itself at large
values of L.

C. Slow rotation: moment of inertia and shape

Finally, we discuss the expansion in Eq. (80) of the free
energy density F in the case of slow rotation. In particu-
lar, we focus on the free energy in the absence of rotation,
F(0), as well as the first two coefficients, the dimension-
less moment of inertia, K2, and the dimensionless shape
coefficient, K4, which we evaluate using:

F(0) = − 4

L2β2

∞∑
m=−∞

∞∑
n=1

∫ ∞

0

dk k2/ωmn

eβωmn − 1
, (181a)

K2 = − 16π2

β3L4

∞∑
m=1

∞∑
n=1

∫ ∞

0

m2 dk

sinh2(βωm,n/2)
, (181b)

K4 = − 16π4

L6β3

∞∑
m=1

∞∑
n=1

∫ ∞

0

dkm4[2 + cosh(βωmn)]

sinh4(βωmn/2)
,

(181c)

where the notation K2n = K2nF(0) was employed for
brevity. The coefficients F(0), K2 and K4 are studied
as functions of the transverse size of the system L with
respect to their unbounded counterparts.
The ratios F(0)/F0, K2/2! and K4/4! are represented

in Fig. 15, where the denominators of these expressions
are the classical expectations given in Eq. (81). As we
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FIG. 13. Same as Fig. 8 for the case when the system is enclosed within a cylindrical boundary located at R = βL/2π, with
L = 10, 100 and 1000. The black dotted lines represent the results obtained in the unbounded case, shown in Fig. 8.

already noted in Subsect. IVC, a strong quenching due
to the boundary can be seen at small values of L, which
is however less pronounced for the shape coefficient K4

compared to the dimensionless moment of inertia K2 and
the free energy F0 itself. At L = 100, these coefficients
already reach their expected asymptotic values K2n =
(2n)!, Eq. (81).

In a cylinder of a finite radius R, a large-size L → ∞
limit corresponds also to the high-temperature limit,
T → ∞ since L = 2πR/β ≡ 2πRT . Figure 15 shows
that the dimensionless moment of inertia K2 approaches
the asymptotic value K2 = 2 from below, indicating that

the moment of inertia should decrease as temperature de-
creases. This effect is related to the presence of an effec-
tive energy gap between the states with zero, m = 0, and
non-zero, m ̸= 0, orbital momenta due to the finite size
of the system. Therefore, at lower temperatures, the sys-
tem mostly resides in the m = 0 state and the rotational
modes, which contribute to the moment of inertia (181b),
are not excited. Since the latter modes do not participate
in rotation at low T , the moment of inertia of the system
decreases as the system gets colder. This effect should
evidently also occur for K4 and higher coefficients. Inter-
estingly, the same qualitative behaviour for the moment
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FIG. 14. Same as Fig. 13 for (a) F/F0, (b) S/S0 and (c)
M/M0.

of inertia K2 is also observed in the first-principle sim-
ulations of gluon plasma in the high-temperature phase
of Yang-Mills theory: as the temperature increases, the
moment of inertia approaches the high-temperature value
K2 = 2, Eq. (81), from below [27].
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FIG. 15. Ratios F(0)/F0, K2/2! and K4/4! computed at var-
ious values of the normalized transverse size of the system,
L = 2πR/β for the bounded system discussed in Sec. VI.

VII. CONCLUSIONS

In the present work, we studied the thermodynamic
properties of massless scalar fields subjected to rigid ro-
tation and an inter-relation of the real rotation with its
imaginary analogue. The latter concept – a rigid rotation
with an imaginary frequency [19, 23] – has a practical in-
terest since rotating systems cannot be implemented in
Euclidean path-integral formalism, suitable, for exam-
ple, for numerical first-principle calculations on the lat-
tice [17, 21, 26, 27, 30]. In this sense, rotation shares the
deficiency suffered by finite-density systems, namely the
sign problem [30], and needs to be implemented in Eu-
clidean spacetime via its imaginary version supplemented
with the subsequent analytical continuation to real an-
gular frequencies [17, 21, 27].

Using the 1 + 1-dimensional toy model of a scalar
field under rigid rotation on a ring, we explicitly demon-
strated that the analytical no-go theorem [32], which de-
scribes the impossibility of continuation of the imaginary-
angular-frequency thermodynamics to the real angular
frequencies is related to the development of the fractal-
ity of thermodynamics for the former. The result ap-
plies in the thermodynamic limit. Within this model,
thermodynamic functions such as pressure and energy
density can be expressed analytically via the Dedekind
η function (29). The latter function tends to the frac-
tal, non-analytical Thomae function (15) as its argument
approaches the real axis [38], which corresponds to the
infinite-volume (thermodynamic) limit.

In the case of the 3 + 1-dimensional Minkowski space,
we first considered a classical description of scalar par-
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ticles under rotation using relativistic kinetic theory. In
the absence of boundaries, rigid rotation with a real rota-
tion parameter leads to a violation of causality and subse-
quent divergence of all observables on the light cylinder.
Imaginary rotation can be described by a real distribu-
tion function only as an average of clockwise and counter-
clockwise rotations, leading a seemingly non-equilibrium
state. As expected, observables such as the energy-
momentum tensor Tµν decrease as the distance to the
rotation axis is increased, at a faster rate for faster rota-
tion.

Under the quantum-field theoretical treatment, rigid
rotation with a real rotation parameter leads to the diver-
gence of Tµν at each point of the space-time, also inside
the light cylinder. Under imaginary rotation, Tµν evalu-
ated on the rotation axis can be expressed via Bernoulli
polynomials (135). Away from the rotation axis, we were
able to demonstrate the fractalization of both the field
fluctuations ϕ2 and of Tµν in the case of imaginary ro-
tation, in complete analogy to the 1 + 1-dimensional toy
model discussed above. In all cases, our results exhibit a
periodicity with respect to the imaginary rotation param-
eter which is not present in the classical, kinetic analysis.
For this reason, we found agreement with kinetic theory
only in the limit of slow rotation and only in the vicinity
of the rotation axis (before fractalization sets in).

For comparison with the case of real rotation, we took
results obtained using a perturbative calculation for slow
rotation (with respect to a stationary background) and
found on the rotation axis an analytical result (143)
which can be related to the one obtained for imaginary
rotation in an essentially non-analytical way (144). We
conclude that even on the axis of rotation – which ap-
pears to be static in the rotating system – the non-
analyticity is strong and unavoidable.

We demonstrated the same analytic–non-analytical
transition using numerical calculations for the thermal
scalar field system enclosed in a cylinder, undergoing ro-
tation with imaginary angular frequencies. As the ra-
dius of the cylinder grows, the pressure becomes a non-
analytical function of temperature expressed, again, via
the Thomae function (demonstrated in Figs. 8–14). In
this limit, the boundary effects become less important
and the results obtained in the unbounded case provide a
good approximation for our observables inside the cylin-
drical boundary. For values of the rotation parameter
respecting the causality constraints (i.e., when the light
cylinder is outside the boundary), the fractalization fea-
tures do not appear in the case of imaginary rotation.
For sufficiently slow rotation and high temperature, our
numerically-obtained results are compatible with the flip
Ω2

I → −Ω2 from imaginary to real rotation, signaling the
restoration of analytical continuation in this limit.

The exotic fractalization properties discussed above
are related to a ninionic deformation (12) of statisti-
cal distributions at imaginary angular frequencies [32].
For this reason, we conclude that the results obtained in
the infinite-volume system subjected to imaginary rota-

tion cannot be analytically related to the properties of
the physically rotating system (with a real angular fre-
quency). However, we explicitly demonstrated both for
the analytically treatable case on the ring and numeri-
cally accessible case of rotating cylinder that the imagi-
nary rotation in a spatially bounded system in Euclidean
space can be continued to the real-frequency domain in
Minkowski spacetime provided that the causality is re-
spected for the latter spacetime.

We have also shown that for real-frequency rotation,
the dimensionless moment of inertia K2, normalized per
one degree of freedom, is equal to two, K2 = 2, in the
thermodynamic limit of large radius R of the cylinder.
The quantity K2 determines the correction to the free
energy (80), or, equivalently, to the pressure of a non-
interacting gas of scalar bosons,

P (Ω) = P (0)

(
1 +

1

2
K2R

2Ω2 + . . .

)
, (182)

due to small nonzero angular frequency, Ω → 0. This
result matches well the first-principle result of Ref. [27]
on the behavior of gluons in high-temperature limit of
Yang-Mills theory.

Below we summarize our main findings:

1. We demonstrated the no-go theorem [32] regarding
the impossibility of continuation of the imaginary-
angular-frequency thermodynamics to the real
angular frequencies using an analytical 1 + 1-
dimensional toy model, revealing the development
of the fractality of thermodynamics for the former.

2. Since fractalization does not show up in the classi-
cal, kinetic theory treatment of imaginary rotation,
we conclude that this is a purely quantum effect.

3. We found similar fractalization on the unbounded
Minkowski space for imaginary rotation, as well as
in the thermodynamic (infinite volume) limit of the
bounded system.

4. For the case of a causal boundary that excludes the
light cylinder, we were able to restore the analytical
continuation from imaginary to real rotation in the
limit of slow rotation and large temperatures.

5. We attributed the exotic fractalization properties
to a ninionic deformation (12) of statistical distri-
butions at imaginary angular frequencies [32].

The results obtained in this paper shed light on the
implications of the effects of imaginary rotation obtained
in the context of first-principle lattice simulations and
constitute the basis for the analysis of more complicated
systems, e.g., free fermions or the chiral phase transition
in the effective QCD models such as the Nambu–Jona-
Lasinio model or nonlinear sigma models.



31

ACKNOWLEDGMENTS

V.E.A. gratefully acknowledges the support through a
grant of the Ministry of Research, Innovation and Digiti-

zation, CNCS - UEFISCDI, project number PN-III-P1-
1.1-TE-2021-1707, within PNCDI III.

[1] J. W. Beams, Physical Review Letters 21, 1093 (1968).
[2] S. J. Barnett, Physical Review 6, 239 (1915).
[3] A. Einstein and W. De Haas, in Proc. KNAW, Vol. 181

(1915) p. 696.
[4] M. Arabgol and T. Sleator, Physical Review Letters 122

(2019), 10.1103/physrevlett.122.177202.
[5] L. Adamczyk et al. (STAR), Nature 548, 62 (2017),

arXiv:1701.06657 [nucl-ex].
[6] W.-T. Deng and X.-G. Huang, Phys. Rev. C 93, 064907

(2016), arXiv:1603.06117 [nucl-th].
[7] Y. Jiang, Z.-W. Lin, and J. Liao, Phys. Rev. C 94,

044910 (2016), [Erratum: Phys.Rev.C 95, 049904 (2017)],
arXiv:1602.06580 [hep-ph].

[8] F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci.
70, 395 (2020), arXiv:2003.03640 [nucl-ex].

[9] X.-G. Huang, J. Liao, Q. Wang, and X.-L. Xia,
(2020), 10.1007/978-3-030-71427-7 9, arXiv:2010.08937
[nucl-th].

[10] H.-L. Chen, K. Fukushima, X.-G. Huang, and
K. Mameda, Phys. Rev. D 93, 104052 (2016),
arXiv:1512.08974 [hep-ph].

[11] Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302
(2016), arXiv:1606.03808 [hep-ph].

[12] M. N. Chernodub and S. Gongyo, JHEP 01, 136 (2017),
arXiv:1611.02598 [hep-th].

[13] M. N. Chernodub and S. Gongyo, Phys. Rev. D 95,
096006 (2017), arXiv:1702.08266 [hep-th].

[14] X. Wang, M. Wei, Z. Li, and M. Huang, Phys. Rev. D
99, 016018 (2019), arXiv:1808.01931 [hep-ph].

[15] Z. Zhang, C. Shi, X.-T. He, X. Luo, and H.-S. Zong,
Phys. Rev. D 102, 114023 (2020), arXiv:2012.01017 [hep-
ph].

[16] N. Sadooghi, S. M. A. Tabatabaee Mehr, and
F. Taghinavaz, Phys. Rev. D 104, 116022 (2021),
arXiv:2108.12760 [hep-ph].

[17] V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and
A. A. Roenko, Pisma Zh. Eksp. Teor. Fiz. 112, 9 (2020).

[18] X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, JHEP
07, 132 (2021), arXiv:2010.14478 [hep-ph].

[19] M. N. Chernodub, Phys. Rev. D 103, 054027 (2021),
arXiv:2012.04924 [hep-ph].

[20] Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett.
B 816, 136184 (2021), arXiv:2101.09173 [hep-ph].

[21] V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and
A. A. Roenko, Phys. Rev. D 103, 094515 (2021),
arXiv:2102.05084 [hep-lat].

[22] A. A. Golubtsova, E. Gourgoulhon, and M. K. Usova,
Nucl. Phys. B 979, 115786 (2022), arXiv:2107.11672
[hep-th].

[23] S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev.
Lett. 129, 242002 (2022), arXiv:2207.12665 [hep-ph].

[24] A. A. Golubtsova and N. S. Tsegelnik, (2022),
arXiv:2211.11722 [hep-th].

[25] Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li, (2022),
arXiv:2212.14662 [hep-ph].

[26] M. N. Chernodub, V. A. Goy, and A. V. Molochkov,
(2022), arXiv:2209.15534 [hep-lat].

[27] V. V. Braguta, M. N. Chernodub, A. A. Roenko, and
D. A. Sychev, (2023), arXiv:2303.03147 [hep-lat].
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