Symmetric and Almost Symmetric semigroups generated by an almost generalized arithmetic sequence, Frobenius number - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Symmetric and Almost Symmetric semigroups generated by an almost generalized arithmetic sequence, Frobenius number

Marcel Morales
  • Fonction : Auteur
  • PersonId : 971462

Résumé

Let $a, d, k,h, c$ be positive integers. Recall that a {\it numerical almost generalized arithmetic sequence-semigroup } (numerical AAG-semigroup for short) is a semigroup minimally generated by relatively prime integers $a, ha+d, ha+2d, \ldots, ha+kd, c, $ that is its embedding dimension is $k+2.$ In \cite{M-D} was described a \gbb of the ideal defining $S$ under one technical assumption, the complete case will be published in a forthcoming paper. In this paper we give a complete description of $S$ when is symmetric or almost symmetric and a quadratic formula for its Frobenius number. Note that our results generalizes and extends previous result of \cite{RR}, \cite{GRR} and \cite{R-G}. Given $a, d, k,h, c$ a simple algorithm allows us to determine if $S$ is almost symmetric.
Fichier principal
Vignette du fichier
Marcel-AAGalmostsymmetric-NEW18-02-2023.pdf (415.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04043909 , version 1 (24-03-2023)

Identifiants

  • HAL Id : hal-04043909 , version 1

Citer

Marcel Morales. Symmetric and Almost Symmetric semigroups generated by an almost generalized arithmetic sequence, Frobenius number. 2021. ⟨hal-04043909⟩
19 Consultations
29 Téléchargements

Partager

More