Weak Uniqueness for a PDE with Boundary Condition
Résumé
In a previous work Coutin and Pontier proved that the joint law of a diffusion and the running supremum of its first component is absolutely continuous and that its density satisfies a weak partial differential equation with boundary condition.
In this work, we prove uniqueness of the solution of that PDE.
Fichier principal
CoutinHuangPontier.pdf (269.53 Ko)
Télécharger le fichier
CoutinHuangPontier (1).pdf (423.52 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|