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Weak Uniqueness for a PDE with Boundary Condition

L. Coutin, L. Huang, M. Pontier

March 14, 2023

Abstract

In a previous work [6], it has been proved that the joint law of a diffusion and the
running supremum of its first component is absolutely continuous and that its density
satisfies a weak partial differential equation with boundary condition. In this work, we
prove uniqueness of the solution of that PDE.

1 Introduction and statement of the PDE

In finance, a barrier option is a type of option whose pay-off depends on whether or not the
underlying asset exceeds a certain price. An asset is typically modelled using a stochastic
differential equation, and in theory, the barrier can be any curve. Yet, theoretical challenges
already arise when studying the joint distribution of (Vt)t≥0 = (Mt, Xt)t≥0, where:

dXt = B(Xt)dt+ σ(Xt)dWt, X0 ∼ f0,

Mt = sup
s≤t

X1
s ,

X0 being a random variable, independent ofW, with density f0.Many papers, dating as far back
as in 1987 [7], have been devoted to understanding the distribution of (Vt)t≥0. However, in early
works, the emphasis was on characterizing the joint distribution, in order to deduce theoretical
properties (for instance regularity of hitting times or local times). From an applicative point
of view, even though these results are very informative, they offer little to no practicality for
real life purposes like pricing or hedging.

For instance in [3], authors default to giving (sharp) upper and lower bounds. Therefore,
continuous effort has been deployed to better understand the joint distribution. We can notably
cite [2] that provides an approximation of the distribution of (Vt)t≥0, in order to improve
computation time in Montecarlo schemes. Another result we can quote for context is one
obtained by Hayashi and Kohatsu-Higa [10], establishing that the distribution of (Vt)t≥0 is
absolutely continuous. Such result is expected, since in the simplest case of the Brownian
motion and its running supremum (W ∗

t ,Wt)t≥0, where W ∗
t = sups≤tWs, an explicit expression
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for that density has been given since [12] (see also [11] for a more recent reference). Nevertheless,
for the Brownian motion, arguments are quite different, as they rely on the reflection principle
which is not true for general diffusions any more.

Still, knowing that the law of Vt for t > 0, is absolutely continuous, with density pV (.; t) t >
0; one can naturally ask how far is the density of (W ∗

t ,Wt)t≥0 form the actual density. In other
words, one can look for expansion for the density of (Vt)t≥0. In [5], and subsequently in [6],
such program has been implemented. In arbitrary dimension and when the diffusion coefficient
σ = Id, the authors use a Girsanov transformation eliminating the drift and relate the law of
(Vt)t≥0 to the law of (W ∗

t ,Wt)t≥0, through a Malliavin integration by parts. In dimension 1, a
Lamperti transform can be done prior to Girsanov to handle a diffusion coefficient. However,
the general case is still for now out of reach with this method. The main result of [5] is the
absolute continuity of distribution of (Vt)t≥0, and the arguments have been further expanded
upon in [6], where the authors obtain a weak PDE for the law of (Vt)t≥0:

∫

T
Φ(m, x)p(m, x; t)dmdx =

∫

Rd

Φ(m,m, x̃)f0(m, x̃)dmdx̃+

∫ t

0

∫

T
p(m, x; s)LΦ(m, x)dmdxds

+
1

2

∫ t

0

∫

Rd

∂mΦ(m,m, x̃)p(m,m, x̃; s)dmdx̃ds,(1.1)

where Φ is a test function belonging to a suitable class of functions, T is the subset of R×Rd:

T := {(m, x) ∈ R× Rd ; m ≥ x1},

and the operator L is the generator of (Xt)t≥0 and acts on the variable x as follows:

Lf(x) = B(x)∇f(x) + 1

2
∆f(x).

In what follows, we extend the operator L to functions Φ in C2(Rd+1,R) as

L(Φ)(m, x) = Bi(x)∂xi
Φ(m, x) +

1

2
∂2xi,xi

Φ(m, x)

where we use the Einstein’s convention.

In this paper, we are interested in proving that PDE (1.1) has a unique solution in a suitable
functional space X defined below. Our proof relies on a variation of constant method see [1].

Remark 1.1 (Notations) Throughout this paper we will use the notation x = (x1, x̃) when
no ambiguity is possible, in order to single out the behavior on the first component . Similarly,
we write dx = dx1dx̃ to shorten notations.
Let us denote C2

c (R
d) the functions C2 class with compact support and C2

b (R
d) the bounded

functions C2 class with bounded derivatives.
Finally, pV (t, .) denotes the density of the probability law of process Vt = (Mt, Xt).
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Definition 1.1 Let T > 0. Define X to be the space of the real functions on ]0, T ] × T
satisfying the following items:

• (a) supt∈]0,T ]

∫

Rd

[∫

R
|p(m, x; t)|dm

]2
dx <∞.

• (b) The application (m, x̃; s) 7→ p(m,m, x̃; s) ∈ L1(]0, T ];L2(Rd))

• (c) For all t ∈]0, T ], supu>0 p(m,m−u, x̃; t) ∈ L1(Rd); and for almost surely all (m, x̃) ∈
Rd, x1 7→ p(m, x1, x̃; t) is continuous on ] −∞, m[ and limu→0+ p(m,m − u, x̃; t) exists
and is denoted by p(m,m, x̃; t).

Theorem 1.2 Assume that B ∈ C1
b (R

d,Rd). Let T > 0, and f0 ∈ L1(Rd) ∩ L2(Rd) with
positive values such that

∫

Rd f0(x)dx = 1. Then, pV belongs to X and is the unique solution in
X of (1.1).

It should be emphasized that this PDE is set in dimension d + 1, but it is degenerate, in the
sense that there are no derivative related to the component m. Moreover, the presence of a
boundary term takes us away from the classical equations investigated in textbooks such as
Evans [8].

This paper is organized as follow. In Section 2, we prove that the solution of (1.1) with
fixed initial condition is unique in a certain class of function X . To do so, we rely on a Theorem
by Ball [1], whose assumptions are checked in Section 3. Then Section 4 proves that pV is an
element of set X . Finally an appendix with some tools is provided.

2 Uniqueness for weak solution of PDE in the set X
The aim of this section is the proof of the following theorem.

Theorem 2.1 Let T > 0 and B ∈ C1(Rd,Rd). In the set X given in Definition 1.1, the PDE
(1.1) with initial condition f0 ∈ L1(Rd) ∩ L2(Rd) admits at most one solution.

In this section, we work up the tools allowing us to obtain uniqueness to the solution of
the PDE (1.1). Naturally, we consider p1 and p2, two solutions in X to (1.1) with the same
initial condition, and show that their difference is zero. Having the same initial condition, for
q = p1 − p2, we derive the following equation:

∫

T
Φ(m, x)q(m, x; t)dmdx =

∫ t

0

∫

T
q(m, x; s)LΦ(m, x)dmdxds

+
1

2

∫ t

0

∫

Rd

∂mΦ(m,m, x̃)q(m,m, x̃; s)dmdx̃ds(2.1)
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for all test function Φ ∈ C2
c (R

d+1). We can chose in particular Φ(m, x) = H(m)F (x), for
(m, x) ∈ T , where H ∈ C1

c (R) and F ∈ C2
c (R

d). And since there is no second derivative with
respect to m, we introduce

(2.2) qH(x; t) =

∫

m≥x1

1{x1≤m}H(m)q(m, x; t)dm, x ∈ Rd, t ∈ [0, T ]

where H ∈ C1
b (R).

Remark 2.2 Since the solutions to the PDE (1.1) have support over T , we can omit the
indicator {m ≥ x1} in the previous integral, and simply write: qH(x; t) =

∫

R
H(m)q(m, x; t)dm.

2.1 Reduction to a variation of constant

In this section, we show how to reduce the proof of Theorem 2.1 to the application of a result
due to Ball [1], which can be understood as a variation of constant method.

We have the following proposition.

Proposition 2.3 Let q ∈ X be a solution of (1.1) with null initial condition and H ∈ C2
b (R,R)

with compact support derivative. The function qH(; ·) satisfies the equation in a weak sense:

qH(x; t) =

∫ t

0

L∗qH(x; s)ds+
1

2

∫ t

0

∂mH(x1)q(x1, x1, x̃; s)ds, t ∈ [0;T ]

where L∗ is

L∗(Φ)(x) = −B(x) · ∇Φ(x)(x)−f(x)divB(x) +
1

2
∆Φ(x).

Moreover, for all t ∈ [0, T ], qH(., t) ∈ L2(Rd).

Proof: Let q ∈ X such that q(., 0) = 0. Using Item (a) of Definition 1.1,

sup
t∈]0,T ]

∫

Rd

[∫

R

|q(m, x; t)|dm
]2

dx <∞,

and the fact that H is bounded

∫

Rd

[∫

R

|H(m)||q(m, x; t)|dm
]2

dx <∞, ∀t > 0.

Then, qH(.; t) ∈ L2(Rd).

• For a while, assume that H is C2 with compact support.
We start from Equation (2.1) satisfied by q, and plug the choice Φ(m, x) = H(m)F (x) into (2.1)
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with F ∈ C2
c (R

d). Since H and F are with compact supports, we can use Fubini’s theorem to
exchange integrals, the left hand side becomes:

∫

T
Φ(m, x)q(m, x; t)dmdx =

∫

Rd

F (x)

(∫

m≥x1

H(m)q(m, x; t)dm

)

dx

=

∫

Rd

F (x)qH(x; t)dx.

Now considering the right hand side of (2.1), we have for the first contribution:

∫ t

0

∫

T
q(m, x; s)LΦ(m, x)dmdxds =

∫ t

0

∫

T
q(m, x; s)L

(

H(m)F
)

(x)dmdxds.

Note that the operator L acts on the variable x, we thus have:

∫ t

0

∫

T
q(m, x; s)LΦ(m, x)dmdxds =

∫ t

0

∫

Rd

∫

m≥x1

q(m, x; s)H(m)LF (x)dmdxds

=

∫ t

0

∫

Rd

qH(x; s)LF (x)dxds

Finally considering the second term in the right hand side of (2.1), since ∂mΦ(m,m, x̃) =
∂mΦ(m, x

1, x̃)
∣
∣
x1=m

, that is, we first compute the derivative of Φ with respect to the first

component, and evaluate at (m,m, x̃) ∈ R× Rd, the second term becomes up to the factor 1
2
:

∫ t

0

∫

Rd

∂mΦ(m,m, x̃)q(m,m, x̃; s)dmdx̃ds =

∫ t

0

∫

Rd

H ′(m)F (m, x̃)q(m,m, x̃; s)dmdx̃ds

=

∫

Rd

(∫ t

0

H ′(m)q(m,m, x̃; s)ds

)

F (m, x̃)dmdx̃

=

∫ t

0

∫

Rd

H ′(m)F (m, x̃)q(m,m, x̃; s)dmdx̃ds.

Thus,

∫

Rd

F (x)qH(x; t)dx =

∫ t

0

∫

Rd

L(F )(x)qH(x; s)dxds+
1

2

∫ t

0

∫

Rd

H ′(x1)F (x)q(x1, x; s)dxds.

• Now, we assume that H is C2
b with compact support derivative. The idea is to recover

the previous case (C2 with compact support) via a truncation argument.
Consider a C2 function f defined on [0, 1], with f(0) = 0, f(1) = 1 and f ′(0) = f ′(1) = f ′′(0) =
f ′′(1) = 0. For instance, f can be the polynomial function degree 5: f(x) = 6x5 − 15x4+10x3.
Let (ξn)n∈N be a sequence of C2

c functions defined as

ξn(m) = 1 ∀m ∈ [−n, n], ξn(m) = 0 ∀|m| ≥ 2n,
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ξn(m) = f

(
m+ 2n

n

)

∀m ∈ (−2n,−n), ξn(m) = f

(
2n−m

n

)

∀m ∈ (n, 2n).

In other words, (ξn)n∈N are a sequence of C2
c functions approximating an indicator function.

We let Hn = Hξn, which is now C2 with compact support.
Using Cauchy Schwartz inequality

‖qH(.; t)− qHn
(.; t)‖2L2 ≤ ‖H‖2∞

∫

Rd

[∫

R

|1− ξn(m)||q(m, x; t)|dm
]2

dx

and
∫ T

0

‖qH(.; t)− qHn
(.; t)‖2L2dt ≤ ‖H‖2∞

∫ T

0

∫

Rd

[∫

R

|1− ξn(m)||q(m, x; t)|dm
]2

dxdt.

Then, using Lebesgue dominated theorem (qHn
(.; t))n∈N converges to qH in L2(Rd) for all t ∈

[0, T ] and (qHn
)n∈N converges to qH in L1([0, T ], dt;L2(Rd)).

Note that
H ′

n(m) = H(m)ξ′n(m) +H ′(m)ξn(m), ∀m ∈ R.

Let n be large enough such that the support of the function H ′ is in (−n, n) so ∀m ∈ [−n,+n],
H ′

n(m) = H ′(m). Moreover, for |m| ≥ 2n, H ′
n(m) = 0 and for 2n ≥ |m| ≥ n, H ′

n(m) =
ξ′n(m)H(m) and H is bounded.

Thus we have :
∣
∣
∣

(

H ′
n(x

1)−H ′(x1)
)

q(x1, x; s)
∣
∣
∣ = 1n≤|x1|≤2n|ξ′n(x1)H(x1)q(x1, x; s)|

We now use that if x1 satisfies n ≤ |x1| ≤ 2n then H ′
n(x

1) = H(x1) 1
n
f ′(x+2n

n
) where f ′ and H

are bounded, since the above integrand satisfies |(H ′
n(x

1)−H ′(x1))q(x1, x; s)| ≤ c
n
|q(x1, x; s)|.

Given Item (b) of Definition 1.1
∫ T

0

√∫

Rd q2(x1, x; s)dxds < ∞, hence when n goes to infinity,

we get:
∫ T

0

∫

Rd

∣
∣
∣

(

ξ′n(x
1)H(x1)−H ′(x1)

)

q(x1, x; s)
∣
∣
∣ dxds −→

n→+∞
0.

We point out that in fact,
∫ T

0

√∫

Rd |q(x1, x; s)|dxds <∞ would be sufficient.

Thus, (H ′
n(x

1)q(x1, x; s))n converges in L1([0, T ]× Rd) toward H ′(x1)q(x1, x; s).

Let F be a C2
c function. From the compact support derivative case we have

∫

Rd

F (x)qHn
(x; t)dx =

∫ t

0

∫

Rd

L(F )(x)qHn
(x; s)dxds+

1

2

∫ t

0

∫

Rd

H ′
n(x)F (x)q(x

1, x; s)dxds.

Using the fact F is C2 with compact support, F and L(F ) are bounded with compact
support thus in L2(Rd).

∫

Rd

F (x)qH(x; t)dx = lim
n

∫

Rd

F (x)qHn
(x, t)dx,
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∫ t

0

∫

Rd

L(F )(x)qH(x; s)dxds = lim
n

∫ t

0

∫

Rd

L(F )(x)qHn
(x; s)dxds.

Moreover, since (H ′
n(x

1)q(x1, x; s))n converges in L1([0, T ]× Rd) toward H ′(x1)q(x1, x; s),

lim
n

∫ t

0

∫

Rd

H ′
n(x

1)F (x)q(x1, x; s)dx1ds =

∫ t

0

∫

Rd

H ′(x1)F (x)q(x1, x; s)dx1ds

and
∫

Rd

F (x)qH(x; t)dx =

∫ t

0

∫

Rd

L(F )(x)qH(x; s)dxds+
1

2

∫ t

0

∫

Rd

H ′(x1)F (x)q(x1, x; s)dxds.

The function qH(x; ·) satisfies the equation dx almost surely:

qH(x; t) =

∫ t

0

L∗qH(x; s)ds+
1

2

∫ t

0

H ′(x1)q(x1, x1, x̃; s)ds.

where L∗ is

L∗(Φ)(x) = −B(x).∇Φ(x)−f(x)divB(x) +
1

2
∆Φ(x)

so the proof is concluded. •

Remark 2.4 The adjoint operator

L∗f(x) = −B(x) · ∇f(x)− f(x)

d∑

k=1

∂kB
k(x) +

1

2
∆f(x),

is densely closed and is the generator of the semi-group Q with kernel Γ:

Qt(f)(x) := E

[

f(Xx
t ) exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Xx

u)du

)]

=

∫

f(y)Γ(x, y; t)dy(2.3)

for 0 ≤ t ≤ T , x ∈ Rd and f bounded.
This remark is proved below in Lemma 5.1.

Now, let us quote the following theorem ( variation of constants), due to Ball [1].

Theorem 2.5 Let A a densely closed linear operator on a Banach space X which generates a
strongly continuous semi-group Q on X of bounded linear operators Qt bounded on X. Let f
belonging to L1([0, T ], X) and u ∈ C([0, T ], X) be a weak solution of the PDE:

(2.4) u′(t) = Au(t) + f(t), t ∈ (0, T ], u(0) = x ∈ D(A) ⊂ X,

where D(A) is the domain of operator A In that case, the unique solution of (2.4) is expressed
as

(2.5) u(t) = Q(t)x+

∫ t

0

Q(t− s)f(s)ds, ∀t ∈ [0, T ].
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We will check that the assumptions of the theorem are satisfied in our case in Section 3 below.
We use Ball theorem with: X := L2(Rd), A := L∗, u(t) := qH(·; t), f : t 7→ 1

2
H ′(x1)q(x1, x1, x̃; t)

and x = 0. The conclusion of the theorem reads in our case:

(2.6) qH(x; t) =

∫

R

H(m)q(m, x; t)dm =
1

2

∫ t

0

∫

Rd

H ′(y1)q(y1, y; s)Γ(x, y; t− s)dsdy

where Γ is the transition probability density defined in (2.3).
From there, we work to prove that q = 0. The difficulty of the calculation is to relate q(m, x; t)
on the left to its value on the diagonal m = x1, which is the quantity appearing in the right
hand side of (2.6) after application of Ball’s theorem.

We can prove the following result:

Proposition 2.6 Let B ∈ C1
b (R

d,Rd) and q ∈ X be a solution of (1.1) with null initial
condition. The following identity holds ∀t ∈ [0, T ] and dy1dx̃ almost surely:

(2.7) q(y1, y1, x̃; t)= −1

2

∫ t

0

∫

Rd−1

∂x1Γ(y1, x̃, y1, ỹ, t− s)q(y1, y1, ỹ; s)dỹds.

This identity is a first tool from which we can deduce that q = 0, giving Theorem 2.1. We
break down the proof of the above identity in two steps.

First step: going back to (2.6), we multiply both sides by F (x̃) ∈ Cc(R
d−1) and integrate

in dx1dx̃ = dx:

(2.8)

∫

Rd+1

F (x̃)H(m)q(m, x; t)dmdx =
1

2

∫ t

0

∫

R2d

F (x̃)H ′(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx.

We have the following decomposition:

Lemma 2.7 It holds that ∀t ∈ [0, T ]:

∫

Rd

F (x̃)H(m)q(m,m, x̃; t)dmdx̃ =

∫ t

0

∫

R2d−1

F (x̃)H ′(y1)Γ(y
1, x̃, y1, ỹ; t− s)q(y1, y1, ỹ; s)dsdy1dỹdx̃(2.9)

−
∫ t

0

∫

R2d−1

F (x̃)H(y1)∂x1Γ(y1, x̃, y1, ỹ; t− s)q(y1, y1, ỹ; s)dsdy1dỹdx̃.(2.10)

Notice that in Lemma 2.7, the functions Γ and q are considered on the diagonal m = y1, as
opposed to Equation (2.8). To achieve this, the idea of the proof is to localize the variable m
in (2.8) around x1 using an approximation of the identity.
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Proof: Observe, that using Item (c) of Definition 1.1, x1 7→ qH(x
1, x̃; t) is continuous dx̃

almost surely .

According to Lemma 5.5 dx̃ almost surely x1 7→
∫ t

0

∫

Rd H
′(y1)q(y

1, y, s)Γ(x, y; t − s)dyds
is continuous. We are in position to localize in x1 using the following compact support
approximation of unity. Let φ be the C∞ function with compact support in [0, 1] defined by

φ(u) = :

{
a exp− 1

1−u2 , if |u| < 1,

0 else

Then, φ is non negative, even, and a is chosen such that
∫

R
φ(u)du = 1.

For fixed x1 ∈ R, we consider:

φε(m) =
1

ε
φ(
m− x1

ε
)

From properties of φ, we can derive:

(2.11) lim
ε→0

φε(m)dx1 = δm(dx
1).

Remark 2.8 This convergence which allows us to localize q around the diagonal is made
rigorous in our setting using Lebesgue dominated convergence theorem. We refer to Lemmas
5.4 and 5.6 of Section 5 for more details. Specifically, Lemma 5.4 coupled with Lemma 5.5
yields (2.9) and with Lemma 5.6 yields (2.10).

Going back to (2.8), applied to m 7→ φε(m)H(m) instead of H , we get:

∫

Rd+1

F (x̃)1{x1<m}

(

φε(m)H(m)
)

q(m, x; t)dmdx(2.12)

=
1

2

∫ t

0

∫

R2d

F (x̃)1{x1<m}

(

φε(y
1)H(y1)

)′
q(y1, y; s)Γ(x, y, t− s)dsdydx.

On the left hand side of (2.12), letting ε → 0, from (2.11) and using the continuity x1 7→
q(m, x1, x̃; t) for all almost (m, x̃) and all t (see third part of Item (c) of Definition 1.1), we
get:

lim
ε→0

∫

Rd+1

F (x̃)
(

φε(m)H(m)
)

q(m, x; t)dmdx =
1

2

∫

Rd

F (x̃)H(m)q(m,m, x̃; t)dmdx̃.

On the right hand side of (2.12), we compute the derivative:

∫ t

0

∫

R2d

F (x̃)
(

φε(y
1)H(y1)

)′
q(y1, y; s)Γ(x, y, t− s)dsdydx

=

∫ t

0

∫

R2d

F (x̃)φε(y
1)H ′(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx(2.13)
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+

∫ t

0

∫

R2d

F (x̃)φ′
ε(y

1)H(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx.

According to Garroni [9] (3.35) page 187

Γ(x, y; t) = Γ0(x, y; t) + Γ1(x, y; t) where Γ0(x, y; t) =
e−

‖x−y‖2

2t

√
2πt

d
,(2.14)

and for all y ∈ Rd, t > 0 x 7→ Γ1(x, y; t) ∈ C1(Rd). Moreover, from Lemma 3.3 page 184,
estimation (3.25) of Garroni, for α ∈]0, 1[ there exist some positive constants C and c such that

|Γ1(x, y; t)| ≤ Ct−
d
2
+αe−

‖x−y‖2

ct .(2.15)

|∂xlΓ1(x, y; t)| ≤ Ct−
d+1

2
+αe−

‖x−y‖2

ct .(2.16)

Now, letting ε → 0 and using Lemma 5.4 with k = 2d − 1, and the continuity of x1 7→
Γ(x1, x̃, y; t), ∀t ∈ [0, T ] the first term on the right hand side converges:

∫ t

0

∫

R2d

F (x̃)φε(y
1)H ′(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx

−→
ε→0

∫ t

0

∫

R2d−1

F (x̃)H ′(y1)q(y1, y1, ỹ; s)Γ(y1, x̃, y1, ỹ, t− s)dsdydx̃,

which gives (2.9) in Lemma 2.7 above.
For the second term in (2.13) we look at the integral in dy1, we need to integrate:

∫ t

0

∫

R2d

F (x̃)φ′
ε(y

1)H(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx.

Then, since
∫

R
φ′
ε(y

1)Γ0(x, y, t− s)dx1 = 0, we have

∫ t

0

∫

R2d

F (x̃)φ′
ε(y

1)H(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx

=

∫ t

0

∫

R2d

F (x̃)φ′
ε(y

1)H(y1)q(y1, y; s)Γ1(x, y, t− s)dsdydx

which we can do by performing an integration by parts over dx1 on R:

∫

R

φ′
ε(y

1)Γ1(x
1, x̃, y1, ỹ, t− s)dx1 = −

∫

R

φε(y
1)∂x1Γ1(x

1, x̃, y1, ỹ, t− s)dx1

since when x1 → ∞, φε(x
1) goes to 0.
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Letting now ε→ 0, using estimation (2.16), we obtain:

∫

R

φε(y
1)∂x1Γ1(x

1, x̃, y1, ỹ, t− s)dx1 −→
ε→0

∂x1Γ1(y
1, x̃, y1, ỹ, t− s).

Note that according to the definition of Γ, Γ1 and Γ0 (see (2.14))

∂x1Γ1(m, x̃,m, ỹ, t− s) = ∂x1Γ(m, x̃,m, ỹ, t− s).

Consequently, using Lemma 5.6, we have ∀t ∈ [0, T ]:

∫ t

0

∫

R2d

F (x̃)φ′
ε(y

1)H(y1)q(y1, y; s)Γ(x, y, t− s)dsdydx

−→
ε→0

−
∫ t

0

∫

R2d−1

F (x̃)H(y1)q(y1, y; s)∂x1Γ(y1, x̃, y1, ỹ, t− s)dsdydx,

which gives (2.10) in Lemma 2.7 above. •

Remark 2.9 We need to use dominated convergence theorem on the functions

x1 → q(m, x1, x̃; t) ; Γ(x1, x̃, m, ỹ; t− s) ; ∂x1Γ(x1, x̃, m, ỹ; t− s).

in order to justify the Dirac convergence. These functions have to satisfy the continuity when
x1 → m and the uniform integrability. The continuity is clear for Γ and ∂x1Γ (see e.g. [10] )
and for q, it is exactly Item (c) in Definition 1.1 above. The integrability of supx1 |Γ(x, y; t−s)|
and supx1 |∂x1Γ(x, y; t − s)| is deduced from [9] page 171 and (3.25) page 184. Moreover, we
also rely on the fact that F has compact support in Rd−1.

Second step: we prove that the term (2.9) in the right hand side of Lemma 2.7 actually
vanish. Indeed, this term is exactly the integral with respect to dy1 of the product of H ′(y1)
and expression below (2.17):

Lemma 2.10 We have ∀t ∈ [0, T ], dy1 almost surely

(2.17)

∫ t

0

∫

R2d−2

F (x̃)q(y1, y1, ỹ; s)Γ(y1, x̃, ỹ; t− s)dsdx̃dỹ = 0.

Proof: First of all, observe that from (2.6), taking H(m) = 1 for all m ≥ 0 yields:

(2.18)

∫

R

q(m, x; t)dm =
1

2

∫ t

0

∫

Rd

H ′(y1)q(y1, y; s)Γ(x, y; t− s)dsdy = 0.

Consider now for Ψ a test function, following choice for H :

H(m) =

∫ m

−∞
Ψ(y1)dy

1,

11



In that case, Equation (2.6) becomes :

∫

R2

1y1<mΨ(y1)q(m, x, t)dmdy
1 =

1

2

∫ t

0

∫

Rd

Ψ(y1)q(y1, y, s)Γ(x, y, t− s)dsdy,

for any Ψ so by identification dy1 almost surely:

∫

R

1y1<mq(m, x, t)dm =
1

2

∫ t

0

∫

Rd−1

q(y1, y1, ỹ, s)Γ(x, y1, ỹ; t− s)dsdỹ.

But recall from (2.18)
∫

R
q(m, x, t)dm = 0, hence:

0 =

∫

R

q(m, x, t)dm =

∫

R

1y1<mq(m, x, t)dm+

∫

R

1y1>mq(m, x; t)dm.

Therefore, we get:

−
∫

R

1y1>mq(m, x; t)dm =
1

2

∫ t

0

∫

Rd−1

q(y1, y1, ỹ; s)Γ(x, y1, ỹ; t− s)dsdỹ.

We multiply that last identity by F ∈ C1
k(R

d−1) and integrate with respect to dx̃. Recall that
q has support in T , i.e. q(m, x1, x̃; t) = 0 when x1 > m, we get:

−
∫

Rd

F (x̃)1y1>m>x1q(m, x; t)dmdx̃ =
1

2

∫

R2d−2

F (x̃)

∫ t

0

q(y1, y1, ỹ, s)Γ(x, y1, ỹ; t− s)dsdỹdx̃

(2.19)

and letting x1 increase to y1, using item (a) of the Definition 1.1 the limit of left hand is null
dy1 almost surely. According to the definition of Γ (see (2.14)) and estimation (2.15), the limit
of the right hand side is

1

2

∫

R2d−2

F (x̃)

∫ t

0

q(y1, y1, ỹ, s)Γ(y1, x̃, y1, ỹ; t− s)dsdỹdx̃

dy1 almost surely. See also Lemma 5.5 for a proof. •
Going back to the conclusion of Lemma 2.7 and cancelling the first term, we get ∀t ∈ [0, T ]:

∫

Rd

F (x̃)H(y1)q(y1, y1, x̃; t)dy1dx̃

= −1

2

∫ t

0

∫

R2d−1

F (x̃)H(y1)∂x1Γ(y1, x̃, y1, ỹ, t− s)q(y1, y1, ỹ; s)dsdy1dỹdx̃,

which gives by identification over H(y1)F (x̃) dy1dx̃ almost surely:

q(y1, y1, x̃; t) = −1

2

∫ t

0

∂x1Γ(y1, x̃, y1, ỹ, t− s)q(y1, y1, ỹ; s)dỹds.

which proves the identity (2.7) in Proposition 2.6. •
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2.2 Proof of Theorem 2.1

Let us show how to conclude to q = 0. Taking the absolute values in Proposition 2.6 gives:

|q(y1, y1, x̃; t)| ≤ 1

2

∫ t

0

∫

Rd−1

|q(y1, y1, ỹ, s)∂x1Γ1(y
1, x̃, y1, ỹ, t− s)|dsdỹ.(2.20)

Equation (3.25) page 184 [9] with l = 1, 0 < α < 1 gives the following Gaussian estimate for
Γ and its derivatives:

|∂x1Γ1(y
1, x̃, y1, ỹ, t− s)| ≤ CT

1
√

(t− s)d+α−1
exp

(

−‖x̃− ỹ‖2
c(t− s)

)

.

We use this bound then we integrate (2.20) with respect to dx̃:

∫

Rd−1

|q(y1, y1, x̃; t)|dx̃ ≤ 1

2

∫ t

0

∫

R2d−2

|q(y1, y1, ỹ, s)|CT
1

√

(t− s)d+α−1
exp

(

−‖x̃− ỹ‖2
c(t− s)

)

dsdỹdx̃.

(2.21)

Solving on the right hand the integral with respect to dx̃, there exists a constant K(c, d) such
that:

∫

Rd−1

|q(y1, y1, x̃; t)|dx̃ ≤ 1

2
CTK(c, d)

∫ t

0

∫

Rd−1

|q(y1, y1, ỹ, s)| 1
√

(t− s)α
dsdỹ.(2.22)

Define for convenience f(y1, t) :=
∫
|q(y1, y1, x̃, t)|dx̃, the last identity becomes:

f(y1, t) ≤ dT

∫ t

0

f(y1, s)
ds

√

(t− s)α
= dTf(y

1, ·) ∗ gα(t)

for some constant dT > 0 and where gα : s 7→ 1√
sα

. Remark that the ratio gα(s)
g1(s)

≤ T (1−α)/2 since

0 < α < 1 and s ∈ [0, T ]. So the inequality can be written as f(y1, t) ≤ dTT
(1−α)/2f(y1, ·)∗g1(t).

We can now iterate this inequality to get for all n ≥ 1:

f(y1, ·) ≤ dTT
(1−α)/2f(y1, ·) ∗ g1 ≤ · · · ≤ (dTT

(1−α)/2)nf(y1, ·) ∗ g1n∗.

That iterated convolution can now be dealt with using Gamma functions (see details in Lemma
5.3 below), denoting DT = dTT

(1−α)/2 and recalling that t− s ≤ t ≤ T :

f(y1, t) ≤ (DTΓ(
1
2
))n

Γ(n
2
)

∫ t

0

f(y1, s)(t− s)
n−2

2 ds ≤ (DTΓ(
1
2
)
√
T )n

Γ(n
2
)T

∫ t

0

f(y1, s)ds.

Finally, Lemma 5.2 below shows that the integral of f(y1, s) over s is finite dy1 almost surely
which yields f(y1, t) = 0: Indeed, ∀a > 0, the ratio an

Γ(n
2
)

goes to 0 when n → ∞ using Stirling

formula.
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As a conclusion, we have shown that
∫
|q(y1, y1, ỹ, t)|dỹ = 0 dy1 almost surely, yielding

q(y1, y1, ỹ, s) = 0 dỹ almost surely, and applying Ball (2.6):
∫

R

H(m)q(m, ·, t)dm =
1

2

∫ t

0

∫

Rd

H ′(y1)q(y1, y, s)Γ(·, y, t− s)dsdy = 0

thus ∀t ∈ [0, T ] ≤ T and for all test function H , we proved that
∫
H(m)q(m, ·; t)dm = 0

meaning the function q(·, ·; t) = 0.

This concludes the proof of Theorem 2.1 up to the verification of assumptions in Theorem
2.5, what is done is the next section. •

3 Checking assumptions of Theorem 2.5

In this section, we check that the assumptions of Ball’s Theorem 2.5 actually holds in our
setting. The Banach space X is L2(Rd). We have to prove that

- L∗ is a densely closed linear operator on X, and L∗ generates a strongly continuous on
X semi-group (Qt)t≤T such that the operators Qt are bounded on L2(Rd), this is done
in Lemma 5.1.

- f belongs to L1([0, T ], X) where f(t, x) = 1
2
H ′(x1)q(x1, x1, x̃; t).

- u ∈ C([0, T ], X); where u = qH .

3.1 The function f belongs to L1([0, T ], X)

Recall that this function is defined as

f : t 7→
(

x 7→ 1

2
∂mH(x1)q(x1, x1, x̃; t)

)

.

Since H ′ is bounded, this is a consequence of Item (b) satisfied by q ∈ X .

3.2 The function u = qH belongs to C([0, T ], X), where X = L2(Rd).

Lemma 3.1 Let q satisfies Items (a) and (b), meaning

sup
t∈]0,T ]

∫

Rd

[∫

R

|q(m, x, t)|dm
]2

dx <∞(3.1)

∫ t

0

ds

√
∫

Rd

|q(x1, x; s)|2dx <∞.(3.2)

then qH(x; t) :=
∫

R
H(m)q(m, x; t)dm satisfies qH ∈ C

(
[0, T ], L2(Rd)

)
.
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Proof:
Step 1: supt∈[0,T ] ‖qH(., t)‖L2(Rd) < +∞.
Remark that for any t ∈ [0, T ]

∫

Rd

q2H(x, t)dx =

∫

Rd

(

∫

R

H(m)q(m, x; t)dm)2dx ≤ ‖H‖2∞
∫

Rd

(∫

R

|q(m, x; t)|dm
)2

dx

and using supt∈[0,T ] on both hands, Step 1 is proved according to Assumption (3.1)=Item (a).

Step 2: for all ϕ ∈ L2(Rd), t 7→
∫

Rd ϕ(x)qH(x, t)dx is continuous.

• Firstly we consider ϕ ∈ C2
c (R

d) and ψ(m, x) = H(m)ϕ(x). According to the PDE (1.1)
(recall that q = p1 − p2 so the first term is null)

∫

Rd

ϕ(x)qH(x, t)dx =

∫

Rd+1

ϕ(x)H(m)q(m, x; t)dmdx =

∫ t

0

∫

T
q(m, x; s)H(m)Lϕ(x)dmdxds+ 1

2

∫ t

0

∫

Rd

H ′(m)ϕ(m, x̃)q(m,m, x̃; s)dmdx̃ds

where we identify (using Lebesgue Theorem)
∫

Rd

ϕ(x)qH(x, t)dx =

∫ t

0

∫

Rd

qH(x, u)Lϕ(x)dxdu+
1

2

∫ t

0

∫

Rd

H ′(m)ϕ(m, x̃)q(m,m, x̃; u)dmdx̃du.

Using Cauchy-Schwartz, boundness of H ′ and denoting q̃(x, u) = q(x1, x1, x̃; u):
∣
∣
∣
∣

∫

Rd

ϕ(x)[qH(x, t)− qH(x, s)]dx

∣
∣
∣
∣
≤(3.3)

∫ t

s

‖qH(., u)‖L2(Rd)‖Lϕ‖L2(Rd)du+
1

2

∫ t

s

‖H ′‖∞‖ϕ‖L2(Rd)‖q̃(., u)‖L2(Rd)du.

Since when f ∈ L1[0, T ], t 7→
∫ t

0
f(s)ds is continuous, and according to Step 1 and Assumption

(3.2) on q̃ then:

t 7→
∫ t

0

‖qH(., u)‖L2(Rd)‖Lϕ‖L2(Rd)du+
1

2

∫ t

0

‖H ′‖∞‖ϕ‖L2(Rd)‖q̃(., u)‖L2(Rd)du.

is continuous. Then, for all ε > 0, there exists η > 0, such that for |t− s| < η

∫ t

s

‖qH(., u)‖L2(Rd)‖Lϕ‖L2(Rd)du+
1

2

∫ t

0

‖H ′‖∞‖ϕ‖L2(Rd)‖q̃(., u)‖L2(Rd)du ≤ ε,

and according to estimation (3.3)
∣
∣
∣
∣

∫

Rd

ϕ(x)[qH(x, t)− qH(x, s)]dx

∣
∣
∣
∣
< ε
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so yields the continuity of the map t 7→
∫

Rd ϕ(x)qH(x, t)dx for ϕ ∈ C2
c (R

d).

• Secondly, let ϕ ∈ L2(Rd). There exists for all ε > 0 a function ϕε ∈ C2
c (R

d) such that
‖ϕ− ϕε‖L2(Rd) ≤ ε.
Let 0 < s < t:

∫

Rd ϕ(x)(qH(x, t)− qH(x, s)dx =
∫

Rd(ϕ− ϕε)(x)qH(x, t)

−
∫

Rd(ϕ− ϕε)(x)qH(x, s)dx+
∫

Rd ϕε(x)[qH(x, t)− qH(x, s)]dx.

Using the continuity of t 7→
∫

Rd ϕε(x)qH(x, t)dx due to φε ∈ C2
c , there exists η such that t−s ≤ η

yields

|
∫

Rd

ϕε(x)[qH(x, t)− qH(x, s)]dx| ≤ ε.

We now use for any u ∈ [0, T ]

|
∫

Rd

(ϕ− ϕε)(x)qH(x, u)dx| ≤ ‖ϕ− ϕε‖2 sup
u∈[0,T ]

[

∫

Rd

(qH(x, u))
2dx]

1

2 .

Thus for 0 ≤ s ≤ t ≤ T, t− s < η gathering these three bounds
∣
∣
∣
∣

∫

Rd

ϕ(x)(qH(x, t)− qH(x, s)dx

∣
∣
∣
∣
≤ ε(1 + 2 sup

u∈[0,T ]

[

∫

Rd

(qH(x, u))
2dx]

1

2 )

which concludes the uniform continuity of the map t 7→
∫

Rd ϕ(x)qH(x, t)dx for ϕ ∈ L2(Rd).

Step 3: qH ∈ C
(
[0, T ], L2(Rd)

)
.

The previous step gives the weak continuity, the first step the uniform bound in L2, so the
continuity in C([0, T ], L2(Rd)) is proved.

•

4 The density pV is an element of space X
Let us denote pV (·; t, x0) the density of law of (Mt, Xt) when the initial condition is X0 = x0.
We recall that f0 is the square integrable density of X0. Thus

pV (m, x; t) =

∫

Rd

pV (m, x; t, x0)f0(x0)dx0.

The aim in this section is to check that the function pV defined above satisfies Items (a) (b)
and (c) in Definition 1.1.

Proposition 4.1 Item (a) is satisfied by pV :

sup
t∈]0,T ]

∫

Rd

[∫

R

|pV (m, x, t)|dm
]2

dx <∞
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Proof: According to [6] (page 26 (ii)) there exists CT such that

(4.1) pV (m, x; t, x0) ≤ CTφd+1(m− x10, m− x1, x̃− x̃0; 2t)

where φd(u, t) = ( 1√
2πt

)de−
‖u‖2

2t , u ∈ Rd.

Remark 4.1 Considering two Rd value Gaussian independent variables X ∼ N (a, s) and Y ∼
N (b, r), the sum −X + Y ∼ N (b− a, s+ r) and by convolution:

∫

Rd

φd(x− a, s)φd(x− b, r)dx = φd(b− a, r + s).

We have to bound ∀t ∈]0, T ]:

At :=

∫

Rd

∣
∣
∣
∣

∫

R

pV (m, x; t)dm

∣
∣
∣
∣

2

dx

≤ C2
T

∫

Rd

∣
∣
∣
∣

∫

R

∫

Rd

φd+1(m− x10, m− x1, x̃− x̃0; 4t)f0(x0)dx0dm

∣
∣
∣
∣

2

dx.(4.2)

Integrating with respect to m and using Remark 4.1, we get:
∫

R

φd+1(m− x10, m− x1, x̃− x̃0; 4t)dm = φ1(x
1 − x10, 8t)φd−1(x̃− x̃0, 4t).

Thus, we have :
∫

Rd

∣
∣
∣
∣

∫

R

pV (m, x; t)dm

∣
∣
∣
∣

2

dx ≤

C2
T

∫

R3d

φ1(x
1 − x10, 8t)φ1(x

1 − y10, 8t)φd−1(x̃− x̃0, 4t)φd−1(x̃− ỹ0, 4t)f0(x0)f0(y0)dxdx0dy0.

Then integrating with respect to x1, x̃ and using once again Remark 4.1:
∫

Rd

∣
∣
∣
∣

∫

R

pV (m, x; t)dm

∣
∣
∣
∣

2

dx ≤ C2
T

∫

R2d

φ1(x
1
0 − y10, 16t)φd−1(x̃0 − ỹ0, 8t)f0(x0)f0(y0)dx0dy0.

Let z = x0− y0 so y0 = x0− z, the upper bound, using sup(φk(y, t), φk(y, 2t) ≤ (
√
2)kφk(y, 2t),

with respect to a multiplicative constant is
∫

R2d φd(z, 16t)f0(x0)f0(x0 − z)dzdx0.
We first integrate with respect to x0 so Cauchy-Schwartz inequality yields the upper bound:

∫

Rd

φd(z, 16t)

(√
∫

R

f 2
0 (x0)dx0

∫

R

f 2
0 (x0 − z)dx0

)

dz

then using the change of variable u = x0 − z in the last factor under the square root, since
∫

Rd φd(z, 16t)dz = 1 the upper bound is

At ≤
√
∫

R

f 2
0 (x0)dx0

∫

R

f 2
0 (u)du,

meaning ‖f0‖2L2 <∞ according to assumption on f0 in Theorem 1.2. •
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Proposition 4.2 Item (b) is satisfied by pV :

∫ t

0

ds

√
∫

Rd

|pV (x1, x; s)|2dx <∞.

Proof : Using (4.1) with m = x1

pV (x
1, x; t) ≤ CT

∫

Rd

φd+1(x
1 − x10, 0, x̃− x̃0; 4t)f0(x0)dx0

=
CT√
8πt

∫

Rd

φd(x
1 − x10, x̃− x̃0; 4t)f0(x0)dx0.

We operate the L2 norm
∫

Rd

(pV (x
1, x; t))2dx

≤ C2
T

8πt

∫

R3d

φd(x
1 − x10, x̃− x̃0; 4t)φd(x

1 − y10, x̃− ỹ0; 4t)f0(x0)f0(y0)dx0dy0dx.

We use Remark 4.1 and we integrate with respect to dx
∫

Rd

(pV (x
1, x; t))2dx ≤ C2

T

8πt

∫

R2d

φd(x
1
0 − y10, x̃0 − ỹ0; 8t)f0(x0)f0(y0)dx0dy0.

We operate the change of variable z = x0 − y0
∫

Rd

(pV (x
1, x; t))2dx ≤ C2

T

8πt

∫

R2d

φd(z; 8t)f0(x0)f(x0 − z)dx0dz.

Using Cauchy-Schwartz inegality for the measure dx0:
∫

Rd

(pV (x
1, x; t))2dx ≤ C2

T

8πt

∫

Rd

φd(z; 8t)‖f0‖2L2(Rd)dz =
C2

T

8πt
‖f0‖2L2(Rd).

The integrability in time of this L2(Rd)-norm yields Item (b):

∫ T

0

dt

√
∫

Rd

(pV (x1, x; t))2dx ≤
∫ T

0

dt
CT√
2πt

‖f0‖L2(Rd) <∞.

•

4.1 pV satisfies Item (c) in Definition 1.1

Actually Item (c) is stronger than Hypothesis 2.1 in [6], satisfied in case A = Id (our present
case) and d = 1 . For the sake of readability, we recall this assumption here: for all t > 0, the
density with respect to the Lebesgue measure of the distribution of the random vector (Mt, Xt),
denoted by pV , satisfies:

18



(i) (t,m, x̃) → supu>0 pV (m,m− u, x̃; t) belongs to L1
(

[0, T ]× Rd, dtdmdx̃
)

.

(ii) for all t, almost surely in (m, x̃) ∈ Rd, limu→0+ pV (m,m−u, x̃; t) exists and is denoted by
pV (m,m, x̃; t).

Property (ii) is not efficient to recover Item(c) since we have to prove the continuity of x1 7→
pV (m, x

1, x̃; t) in all T , not only on the boundary.

Proposition 4.3 Item (c) is satisfied by pV : For all t ∈]0, T ], supu>0 p(m,m−u, x̃; t) ∈ L1(Rd);
and for almost surely in (m, x̃) ∈ Rd, x1 7→ p(m, x1, x̃; t) is continuous on ] − ∞, m[ and
limu→0+ p(m,m− u, x̃; t) exists and is denoted by p(m,m, x̃; t).

Proof: The proof is a consequence of the following lemmas and propositions.
First, we prove the integrability assumption.

Lemma 4.4 For all t ∈]0, T ], supu>0 pV (m,m− u, x̃; t) ∈ L1(Rd).

Proof: Recall that pV (m, x; t) =
∫

Rd pV (m, x, t; x0)f0(x0)dx0 where pV (m, x; t, x0) is the density
of the law of (Mt, Xt) when the initial condition is X0 = x0. Moreover, recall (4.1)

|pV (m, x; t, x0)| ≤ CTφd+1(m− x10, m− x1, x̃− x̃0; 2t)1m>max(x1,x1
0
).

Then, using the fact that e−
u2

4t ≤ 1 we obtain ∀t ∈]0, T ]

sup
u>0

pV (m,m− u, x̃; t) ≤ CT√
4πt

∫

Rd

φd(m− x10, x̃− x̃0; 2t)f0(x0)dx0.

Integrating with respect to m and x̃ we obtain ∀t ∈]0, T ]:
∫

Rd

sup
u>0

pV (m,m− u, x̃; t)dmdx̃ ≤ CT√
4πt

∫

Rd

f0(x0)dx0 =
CT√
4πt

<∞.

This achieves the proof of Lemma 4.4. •
The following Lemma is Proposition 4.5 of [6].

Lemma 4.5 For all (t,m, x̃) ∈]0, T ]× Rd, limu→0+ pV (m,m− u, x̃; t) exists and is denoted by
pV (m,m, x̃; t).

Now, we turn to the continuity of pV for x1 ∈]−∞, m[.

Proposition 4.6 For all (t,m, x̃) ∈]0, T ]×Rd, x1 7→ pV (m, x
1, x̃; t) is continuous on ]−∞, m[.

Proof: This proposition extends the results of Proposition 4.5 of [6]. Its proof follows almost
the same lines and is splitten in three lemmas. We firstly recall Proposition 4.2 of [6]:
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Lemma 4.7 For all t > 0,

pV = p0 −
d+1∑

k=1

(
pk,α + pk,β

)
(4.3)

where the various p are defined as

p0(m, x; t) :=

∫

Rd

pW ∗1,W (m− x10, x− x0; t)f0(x0)dx0,

pk,α(m, x; t) :=

∫ t

0

∫

Rd+1

1m>bB
k(a)∂kpW ∗1,W (m− a1, x− a; t− s)pV (b, a; s)dbdads,

pk,β(m, x; t) :=

∫ t

0

∫

Rd+1

1m>bB
k(a)∂kpW ∗1,W (b− a1, x− a; t− s)pV (m, a; s)dbdads

where ∂k is the derivative with respect to k = m, x1, . . . , xd, and Bm = B1.

Using the same lines as the proof of Lemma 4.5 of [6], one can prove the following Lemma:

Lemma 4.8 For all (t,m, x̃), x1 7→ p0(m, x
1, x̃; t) is continuous on ]−∞, m[.

Using the same lines as the proof of Lemma 4.6 of [6], one can prove the following Lemma:

Lemma 4.9 For all (t,m, x̃), x1 7→ pk,α(m, x1, x̃; t) is continuous on ] − ∞, m[ for k =
m, 1, ..., d.

Unfortunately, for the continuity of the maps pk,β we can not follow the same lines as the proof
of Lemma 4.7 of [6], but we can prove the following.

Lemma 4.10 For all (t,m, x̃), x1 7→ pk,β(m, x1, x̃; t) is continuous on ] − ∞, m[ for k =
m, 1, ..., d.

Proof: Instead of using explicit computations as the proof of Lemma 4.7 of [6], we use uniform
integration. Let us introduce the measure ν on [0, t]× R2d+1 defined by

ν(dsdbdadx0) = 1]0,t](s)1a1<b<mpV (m, a, s; x0)f0(x0)dsdadbdx0.

According to estimation (4.1)

ν([0, t]× R2d+1) ≤ CT

∫ t

0

∫

R2d+1

1a1<b<mφd+1(m− x10, m− a1, ã− x̃0; 2s)f0(x0)dsdadbdx0

≤ CT

∫ t

0

∫

R2d

(m− a1)+φd+1(m− x10, m− a1, ã− x̃0; 2s)f0(x0)dsdadx0

after integrating with respect to b. Integrating with respect to ã:

ν([0, t]× R2d+1) ≤ CT

∫ t

0

∫

R2

(m− a1)+φ2(m− x10, m− a1; 2s)f0(x0)dsda
1dx0.
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Then integrating with respect to a1

ν([0, t]× R2d+1) ≤ CT

∫ t

0

∫

R

√
s

π
φ1(m− x10; 2s)f0(x0)dsdx0

≤ CT

2π

∫ t

0

∫

R

f0(x0)dx0ds ≤
TCT

2π
<∞.(4.4)

That means that ν is a finite measure on [0, t]× R2d+1. Note that

pk,β(m, x1, x̃; t) =

∫

[0,T ]×R2d+1

1b<mB
k(a)∂kpW ∗1,W (b− a1, x− a; t− s)ν(dsdbdadx0).

According to identity (57) of [6]

pW ∗1,W (b− a1, x1 − a1; t) = −2∂x1φd(2b− a1 − x1, x̃− ã; t)1b≥max(a1,x1).

Then, x1 7→ ∂kpW ∗1,W (b− a1, x1 − a1, x̃− ã; t) is continuous for x1 < b.

Assume for a while that for 1 < ε < d+3
d+2

, that

sup
x1<m

I(x1) <∞,(4.5)

where I(x1) =

∫

[0,t]×R2d+1

|Bk(a)∂kpW ∗1,W (b− a1, x1 − a1, x̃− ã; t)|εν(dsdbdadx0)

then using uniform integrability, namely Vitali convergence Theorem, for all (t,m, x̃), x1 7→
pk,β(m, x1, x̃; t) is continuous on ] − ∞, m[ for k = m, 1, ..., d. We now turn to the proof of
(4.5). Recall estimation (55) of Lemma A.2 of [6]: there exists a constant D such that for
x = b, a1, ..., ad

|∂xpW ∗1,W (b, a; t)| ≤ D√
t
φd+1(b, b− a1, ã : 2t)1b>max(a1,0).

Since ε > 1, φε
d+1(.; t) ≤ [

√
2πt](1−ε)(d+1)φd+1(.; t) and B is bounded

|Bk(a)∂xpW ∗1,W (b− a1, x1 − a1, x̃− ã; t− s)|ε ≤ Dε‖B‖ε∞
√

(t− s)γ
φd+1(b− a1, b− x1, ã : 2(t− s)),

where γ = ε+ (ε− 1)(d+ 1) < 2.
Then, up to a multiplicative constant, using once again (4.1) to bound the density of the
measure ν,

I(x1) ≤
∫

[0,t]×R2d+1

Dε‖B‖ε∞
√

(t− s)γ
φd+1(b− a1, b− x1, ã− x̃ : 2(t− s))

CTφd+1(m− x10, m− a1, ã− x̃0; 2s)f0(x0)dsdadbdx0.
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Using Remark 4.1
∫

Rd φd(x− a; s)φd(x− b; r)dx = φd(b− a; s+ r).
We use this trick several times: we integrate with respect to a so

I(x1) ≤
∫

[0,t]×Rd+2

Dε‖B‖ε∞
√

(t− s)γ
φ1(b− x1; 2(t− s))

φ1(m− x10; 2s)φd−1(x̃− x̃0; 4t)φ1(b−m; 4t)f0(x0)dsdbdx0,

then, we integrate with respect to b :

I(x1) ≤
∫

[0,t]×Rd+2

Dε‖B‖ε∞
√

(t− s)γ
φ1(m− x1; 2(3t− s))

φ1(m− x10; 2s)φd−1(x̃− x̃0; 2t)f0(x0)dsdx0.

Since s < t then 3t− s > t then

φ1(m− x1; 2(3t− s))φd−1(x̃− x̃0; 2t)φ1(m− x10; 2s) ≤ [
√
4πt]−d[

√
4πs]−1

and

I(x1) ≤
∫ t

0

∫

Rd

Dε‖B‖ε∞
√

(4πt)d
√

(t− s)γ
√
4πs

f0(x0)dx0ds.

Since
∫

Rd f0(x0)dx0 = 1, ∀x1 < m:

I(x1) ≤
∫ t

0

Dε‖B‖ε∞
√

(4πt)d
√

(t− s)γ
√
4πs

ds

is finite since γ < 2 and so supx1<m I(x1) < ∞, and the proof of (4.5) is achieved, so the one
of Lemma 4.10. •

The proof of Proposition 4.6 is achieved using Lemmas 4.7 to 4.10. •
The proof of Proposition 4.3 is then a consequence of Lemmas 4.4 and 4.5 and Proposi-

tion 4.6.

The following concludes this section:

Proposition 4.11 The density of probability pV , density of the law of (Mt, Xt) where

Xt = X0 +

∫ t

0

B(Xs)ds+Wt,

Mt = sup
s≤t

X1
t ,

with X0 independent of W with density f0 ∈ L1(Rd) ∩ L2(Rd), is an element of the set X .

This is a consequence of Propositions 4.1, 4.2, 4.3. Finally Theorem 1.2 is proved. •
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5 Tools

In this section, we recall and prove some technical results needed throughout this paper.

Lemma 5.1 The adjoint operator

L∗f(x) = −B(x) · ∇f(x)− f(x)

d∑

k=1

∂kB
k(x) +

1

2
∆f(x),

is closed and generates a semi-group (Qt)t≥0 that is strongly continuous and bounded with
kernel Γ. Besides, for 0 ≤ t ≤ T , x ∈ Rd and f measurable and bounded,

Qt(f)(x) := E

[

f(Y x
t ) exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)]

=

∫

Rd

f(y)Γ(x, y; t)dy.(5.1)

where dY x
t = −B(Y x

t )dt+ dWt, Y x
0 = x.

Proof: (i) The fact that L∗ generates (Qt)t≥0 is a consequence of Itô’s formula, more
specifically, the Feynman-Kac representation.
The operator L∗ is densely closed, as a consequence of B ∈ C1

b .
(ii) The semi-group property can be deduced from the definition of (Qt)t≥0 above and the
Markov property of the process Y :

Y
Y x
s

t

(d)
= Y x

t+s.

Indeed, we write:

Qt ◦Qs(f)(x) = E

[

Qs(f)(Y
x
t ) exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)]

= E

[

E

[

f(Y Y x
t

s ) exp

(

−
∫ s

0

d∑

k=1

∂kB
k(Y Y x

t
u )du

)]

exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)]

= E










f(Y x
t+s) exp










−
∫ s

0

d∑

k=1

∂kB
k(Y x

t+u)du

︸ ︷︷ ︸

=
∫ s+t

t

∑d
k=1

∂kBk(Y x
u )du










exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)










= E

[

f(Y x
t+s) exp

(

−
∫ t+s

0

d∑

k=1

∂kB
k(Y x

u )du

)]

= Qt+s(f)(x).

(iii) We now deal with the boundness of Qt: Because divB is bounded, we clearly have:

|Qt(f)(x)| ≤ CE [|f(Y x
t )|] .
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Let

Zt := exp

[
∫ t

0

d∑

k=1

Bk(Y x
s )dW

k
s − 1

2

∫ t

0

‖B(Y x
s )‖2ds

]

and Q be the probability measure such that

dQ

dP |Ft

= Zt

then

|Qt(f)(x)| ≤ CEQ

[
|f(Y x

t )|Z−1
t

]
.

Note that

Z−1
t = exp

[

−
d∑

k=1

B(Y x
s )dY

x
s − 1

2

∫ t

0

‖B(Y x
s )‖2ds

]

.

According to the Girsanov Theorem, Y x − x is a Q Brownian motion issued from 0 and

|Qt(f)(x)| ≤ CEP

[

|f(x+Wt)| exp
[

−
∫ t

0

d∑

k=1

Bk(x+Ws)dW
k
s − 1

2

∫ t

0

‖B(x+Ws)‖2ds
]]

≤ C

√
√
√
√EP [|f(x+Wt)|2]EP

[

exp

[

−2

∫ t

0

d∑

k=1

Bk(x+Ws)dW k
s −

∫ t

0

‖B(x+Ws)‖2ds
]]

≤ Ce‖B‖2T/2√EP [|f(x+Wt)|2]

since

exp

[

−2

∫ t

0

d∑

k=1

Bk(x+Ws)dW
k
s − 2

∫ t

0

‖B(x+Ws)‖2ds
]

is a martingale and B is bounded. Thus, using Tonelli Theorem we have that (Qt)t≥0 is a
bounded operator in L2:

‖Qt(f)‖2L2 ≤ C2e‖B‖2T
∫

Rd

E
[
|f(x+Wt)

2|
]
dx

= C2e‖B‖2TE

[∫

Rd

|f(x+Wt)|2dx
]

= C2e‖B‖2T‖f‖2L2 .(5.2)

(iv) Finally, let us say a few words on the strong continuity. First, we expand:

|Qt(f)(x)− f(x)| =

∣
∣
∣
∣
∣
E

(

f(Y x
t ) exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)

− f(x)
)
∣
∣
∣
∣
∣
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≤
∣
∣
∣
∣
∣
E

[
(

f(Y x
t )− f(x)

)

exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)]∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
E

[

f(x)

(

exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)

− 1

)]∣
∣
∣
∣
∣

= I(t, x) + II(t, x)

Next, since divB is bounded, we can use the dominated convergence theorem:

• Point-wise convergence:

f(x)

(

exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)

− 1

)

−→
t→0

0

• Domination:
∣
∣
∣
∣
∣
f(x)

(

exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)

− 1

)∣
∣
∣
∣
∣
≤ |f(x)|, dx⊗ dP integrable

Thus, we have ∫ ∣
∣
∣II(t, x)

∣
∣
∣

2

dx −→
t→0

0.

Next, and again, since divB is bounded, we can proceed as in (iii) to get:

I(t, x) =

∣
∣
∣
∣
∣
E

[
(

f(Y x
t )− f(x)

)

exp

(

−
∫ t

0

d∑

k=1

∂kB
k(Y x

u )du

)]∣
∣
∣
∣
∣
≤ CTEP

(

f(x+Wt)− f(x)
)

,

and thus conclude using the strong continuity of the Brownian semigroup (note that is is enough
to obtain continuity in a dense subspace, due to the domination condition (5.2)).

Let f ∈ L2(R) and ε > 0, there exists g ∈ L2 ∩ C(Rd,R) such that ‖g − f‖L2 < ε and t0
such that for 0 ≤ t < t0, ‖Qt(g)− g‖L2 ≤ ε. Then for 0 ≤ t < t0, and using (5.2)

‖Qt(f)− f‖L2 ≤ ‖Qt(f − g)‖L2 + ‖f − g‖L2 + ‖Qt(g)− g‖L2

≤ 2ε+ Ce‖B‖2T/2‖f − g‖L2.

Thus, (Qt)t≥0 that is strongly continuous. •
The following lemmas are a collection of tools needed in Section 2 to prove uniqueness with

null initial condition.

Lemma 5.2 For all t ≤ T , almost surely with respect to y1 ∈ R,
∫ t

0
f(y1, s)ds < ∞ where

f(y1, s) :=
∫

Rd−1 |q(y1, y1, x̃; s)|dx̃.

25



Proof: ∫ T

0

f(y1, s)ds =

∫ T

0

∫

Rd−1

|q(y1, y1, x̃; s)|dx̃ds.

Using Item (b) in Definition 1.1 yields
∫ T

0

∫

Rd |q(y1, y1, x̃; s)|dy1dx̃ds < ∞. Tonelli Theorem is
used sincef ≥ 0:

∫

R

∫ T

0

f(y1, s)dsdy1 =

∫ T

0

∫

Rd

|q(y1, y1, x̃; s)|dy1dx̃ds <∞.

So the integrand
∫ T

0
f(y1, s)ds is finite dy1 almost surely. •

Lemma 5.3 Let g(t) := 1√
t
. Then for all n ≥ 0, g∗n(t) = t

n−2

2
(Γ( 1

2
))n

Γ(n
2
)
.

Proof: Actually, this is satisfied for n = 1 since the formula provides g(t) = 1√
t
.

We now assume the property is satisfied for any k ≤ n: g∗n(t) = t
n−2

2
(Γ( 1

2
))n

Γ(n
2
)
, and we compute

g∗(n+1)(t) =

∫ t

0

s
n−2

2

(Γ(1
2
))n

Γ(n
2
)

1√
t− s

ds =
(Γ(1

2
))n

Γ(n
2
)

∫ t

0

s
n−2

2√
t− s

ds.

In the integral we recognize a Beta function after the change of variable s = tu:

∫ t

0

s
n−2

2√
t− s

ds = t
n−1

2

∫ 1

0

u(n−2)/2

√
1− u

du = B(
n

2
,
1

2
)t

n−1

2 =
Γ(n/2)Γ(1

2
)

Γ(n+1
2
)

t
n−1

2 .

Thus the lemma is proved:

g∗(n+1)(t) =
(Γ(1

2
))n

Γ(n
2
)

Γ(n/2)Γ(1
2
)

Γ(n+1
2
)

t
n−1

2 .

•

Lemma 5.4 Let φ(u) :=

{
a exp− 1

1−u2 , if u ∈]− 1, 1[,

0 else
and φε(x) = 1

ε
φ(x

ε
), a such that

∫
φ(u)du = 1. Then when ε → 0 there is a convergence to Dirac measure: limε→0 φε(m −

x1))dx1 = δm(dx
1) meaning for all f continuous with respect to x1 and satisfying supx1 |f(x1, x; t)| ∈

L1([0, T ]× Rk+1), ∀m :

lim
ε→0

∫ T

0

∫

Rk+1

f(x1, x; t)φε(m− x1)dx1dxdt→
∫ T

0

∫

Rk

f(m, x; t)dxdt.

Proof: We operate the change of variable u = m−x1
√
ε

∫ T

0

∫

Rk+1

[f(x1, x̃; t)− f(m, x̃; t)]φε(x
1 −m)dx1dx̃dt =
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∫ T

0

∫

Rk+1

[f(m− u
√
ε, x̃; t)− f(m, x̃; t)]φ(u)dudx̃dt.

Since f is continuous with respect to x1 and supx1 |f(x1, x̃; t)| ∈ L1([0, T ]× Rk the dominated
Lebesgue Theorem is applied so yields the expected limit. •

Lemma 5.5 Let G be a bounded function with compact support, then dtdx̃ almost surely x1 7→
∫ t

0

∫

Rd G(y1)q(y
1, y; s)Γ(x1, x̃, y; t− s)dỹds is continuous.

Proof : For an easier reading, we here recall the previous (2.14), (2.15), (2.16):

Γ(x, y; t) = Γ0(x, y; t) + Γ1(x, y; t) where Γ0(x, y; t) =
e−

‖x−y‖2

2t

√
2πt

d
,

and for all y ∈ Rd, t > 0 x 7→ Γ1(x, y; t) ∈ C1(Rd). Moreover, for α ∈]0, 1[ there exists some
positive constants C and c such that

|Γ1(x, y; t)| ≤ Ct−
d
2
+αe−

‖x−y‖2

ct ; |∂xlΓ1(x, y; t)| ≤ Ct−
d+1

2
+αe−

‖x−y‖2

ct .

First, note that for all (x̃, y, t− s), x1 7→ Γ(x1, x̃, y; t− s) is continuous. Second we will prove
that

∫ T

0

∫ t

0

∫

R2d−1

|G(y1)q(y1, y; s)| sup
x1

|Γ(x1, x̃, y; t− s)|dx̃dydsdt <∞.(5.3)

According to estimation (2.15),

∣
∣Γ(x1, x̃, y; t− s)

∣
∣ ≤ C(t− s)−

d
2 e−

‖x̃−ỹ‖2

ct ∀ (x̃, y, t) ∈ R2d−1 × [0, T ].

Integrating with respect to x̃ we obtain

∫ T

0

∫ t

0

∫

R2d−1

|G(y1)q(y1, y; s)| sup
x1

|Γ(x1, x̃, y; t− s)|dx̃dydsdt

≤ Ccd−1

∫ T

0

∫ t

0

∫

Rd

|G(y1)q(y1, y; s)|(t− s)−1/2dydsdt

Using the fact that G is continuous and has compact support and Cauchy-Schwartz inequality,

∫ T

0

∫ t

0

∫

R2d−1

|G(y1)q(y1, y; s)| sup
x1

|Γ(x1, x̃, y; t− s)|dx̃dydsdt

≤ Ccd−1‖G‖L2

∫ T

0

∫ t

0

√
∫

Rd

q2(y1, y, s)dy(t− s)−1/2dsdt

Using Fubini theorem, we obtain

∫ T

0

∫ t

0

∫

R2d−1

|G(y1)q(y1, y; s)| sup
x1

|Γ(x1, x̃, y; t− s)|dx̃dydsdt

27



≤ Ccd−1‖G‖L2

∫ T

0

√
∫

Rd

q2(y1, y, s)dy

∫ T

s

(t− s)−1/2dtds

Then,

∫ T

0

∫ t

0

∫

R2d−1

|G(y1)q(y1, y; s)| sup
x1

|Γ(x1, x̃, y; t− s)|dx̃dydsdt(5.4)

≤ 2T 1/2Ccd−1‖G‖L2

∫ T

0

√
∫

Rd

q2(y1, y, s)dyds <∞

according to Item (b) of Definition 1.1. That means that dx̃dt almost surely

∫ t

0

∫

Rd

|G(y1)q(y1, y; s)| sup
x1

|Γ(x1, x̃, y; t− s)|dyds <∞.(5.5)

Third, for all (x̃, t) such that (5.5) holds, according to the dominated convergence theorem
x1 7→

∫ t

0

∫

Rd G(y1)q(y
1, y; s)Γ(x1, x̃, y; t− s)dỹds is continuous. •

Lemma 5.6 Let F be a continuous function with compact support, dtdy1 almost surely x1 7→
∫ t

0

∫

R2d−2 F (x̃)q(y
1, y1, ỹ, s)Γ(x1, x̃, y1, ỹ; t− s)dỹdsdx̃ is continuous.

Proof: Let G be the indicator of the intervall [n, n]. According to estimation (5.4) and since
F is bounded, almost surely dtdy1 on [0, T ]× [−n, n]

∫ t

0

∫

R2d−2

|F (x̃)||q(y1, y1, ỹ, s)| sup
x1

Γ(x1, x̃, y1, ỹ; t− s)|dỹdsdx̃ <∞.(5.6)

Since (x̃, y, t − s) x1 7→ Γ(x1, x̃, y; t − s) is continuous, using Lebesgue dominated theorem
for (t, y1) such that (5.6) holds, x1 7→

∫ t

0

∫

R2d−2 F (x̃)q(y
1, y1, ỹ, s)Γ(x1, x̃, y1, ỹ; t − s)dỹdsdx̃ is

continuous.
Since ∪n[−n, n] = R this achieves the proof of Lemma 5.6. •

6 Conclusion and perspectives

In this work we have shown uniqueness to equation (1.1). Along with previous work on this
matter, namely Proposition 4.3 in [6], where a series expansion is obtained, a numerical approx-
imation of this density could be proposed, based on the joint density of the Brownian motion
and its running supremum.

Moreover, in [4] is obtained an analogous PIDE in the case of Lévy processes. The uniqueness
of a solution to such a PIDE should be accessible with the same kind of method.
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Finally, we would like to point out the similarities between in the methods we used in this
work together with [5], and the parametrix technique. In its simplest form, the parametrix
method is a continuity method that approximates the solution of an equation with the solution
of the same equation, but with constant coefficients (frozen equation). The quality of the
approximation is then controlled using the difference of infinitesimal generator. This method
can be used to derive a series expansion for the solution of the PDE, and it has been pointed
out that the estimates giving the convergence can also be used to derive uniqueness to the
martingale problem (see e.g. Menozzi [13]). However, in our case, it can be shown that
the process (Wt,W

∗
t )t≥0 does not have a generator. Upcoming work should investigate the

similarities between the parametrix derivation and the method used here, that are based on a
combination of Girsanov transform and Malliavin calculus.

Acknowledgement: The authors would like to thank Romain Dubosc, Moritz Kassmann
and Philippe Laurençot for insightful discussions on this problem.
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