Gradient estimates for a nonlinear elliptic equation on a smooth metric measure space
Résumé
Let (M, g, e −f dv) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation ∆ f u + au log u + bu = 0 where a, b are two real constants and f be a smooth function defined on M. As an application, we obtain a Liouville type result for such equation in the case a < 0 under the m-dimensions Bakry-Émery Ricci curvature.
Mots clés
2010 Mathematics Subject Classification. Primary 58J35 Secondary 35B45 gradient estimates nonlinear equation m-dimensions Bakry-Émery Ricci curvature Liouville type property
2010 Mathematics Subject Classification. Primary 58J35
Secondary 35B45 gradient estimates
nonlinear equation
m-dimensions Bakry-Émery Ricci curvature
Liouville type property
Domaines
Mathématiques [math]
Fichier principal
Gradient estimates for a nonlinear elliptic equation (revised document).pdf (271.74 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|