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GRADIENT ESTIMATES FOR A NONLINEAR ELLIPTIC

EQUATION ON A SMOOTH METRIC MEASURE SPACE

XIAOSHAN WANGA, LINFEN CAOB

Abstract. Let (M, g, e−fdv) be a smooth metric measure space. We
consider local gradient estimates for positive solutions to the following
elliptic equation

∆fu + au log u + bu = 0

where a, b are two real constants and f be a smooth function defined
on M . As an application, we obtain a Liouville type result for such

equation in the case a < 0 under the m-dimensions Bakry-Émery Ricci
curvature.

1. Introduction

In this paper, we study the local gradient estimate for the positive solution
to the following weighted nonlinear elliptic equation

∆fu+ au log u+ bu = 0 (1.1)

on a smooth metric measure space (M, g, e−fdv), where a, b are two real
constants and f be a smooth function defined on M . The motivation to
study (1.1) comes from understanding the Ricci flow. Moreover, the (1.1)
is closely related to the famous Gross Logarithmic Sobolev inequality, see
[2]. It is well known that Yau has proved in [14] that every positive or
bounded harmonic function is constant if M has nonnegative Ricci curvature
by establishing gradient estimates for the solutions to Laplacian equation,
see also [6, 8, 11].

It is natural to consider similar Liouville type results for positive solutions
to the nonlinear elliptic equation (1.1). In [10], Qian considered positive
solutions to

∆u+ au log u = 0 (1.2)

and proved the following

Theorem 1.1. (B. Qian) Let (M, g) be an n-dimensional complete Rie-
mannian manifold with the Ricci curvature Ric(B(x,R)) ≥ −K, where
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K ≥ 0 is a constant. Let u be a positive solution to (1.2) on B(x,R),
then for any α > 0,

sup
y∈B(x,R

2
)

|∇u|
u
≤ C(n)

√
(1 + α)((a+K) +

(1 + α)

R2
) +

√
1 + α

α
|a|L(x,R),

(1.3)
where L(x,R) = supy∈B(x,R)| log u| < ∞ and C(n) is a constant depending
only on the dimension n.

In particular, by letting R→∞ in (1.3), we obtain the following gradient
estimates on complete noncompact Riemannian manifolds:

|∇u|
u
≤ C(n)

√
(1 + α)(a+K) +

√
1 + α

α
|a|L, (1.4)

where L = supM | log u|.

Remark 1.1. Clearly, from 1.4, it is easy to see that if a+K < 0 and a < 0,
then any bounded positive solution to (1.2) must be a constant u ≡ 1. On
the other hand, in [5], Huang and Ma also obtained the similar Liouville
type result by a different method.

Let (M, g) be an n-dimensional complete Riemannian manifold and f be a
smooth function defined on M . In general, the triple (M, g, e−fdv) is called
a smooth metric measure space. The f -Laplacian operator is defined by

∆f = efdiv(e−f∇) = ∆−∇f∇,

which is symmetric in L2(M, g, e−fdv).

It is well-known that the m-dimensions Bakry-Émery Ricci curvature as-
sociated with the f -Laplacian is defined by (see [3, 4, 13] )

Ricmf = Ric+∇2f − df ⊗ df
m− n

,

where m ≥ n is a constant and m = n if and only if f is a constant. Define

Ricf = Ric+∇2f.

Then Ricf can be seen as ∞-dimensions Bakry-Émery Ricci curvature. Re-

cently, the ∞-dimensions Bakry-Émery Ricci curvature has become an im-
portant object of study in Riemannian geometry. The equation Ricf = ρ〈, 〉
for some constant ρ is just the gradient Ricci soliton equation, which plays
an important role in the study of Ricci flow (see [1]).

The aim of this paper is to generalize the results of Qian in [10] to the
weighted nonlinear elliptic equation (1.1) under the assumption that the m-

dimensions Bakry-Émery Ricci curvature is bounded from blow. Our main
results are as follows:

Theorem 1.2. Let (M, g, e−fdv) be an n-dimensional complete smooth met-

ric measure space with m-dimensions Bakry-Émery Ricci curvature
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Ricmf (B(x,R)) ≥ −K, where K ≥ 0 is a constant. Let u be a positive solu-

tion to the nonlinear equation (1.1) on B(x,R), then there exists a constant
C = C(m), such that

sup
y∈B(x,R

2
)

|∇u|
u
≤ C

√
a+K +

1

R2
+ |b|+ |a|L. (1.5)

where L(x,R) := supy∈B(x,R) | log u| <∞.

In particular, by letting R→∞ in (1.5), we obtain the following gradient
estimates on complete noncompact Riemannian manifolds:

|∇u|
u
≤ C

√
a+K + |b|+ |a|L, (1.6)

where L = supM | log u|.

From (1.6), it is easy to obtain the following results:

Corollary 1.3. Let (M, g, e−fdv) be an n-dimensional complete smooth
metric measure space with Ricmf ≥ −K. If u is a bounded positive solu-

tion to (1.1) with a + K < 0 and a < 0, then u ≡ 1. Furthermore, if
Ricmf ≥ 0 and a ≤ 0, then any bounded positive solution to (1.1) must be
u ≡ 1.

Remark 1.2. When m = n in Theorem 1.2, we have Ricmf = Ric and ∆f =
∆. Hence, in this case, our Theorem 1.2 becomes Theorem 1.1 of Qian.
That is, our results of this paper generalize those of Qian in [10].

2. Proof of Theorem 1.2

Lemma 2.1. Let u be a bounded positive solution to the nonlinear equation
(1.1), then we have,

|∇u|∆f |∇u| ≥
|∇(|∇u|)|2

m
− (au log u+ bu)2 +Ricmf (∇u,∇u)

− (a+ a log u+ b)|∇u|2.
(2.1)

Proof. Since we have the Bochner-weitzenböck formula with respect to f -
Laplacian, for any u ∈ C2(M), we have

1

2
∆f |∇u|2 = |∇2u|2 +Ricf (∇u,∇u) + (∇u,∇∆fu).

On the other hand,

∆f |∇u|2 = 2|∇u|∆f |∇u|+ 2|∇(|∇u|)|2,
hence

|∇u|∆f |∇u| = |∇2u|2 +Ricf (∇u,∇u) + (∇u,∇∆fu)− |∇(|∇u|)|2.
Since u is a solution to (1.1), we obtain

|∇u|∆f |∇u| = |∇2u|2 +Ricf (∇u,∇u)− (a+ a log u+ b)|∇u|2− |∇(|∇u|)|2.
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If we consider a local normal chart at x in which u1(x) = |∇u|(x) and
uj(x) = 0 for j ≥ 2, then ∇i(|∇u|) = u1i, hence |∇(|∇u|)|2 = Σiu

2
1i. Since

u is a solution to (1.1), in the above local chart we have at x∑
i≥2

uii = −u11 − au log u− bu+∇f · ∇u.

Therefore,

|∇2u|2 − |∇(|∇u|)|2 =
∑

i≥1,j≥1
u2ij −

∑
j≥1

u21j =
∑

i≥2,j≥1
u2ij ≥

∑
i≥2

u2i1 +
∑
i≥2

u2ii

≥
∑
i≥2

u2i1 +
1

n− 1
(
∑
i≥2

uii)
2

=
∑
i≥2

u2i1 +
1

n− 1
(−u11 − au log u− bu+∇f · ∇u)2

≥ 1

(n− 1)(1 + α)

∑
i≥1

u2i1 −
1

(n− 1)α
(au log u+ bu−∇f · ∇u)2

≥− 1

(n− 1)α
[(1 +

1

ε
)(au log u+ bu)2 + (1 + ε)(∇f · ∇u)2]

+
1

(n− 1)(1 + α)

∑
i≥1

u2i1

=
1

m

∑
i≥1

u2i1 − (au log u+ bu)2 − (∇f · ∇u)2

m− n
,

where we use the elementary inequality (see [12]) (a + b)2 ≥ 1
1+αa

2 − 1
αb

2

and (a+ b)2 ≤ (1 + ε)a2 + (1 + 1
ε )b

2 which holds for any α > 0, ε > 0. The

last equality we choose α = m−n+1
n−1 and ε = 1

m−n .
Hence

|∇u|∆f |∇u| ≥
|∇(|∇u|)|2

m
− (au log u+ bu)2 − (∇f · ∇u)2

m− n
+Ricf (∇u,∇u)− (a+ a log u+ b)|∇u|2

=
|∇(|∇u|)|2

m
− (au log u+ bu)2 + (Ricf −

df ⊗ df
m− n

)uiuj

− (a+ a log u+ b)|∇u|2

=
|∇(|∇u|)|2

m
− (au log u+ bu)2 +Ricmf (∇u,∇u)

− (a+ a log u+ b)|∇u|2.

(2.2)

This completes the prove of Lemma 2.1.
�

Proof of Theorem 1.2.
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Proof. Denote ψ = |∇ log u| = |∇u|
u , i.e.,

|∇u| = ψu.

Direct computation gives

∇ψ =
∇(|∇u|)

u
− |∇u|∇u

u2
. (2.3)

At the point where ∇u 6= 0, we have

∆f |∇u| = ∆f (ψu) = u∆fψ + ψ∆fu+ 2∇ψ · ∇u
= u∆fψ − ψ(au log u+ bu) + 2∇ψ · ∇u.

This yields

∆fψ =
∆f |∇u|

u
+ ψ(a log u+ b)− 2

∇ψ · ∇u
u

=
|∇u|∆f |∇u|
|∇u|u

+ ψ(a log u+ b)− 2
∇ψ · ∇u

u
.

By Lemma 2.1, we can derive,

∆fψ ≥
|∇(|∇u|)|2

m − (au log u+ bu)2 +Ricmf (∇u,∇u)− (a+ a log u+ b)|∇u|2

|∇u|u

+ ψ(a log u+ b)− 2
∇ψ · ∇u

u

≥|∇(|∇u|)|2

m|∇u|u
− (a log u+ b)2

ψ
− (a+K)ψ − 2

∇ψ · ∇u
u

.

(2.4)
For any δ > 0, by (2.3)

2
∇ψ · ∇u

u
= (2− δ)∇ψ · ∇u

u
+ δ
∇ψ · ∇u

u

= (2− δ)∇ψ · ∇u
u

+ δ
∇u
u

(
∇(|∇u|)

u
− |∇u|∇u

u2
)

= (2− δ)∇ψ · ∇u
u

+ δ
∇(|∇u|) · ∇u

u2
− δψ3

≤ (2− δ)∇ψ · ∇u
u

+ δ
|∇(|∇u|)| · |∇u|

u2
− δψ3

≤ (2− δ)∇ψ · ∇u
u

+
δ

2
(
|∇(|∇u|)|2

|∇u|u
+
|∇u|3

u3
)− δψ3

= (2− δ)∇ψ · ∇u
u

+
δ

2

|∇(|∇u|)|2

|∇u|u
− δ

2
ψ3.
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Choosing δ = 2
m and substituting into (2.4), we obtain

∆fψ ≥− (a+K)ψ − (2− 2

m
)
∇ψ · ∇u

u
+
ψ3

m

− (a log u+ b)2

ψ
.

(2.5)

Now we define

F (y) := (R2 − d2(x, y))
|∇u|(y)

u(y)
= (R2 − d2)ψ(y),

and

ψ(y) =
|∇u|(y)

u(y)
, y ∈ B(x,R).

Since F |∂B(x,R) = 0, if ∇u = 0, then F can only achieve its maximum at
some point x0 ∈ B(x,R), if |∇u|(x0) = 0, the desired result holds. Then,
without loss of generality, we can suppose |∇u|(x0) 6= 0. Assume x0 6∈
cut(x), by the maximum principle we have ∆fF (x0) ≤ 0 and ∇F (x0) = 0.
It yields, at x0,

∇F = −ψ∇d2 + (R2 − d2)∇ψ = 0.

It holds,

∇ψ
ψ

=
∇d2

R2 − d2
=

2d∇d
R2 − d2

(2.6)

and

∆fF = ∆f ((R2 − d2)ψ) = (R2 − d2)∆fψ − ψ∆fd
2 − 2∇d2∇ψ ≤ 0. (2.7)

Hence, dividing by (R2 − d2)ψ to both sides of (2.7) and combining (2.6),
we have at x0,

0 ≥
∆fψ

ψ
−

∆fd
2

R2 − d2
− 8d2

(R2 − d2)2
.

By the f -Laplacian comparison theorem in [12] (see also [7] or [9]), we
have

∆fd
2 ≤ C

√
Kd coth(

√
Kd) ≤ C

√
Kd,

where C only depends on m. Together with (2.5), we have at x0,

0 ≥− (a+K)− (2− 2

m
)
∇ψ · ∇u
ψu

+
ψ2

m

− (a log u+ b)2

ψ2
− C

√
Kd

R2 − d2
− 8d2

(R2 − d2)2
.

(2.8)

By (2.6),

∇ψ · ∇u
ψu

=
2d

R2 − d2
∇d · ∇u

u
≤ 2dψ

R2 − d2
,
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then multiplying both sides of (2.8) by ψ2(R2 − d2)4, combining with ψ =
F

R2−d2 , we can derive

0 ≥ 1

m
F 4 − 4(m− 1)

m
dF 3 − (R2 − d2)4(a log u+ b)2

− ((a+K)(R2 − d2)2 + 8d2 + C
√
Kd(R2 − d2))F 2

≥ 1

m
F 4 − 4RF 3 − ((a+K)R2 + C

√
KR+ 8)R2F 2

−R8(a log u+ b)2.

Since 1
2mF

4 − 4RF 3 ≥ −8mR2F 2, it holds

1

2m
F 4−((a+K)R2 + C

√
KR+ C)R2F 2

−R8(a log u+ b)2 ≤ 0.

It follows

sup
y∈B(x,R)

(R2 − d2(x, y))|∇ log u| ≤ F (x0)

≤
√

2m((a+K)R2 + C
√
KR+ C)R2 +

√
2m(|b|+ |a|L)R4.

Restricting on the ball B(x, R2 ), we have

sup
y∈B(x,R

2
)

3R2

4
|∇ log u| ≤ sup

y∈B(x,R
2
)

(R2 − d2(x, y))|∇ log u| ≤ F (x0)

≤
√

2m((a+K)R2 + C
√
KR+ C)R2 +

√
2m(|b|+ |a|L)R4.

Therefor, we can derive

sup
y∈B(x,R

2
)

|∇u|
u
≤

√
4m(a+K + C

√
K

R
+

C

R2
) +
√

8m(|b|+ |a|L).

Then use the Cauchy-Schwarz inequality, we obtain

sup
y∈B(x,R

2
)

|∇u|
u
≤ C

√
a+K +

1

R2
+ |b|+ |a|L.

Now let R→∞, this yields, for any x ∈M ,

ψ(x) ≤ ψ(x0) ≤ C
√
a+K + |b|+ |a|L.

This completes the prove of theorem 1.2. �
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