Moments of partition functions of 2D Gaussian polymers in the weak disorder regime -- I
Résumé
Let $W_N(\beta) = \mathrm{E}_0\left[e^{ \sum_{n=1}^N \beta\omega(n,S_n) - N\beta^2/2}\right]$ be the partition function of a two-dimensional directed polymer in a random environment, where $\omega(i,x), i\in \mathbb{Z}_+, x\in \mathbb{Z}^2$ are i.i.d.\ standard normal and $\{S_n\}$ is the path of a random walk. With $\beta=\beta_N=\hat\beta \sqrt{\pi/\log N}$ and $\hat \beta\in (0,1)$ (the subcritical window), $\log W_N(\beta_N)$ is known to converge in distribution to a Gaussian law of mean $-\lambda^2/2$ and variance $\lambda^2$, with $\lambda^2=\log \big(1/(1-\hat\beta^2\big)$ (Caravenna, Sun, Zygouras, Ann. Appl. Probab. (2017)). We study in this paper the moments $\mathbb{E} [W_N( \beta_N)^q]$ in the subcritical window, for $q=O(\sqrt{\log N})$. The analysis is based on ruling out triple intersections
Origine | Fichiers produits par l'(les) auteur(s) |
---|