
HAL Id: hal-03968709
https://hal.science/hal-03968709v1

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Moments of partition functions of 2D Gaussian polymers
in the weak disorder regime – I

Clément Cosco, Ofer Zeitouni

To cite this version:
Clément Cosco, Ofer Zeitouni. Moments of partition functions of 2D Gaussian polymers in the
weak disorder regime – I. Communications in Mathematical Physics, 2023, 403 (1), pp.417-450.
�10.1007/s00220-023-04799-2�. �hal-03968709�

https://hal.science/hal-03968709v1
https://hal.archives-ouvertes.fr


MOMENTS OF PARTITION FUNCTIONS OF 2D GAUSSIAN

POLYMERS IN THE WEAK DISORDER REGIME - I

CLÉMENT COSCO AND OFER ZEITOUNI

Abstract. Let WN (β) = E0

[
e
∑N
n=1 βω(n,Sn)−Nβ

2/2
]
be the partition func-

tion of a two-dimensional directed polymer in a random environment, where
ω(i, x), i ∈ N, x ∈ Z2 are i.i.d. standard normal and {Sn} is the path of a
random walk. With β = βN = β̂

√
π/ logN and β̂ ∈ (0, 1) (the subcritical

window), logWN (βN ) is known to converge in distribution to a Gaussian law
of mean −λ2/2 and variance λ2, with λ2 = log(1/(1 − β̂2) (Caravenna, Sun,
Zygouras, Ann. Appl. Probab. (2017)). We study in this paper the moments
E[WN (βN )q ] in the subcritical window, for q = O(

√
logN). The analysis is

based on ruling out triple intersections

1. Introduction and statement of results

We consider in this paper the partition function of two dimensional directed
polymers in Gaussian environment, and begin by introducing the model. Set

(1) WN (β, x) = Ex

[
e
∑N
n=1 βω(n,Sn)−Nβ2/2

]
, x ∈ Zd.

Here, {ωn,x}n∈Z+,x∈Zd are i.i.d. standard centered Gaussian random variables of
law P, {Sn}n∈Z+ is simple random walk, and Ex denotes the law of simple random
walk started at x ∈ Z2. Thus, WN (β, x) is a random variable measurable on the
σ-algebra GN := σ{ω(i, x) : i ≤ N, x ∈ Zd}. For background, motivation and results
on the rich theory surrounding this topic, we refer the reader to [15]. In particular,
we mention the relation with the d dimensional stochastic heat equation (SHE).

The random variables WN (β, 0) form a GN positive martingale, and therefore
converge almost surely to a limit W∞(β, 0). It is well known that in dimensions
d = 1, 2, for any β > 0 we have W∞(β, 0) = 0, a.s., while for d ≥ 3, there exists
βc > 0 so that W∞(β, 0) > 0 a.s. for β < βc and W∞(β, 0) = 0 for β > βc. We
refer to these as the weak and strong disorder regimes, respectively. In particular,
for d = 2, which is our focus in this paper, for any β > 0, we are in the strong
disorder regime.

A meaningful rescaling in dimension 2 was discovered in the context of the SHE
by Bertini and Cancrini [2] and was later generalized by Caravenna, Sun and Zy-
gouras [5], in both the SHE and polymer setups, to a wider range of parameters
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2 CLÉMENT COSCO AND OFER ZEITOUNI

for which a phase transition occurs. See also [8, 9, 10, 22, 28]. Introduce the mean
intersection local time for random walk

(2) RN = E⊗2
0

[
N∑
n=1

1S1
n=S2

n

]
∼ logN

π
.

The asymptotic behavior of RN follows from the local limit theorem [25, Sec. 1.2].

Further, the Erd®s-Taylor theorem [20] states that π
logN

∑N
n=1 1S1

n=S2
n
converges in

distribution to an exponential random variable of parameter 1.
Set

(3) βN =
β̂√
RN

, β̂ ≥ 0.

We will use the short-notation WN = WN (βN , 0). With it, see [5], one has

(4) ∀β̂ < 1 : logWN
(d)−→ N

(
−λ

2

2
, λ2

)
, with λ2(β̂) = log

1

1− β̂2
.

The convergence in (4) has recently been extended in [26] to the convergece of WN

to the exponential of a Gaussian, in all Lp. (The critical case β̂ = 1, which we will
not study in this paper, has received considerable attention, see [2, 7, 9, 23].)

The spatial behavior of WN (βN , x) is also of interest. Indeed, one has, see [8],
(5)

GN (x) :=
√
RN

(
logWN (βN , x

√
N)− E logWN (βN , x

√
N)
)

(d)−→

√
β̂2

1− β̂2
G(x),

with G(x) a log-correlated Gaussian �eld on R2. The convergence in (5) is in the
weak sense, i.e. for any smooth, compactly supported function φ,

∫
φ(x)GN (x)dx

converges to a centered Gaussian random variable of variance β̂2σ2
φ/(1− β̂2), where

(6) σ2
φ =

1

2π

∫∫
φ(x)φ(y)

∫ ∞
|x−y|2/2

z−1e−zdz.

One recognizes σ2
φ in (6) as the variance of the integral of φ against the solution of

the Edwards-Wilkinson equation. For a related result in the KPZ/SHE setup, see
[8, 22, 28].

Logarithmically correlated �elds, and in particular their extremes and large val-
ues, have played an important recent role in the study of various models of proba-
bility theory at the critical dimension, ranging from their own study [3, 4, 17, 29],
random walk and Brownian motion [1, 16], random matrices [12, 13, 14], Liouville
quantum gravity [18, 24], turbulence [11], and more. In particular, exponentiating
Gaussian logarithmically correlated �elds yields Gaussian multiplicative chaoses,
with the ensuing question of convergence towards them.

In the context of polymers, (5) opens the door to the study of such questions. A
natural role is played by the random measure

µγN (x) =
eγGN (x)

EeγGN (x)
,

and it is natural to ask about its convergence towards a GMC, and about extremes
of GN (x) for x in some compact subsets of R2.
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A preliminary step toward any such analysis involves evaluating exponential
moments of GN (0). This is our goal in this paper. In the following, q = q(N)
denotes an integer q ≥ 2 that may depend on N . Our main result is the following.

Theorem 1.1. There exists β̂0 ≤ 1 so that if β̂ < β̂0 and

(7) lim sup
N→∞

3β̂2(
1− β̂2

) 1

logN

(
q

2

)
< 1,

then,

(8) E[W q
N ] ≤ e(

q
2)λ

2(1+εN ),

where εN = ε(N, β̂)↘ 0 as N →∞.

The proof will show that in Theorem 1.1, β̂0 can be taken as 1/96, but we do
not expect this to be optimal.

Remark 1.2. With a similar method, we can also prove that the estimate (8) holds

for all β̂ < 1 at the cost of choosing q2 = o(logN/ log logN), see Section 2.4 for
details. In particular, we obtain that the partition function possesses all (�xed)

moments in the region β̂ < 1:

(9) ∀q ∈ N, sup
N

E[W q
N ] <∞.

As mentioned above, (9) was independently proved in [26]. (See also [27] for further
precision and a multivariate generalization of the Erd®s-Taylor theorem.) They also
observed that together with the convergence in distribution (4), the estimate (9)
implies that for all �xed q ∈ N,

(10) E[W q
N ]e−(q2)λ

2(β̂) −→
N→∞

1.

Note however that the estimate (8) does not yield (10) when q →∞ with N →∞.

Remark 1.3. Theorem 1.1 is of course not enough to prove convergence toward a
GMC. For that, one would need to improve the error in the exponent from O(q2εN )
to O(1), to obtain a complementary lower bound and, more important, to derive
similar multi-point estimates. We hope to return to these issues in future work.

The structure of the paper is as follows. In the next Section 2, we use a well-worn
argument to reduce the computation of moments to certain estimates concerning
the intersection of (many) random walks. After some standard preliminaries, we
state there our main technical estimate, Theorem 2.1, which provides intersection
estimates under the extra assumptions that all intersections are in pairs, i.e. that no
triple (or more) points exist. The rest of the section provides the proof of Theorem
1.1. Section 3 then develops the induction scheme that is used to prove Theorem 2.1.
Since we assume that there are no triple (or more) intersections, we may consider
particles as matched in pairs at intersection times. The induction is essentially on
the number of instances in which �matched particles� break the match and create a
di�erent matching. Section 4 provides a discussion of our results, their limitations,
and possible extensions. In particular we explain there why the constraint on q in
Theorem 1.1 limits our ability to obtain the expected sharp upper bounds on the

maximum of logWN (β̂N , x
√
N). The appendices collect several auxilliary results

and a sharpening of one of our estimates, see Proposition B.1.
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2. Intersection representation, reduced moments, and proof of

Theorem 1.1

Throughout the rest of the paper, we let p(n, x) = pn(x) = P0(Sn = x). There
is a nice formula for the q-th moment of the partition function whose importance
is apparent in previous work on directed polymers, for example in [6, 7]. Indeed,

E[W q
N ] = E⊗q0 Ee

∑q
i=1

∑N
n=1(βNω(n,Sin)−β2

N/2),

where S1, . . . , Sq are q independent copies of the simple random walk and E⊗qX
denotes the expectation for the product measure started atX = (x1, . . . , xq). (If the
starting point X is not speci�ed, we assume X = 0.) Since the ω(i, x) are Gaussian
and the variance of

∑q
i=1 βNω(n, Sin) is equal to β2

N

∑
i=1...q,j=1...q 1Sin=Sjn

, we have

the following formula for the moment in terms of intersections of q independent
random walks:

(11) E[W q
N ] = E⊗q

[
e
β2
N

∑
1≤i<j≤q

∑N
n=1 1

Sin=S
j
n

]
.

2.1. No triple estimate. The key step in upper bounding the right hand side of
(11) is to restrict the summation to subsets where there are no triple (or more)
intersection. More precisely, denote by

Fn = {∃(ᾱ, β̄, γ̄) : 1 ≤ ᾱ < β̄ < γ̄ ≤ q, Sᾱn = Sβ̄n = Sγ̄n},
(12)

Kn =
(13)

{∃(ᾱ, β̄, γ̄, δ̄) : 1 ≤ (ᾱ < β̄), (γ̄ < δ̄) ≤ q, {ᾱ, β̄} ∩ {γ̄, δ̄} = ∅, Sᾱn = Sβ̄n , S
γ̄
n = S δ̄n}

and let

GT =
⋂

n∈J1,T K

(Fn ∪Kn){

be the event that there is no triple (or more) intersection, i.e. that at each given
time no more than a pair of particles are involved in an intersection.

The following theorem is the technically involved part of this paper. Its proof
will be presented in Section 3.

Theorem 2.1. Fix β̂ ∈ (0, 1). Assume that either q(N) = q0 ∈ N is constant, or
that q(N)→∞ as N →∞ with the condition (7). Then, uniformly in T ∈ J1, NK
as N →∞,

(14) sup
X∈(Z2)q

E⊗qX

[
e
β2
N

∑T
n=1

∑
1≤i<j≤q 1Sin=S

j
n1GT

]
≤ ceλ

2
T,N(q2)(1+o(1)),
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where c = c(β̂) > 0 in the case q → ∞ and c = c(β̂, q0) when q = q0, and λT,N is
de�ned as

(15) λ2
T,N (β̂) = λ2

T,N = log
1

1− β̂2 log T
logN

.

Note that as soon as q > 9, the expression in the left side of (14) trivially vanishes
if X = 0. The X's of interest are those that allow for non-existence of triple or
more intersections.

Assuming Theorem 2.1, the proof of Theorem 1.1 is relatively straightforward.
We will need the preliminary results collected in the next subsection.

2.2. A short time a priori estimate. The following lemma is a variation on
Khas'minskii's lemma [30, p.8, Lemma 2.1].

Lemma 2.2. Let Z be the set of all nearest-neighbor walks on Z2, that is Z ∈ Z
if Z = (Zi)i∈N where Zi ∈ Z2 and Zi+1 − Zi ∈ {±ej , j ≤ d} where ej are the
canonical vectors of Z2. If for some k ∈ N and κ ∈ R, one has

(16) η = sup
Z∈Z

sup
x∈Z2

(
eκ

2

− 1
)

Ex

[
k∑

n=1

1Sn=Zn

]
< 1,

then

(17) sup
Z∈Z

sup
x∈Z2

Ex

[
eκ

2 ∑k
n=0 1Sn=Zn

]
≤ 1

1− η
.

Proof. Let Λ2 = (eκ
2 − 1). We have:

Ex

[
eκ

2 ∑k
n=1 1Sn=Zn

]
= Ex

[
k∏

n=1

(
1 + Λ21Sn=Zn

)]

=

∞∑
p=0

Λp2
∑

1≤n1<···<np≤k

Ex

[
p∏
i=1

1Sni=Zni

]

=

∞∑
p=0

Λp2
∑

1≤n1<···<np−1≤k

Ex

p−1∏
i=1

1Sni=ZniESnp−1

k−np−1∑
n=1

1Sn=Zn+np−1


(16)
≤

∞∑
p=0

Λp−1
2 η

∑
1≤n1<···<np−1≤k

Ex

[
p−1∏
i=1

1Sni=Zni

]
≤ · · · ≤

∞∑
p=0

ηp =
1

1− η
.

�

The next lemma gives an a-priori rough estimate on the moments of Wk(βN ) =
Wk(βN , 0) when k is small.

Lemma 2.3. Let β̂ > 0. Let bN > 0 be a deterministic sequence such that bN =
o(
√

logN) as N →∞. Assume that q = O(
√

logN) > 1. Then, for all k ≤ ebN ,

E[Wk(βN )q] = E⊗q
[
e
β2
N

∑
1≤i<j≤q

∑k
n=1 1

Sin=S
j
n

]
≤ e 1

π (1+εN )q2β2
N log(k+1),

for εN = εN (β̂)→ 0 as N →∞.
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Proof. Let N i,j
k =

∑k
n=1 1Sin=Sjn

. By Hölder's inequality, we �nd that

E[Wk(βN )q] ≤ E⊗q
[
e
qβ2
N

2

∑
1<j≤q N

1,j
k

]q/q
= E⊗2

[
E⊗2

[
e
qβ2
N

2 N1,2
k

∣∣∣∣S1

]q−1
]
,

by independence of the (N1,j)1<j conditioned on S1. We now estimate the above
conditional expectation using Lemma 2.2. Let κ2 = qβ2

N/2 → 0 and η be as in
(16). For any Z ∈ Z and y ∈ Z2,

Ey

[
k∑

n=1

1Sn=Zn

]
≤

k∑
n=1

sup
x
pn(x),

where, see Appendix A for an elementary proof,

(18) ∀n ≥ 1 : sup
x
pn(x) := p?n ≤

2

πn
.

Thus, η ≤ 1
π (1 + o(1))qβ2

N log(k + 1) → 0, uniformly for k ≤ ebN as N → ∞.
Lemma 2.2 then yields that for such k's,

E[Wk(βN )q] ≤
(

1

1− 1
π (1 + o(1))qβ2

N log k

)q−1

= e
1
π (1+o(1))q2β2

N log(k+1).

�

2.3. Proof of Theorem 1.1. We begin by assuming that q(N) = q0 is constant
or that q(N) → ∞ as N → ∞ with the condition (7). This allows us to apply
Theorem 2.1. As a �rst step, we will prove that

(19) E[W q
N ] ≤ Ce(

q
2)λ

2(1+εN ),

where C = 1 if q → ∞ and C = C(β̂, q0) when q = q0, and εN = εN (β̂) → 0
as N → ∞. As a second step, we treat the general q(N) case (i.e. only assuming
condition (7)) by a diagonalization argument.

Recall the de�nitions of λk,N in (15) and that λ = λN,N (β̂). By standard
convexity arguments, we note that x ≤ log( 1

1−x ) ≤ x
1−x for all x ∈ [0, 1); hence for

all a > 1 and β̂ < 1 such that aβ̂2 < 1,

(20) ∀k ≤ N : aβ̂2 log k

logN
≤ λk,N (

√
aβ̂)2 ≤ aβ̂2

1− aβ̂2

log k

logN
.

Now, let

Is,t = β2
N

t∑
n=s+1

∑
i<j≤q

1Sin=Sjn
and Ik = I0,k,

and de�ne

(21) M(X) := E⊗qX
[
eIN
]

and M = sup
X∈(Z2)q

M(X).

By (11), it is enough to have a bound onM(0). In fact what we will give is a bound
on M . To do so, we let T = TN > 0 such that log T = o(

√
logN) and introduce

the event

τT := inf{n > T : Fn ∪Kn occurs}.
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We then decompose M(X) as follows:

M(X) = E⊗qX
[
eIN1τT≤N

]
+ E⊗qX

[
eIN1τT>N

]
=: A(X) +B(X).

We start by bounding B(X) from above. By Markov's property,

sup
X∈(Z2)q

B(X) ≤ sup
X∈(Z2)q

E⊗qX [eIT ] sup
Y ∈(Z2)q

E⊗qY [eIN−T 1τ0>N−T ]

≤ Ce 1
π (1+εN )q2β2

N log T e(
q
2)λ

2
N−T,N (1+o(1)) ≤ Ce(

q
2)λ

2(1+o(1)),

where in the second inequality, we used Lemma 2.3 and Theorem 2.1 and in the last

inequality, we used that β2
N log T vanishes as N → ∞ and that λ2

N−T,N < λ2(β̂).

Note that the constant C depends on β̂ and might depend on q0 in the constant
case q = q0 (because of Theorem 2.1).

We will now deal with A(X) and show that

(22) sup
X∈(Z2)q

A(X) ≤MεN ,

with εN → 0. This, together with the last two displays, implies that

M(1− εN ) ≤ Ce(
q
2)λ

2(1+o(1)).

Absorbing the constant C in the o(1) term in the case that q → ∞, this entails
(19).

Toward the proof of (22), we �rst use Markov's property to obtain that

A(X) =

N∑
k=T

E⊗qX [eIk+Ik,N1τT=k] ≤M
N∑
k=T

E⊗qX [eIk1τT=k].

In what follows, we use the phrase "no triple+ at time n" to denote the event that
Fn ∪ Kn does not hold. Similarly, for I ⊂ J1, qK, we use the phrase "no triple+

for particles of I" to denote the event (∪n∈I(Fn ∪Kn)){. We then decompose over
which event, Fn or Kn, occured at τT , and then over which particles participated
in the event:

A(X) ≤ M
∑

ᾱ,β̄,γ̄≤q

N∑
k=T

E⊗qX

[
eIk1no triple+ in JT, k − 1K 1Sᾱk=Sβ̄k=Sγ̄k

]

+M
∑

(ᾱ<β̄) 6=(γ̄<δ̄)

N∑
k=T

E⊗qX

[
eIk1no triple+ in JT, k − 1K 1Sᾱk=Sβ̄k ,S

γ̄
k=Sδ̄k

]
,(23)

=: A1(X) +A2(X).

We next handle A1(X), the argument for A2(X) is similar. Write

Ik = Jk + J ᾱk + J β̄k + J γ̄k ,

where

Jk = β2
N

k∑
n=1

∑
i<j≤q

i,j /∈{ᾱ,β̄,γ̄}

1Sin=Sjn
and J i0k = β2

N

k∑
n=1

∑
j∈J1,qK\{i0}

1
S
i0
n =Sjn

.
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If we let 1
a + 3

b = 1 with 1 < a ≤ 2 and 1 < b, we have

E⊗qX

[
eIk1no triple+ in JT, k − 1K 1Sᾱk=Sβ̄k=Sγ̄k

]
≤ E⊗qX

[
eaJk1no triple+ in JT, k − 1K for particles of J1, qK \ {ᾱ, β̄, γ̄} 1Sᾱk=Sβ̄k=Sγ̄k

]1/a
(24)

×
∏

i0∈{ᾱ,β̄,γ̄}

E⊗qX

[
ebJ

i0
k 1

Sᾱk=Sβ̄k=Sγ̄k

]1/b
.(25)

We will treat separately the last two factors. Before doing so, we specify our

choice of a, b and β̂. We assume that β̂2 < 1/72 and a < 3/2, with a close enough
to 3/2 (and so b close to 9) in such a way that

(26)

(i) 8bβ̂2 < 1, (ii) lim sup
N→∞

1

π
q2β2

N < 1/a and

(iii) lim sup
N→∞

β̂2

1− aβ̂2

(
q
2

)
logN

< 1/a.

Note that (ii) and (iii) are assured to hold for a close enough to 3/2 thanks to the

assumption (7) which implies that lim supN π
−1q2β2

N ≤ 2
3 . We chose β̂2 < 1/72 to

allow (i).

We �rst bound the factor appearing in (24). If k ≤ e(logN)1/3

, then it is bounded
by

E⊗qX
[
eaJk

]1/a
P⊗3

(xᾱ,xβ̄ ,xγ̄)

(
Sᾱk = Sβ̄k = Sγ̄k

)1/a

≤ Ce 1
π (1+εN )q2aβ2

N (log(k+1))/ak−2/a,

for some c > 0 and uniformly in X ∈ (Z2)q, where we have used in the inequality

Lemma 2.3 and that
∑
x pk(x)3 ≤ (p?k)2 ≤ k−2 by (18). For k ≥ e(logN)1/3

, we rely
on (14) to bound the same factor by

P⊗3
(xᾱ,xβ̄ ,xγ̄)

(
Sᾱk = Sβ̄k = Sγ̄k

)1/a

× E⊗qX

[
eaJk1no triple+ in JT, k − 1K for particles in J1, qK \ {ᾱ, β̄, γ̄}

]1/a
≤ Ck−2/a

(
E⊗qX

[
eaJT

]
·

sup
Y

E
⊗(q−3)
Y

[
eaJk−T−11no triple+ in J1, k − T − 1K for particles in J1, qK \ {ᾱ, β̄, γ̄}

])1/a

≤ Ce 1
π (1+εN )q2aβ2

N (log T )/ae(
q
2)λ

2
k,N (
√
aβ̂)/ak−2/a.

For the factor in (25), we apply the Cauchy-Schwarz inequality to �nd that

(27) E⊗qX

[
ebJ

i0
k 1

Sᾱk=Sβ̄k=Sγ̄k

]1/b
≤ E⊗qX

[
e2bJ

i0
k

]1/2b
k−1/b,

where we again used that
∑
x pk(x)3 ≤ (p?k)2 ≤ k−2 by (18). Now observe that by

conditioning on Si0 , we have

E⊗qX

[
e2bJ

i0
k

]
≤ sup
y∈Z2

ES
1

y

[
sup
x∈Z2

ES
2

x

[
e

2bβ2
N

∑k
n=1 1

S1
k

=S2
k

]q−1
]
,
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where uniformly on all nearest neighbors walks Z ∈ Z,

2bβ2
N sup
x∈Z2

Ex

k∑
n=1

1Sk=Zk ≤ 4(1 + o(1))bβ̂2 log(k + 1)

logN

because of the de�nition of RN and supx pn(x) ≤ 2/(πn), see (2) and (18). Hence
by Lemma 2.2 with (26)-(i),

sup
X∈(Z2)q

E⊗qX

[
ebJ

i0
k 1

Sᾱk=Sβ̄k=Sγ̄k

]1/b
≤

(
1

1− 8bβ̂2 log(k+1)
logN

)(q−1)/2b

k−1/b

≤ ec
log(k+1)√

logN k−1/b,

for some universal constant c > 0, using (7).
Coming back to (23), we �nd that

(28)

sup
X∈(Z2)q

A1(X) ≤Mq3

be(logN)1/3c∑
k=T

e
1
π (1+εN )q2β2

N log(k+1)k−2/ae
3c

log(k+1)√
logN k−3/b

+ CMq3e
1
π (1+εN )q2β2

N log T
N∑

k=be(logN)1/3c

eλ
2
k,N (
√
aβ̂)(q2)/ak−2/ae

3c
log(k+1)√

logN k−3/b.

By (26)-(ii), there exists δ > 0 such that the �rst sum in the RHS of (28) can be
bounded by

Mq3

be(logN)1/3
c∑

k=T

k−1−δ ≤MCq3T−δ,

for N large enough. Hence, we can set T = be(logN)1/4c (which satis�es log T =
o(
√

logN)), so that q3T−δ → 0 as N → ∞. Relying on (20), the second sum in
(28) is bounded by

CMq3ec
′ log T

N∑
k=be(logN)1/3c

e
β̂2

1−aβ̂2

(q2)
logN log(k+1)

e
3c

log(k+1)√
logN k−1−1/a

≤ CMq3ec
′ log T

N∑
k=be(logN)1/3c

k−1−δ ≤ CMq3e−δ(logN)1/3+c(logN)1/4

,

for some δ, c′ > 0, where we used (26)-(iii). Then again the quantity multiplying
M in the last line vanishes as N →∞, thus from (28) we obtain (22).

When dealing with A2, we have to use Hölder's inequality as in (24), (25) with
4 particles instead of 3, so in this case we can choose a ∼ 3/2 and b ∼ 12, and

the condition (i) in (26) is satis�ed with the restriction β̂2 < 1/96. The rest of the
argument follows the same line as for A1.

As a result, we have shown that (19) holds. When q = q0, although the constant
C in (19) might depend on q0, it still yields that WN is bounded in any Lp, p > 1.
This fact combined with (4) implies the convergence (10) for all �xed q, which in
particular implies that (8) holds in the case q = q0 as well.
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We now turn to the general case, where we only assume that q(N) satis�es (7).
Suppose that (8) does not hold, so that we can �nd ε0 > 0 and a subsequence
q′N = q(ϕ(N)) such that

(29) ∀N ∈ N, EW q′N
N > eλ

2(q
′
N
2 )(1+ε0).

One can distinguish two cases. If q′N is bounded, then up to extracting a sub-
sequence, we can suppose that q′N converges to some q0 ≥ 2. Then, one can

check that by (4), we must have EW q′N
N → eλ

2(q02 ) (for example, using Skorokhod's
representation theorem and Vitali's convergence theorem with the fact that WN is
bounded in any Lp). But this is impossible by (29). On the other hand, if q′N is
not bounded, up to extracting a subsequence we can suppose that q′N → ∞. But
then (29) cannot be true because (8) holds with q = q′N →∞. Therefore (8) must
hold for any sequence q(N) that satis�es (7). �

2.4. On Remark 1.2. We describe the changes needed for obtaining the claim in
Remark 1.2. Recall the de�nitions of Fn and Kn, see (12) and (13), and (11). Set

AN =

N∑
n=1

1(Fn∪Kn){

∑
1≤i<j≤q

1Sin=Sjn
,

BN =

N∑
n=1

1Fn
∑

1≤i<j≤q

1Sin=Sjn
, CN =

N∑
n=1

1Kn
∑

1≤i<j≤q

1Sin=Sjn

Note that for any uN ≥ 1, we can check that E⊗qX

[
euNβ

2
NAN

]
is bounded above

by ΨN,q(X) of (37) with T = N and βN replaced by βNuN . Using Hölder's
inequality it is enough to show (together with the proof of Theorem 2.1, which

actually controls supX ΨN,q(X)) that for any β̂ < 1 and qN = o(logN/ log logN),
there exist vN →∞ so that

(30) sup
X

E⊗qX

[
evNβ

2
NBN

]1/vN
→N→∞ 1, sup

X
E⊗qX

[
evNβ

2
NCN

]1/vN
→N→∞ 1.

We sketch the proof of the �rst limit in (30), the proof of the second is simi-
lar. By Corollary C.2 (applied on the space of q-tuples of path, with f(Yn) =
vNβ

2
N

∑
1≤i<j≤q 1Sin=Sjn

1Fn), it su�ces to show that

(31) lim sup
N∈N

sup
X∈Zq

E⊗qX [vNβ
2
NBN ] = 0.

To see (31), �x K ∈ J1, NK. By (18), we have that

E⊗qX

N∑
n=1

1Fn
∑

1≤i<j≤q

1Sin=Sjn
≤

K∑
n=1

q(q − 1)

2

C

n
+

N∑
n=K+1

∑
1≤i<j≤q

E⊗qX 1Fn1Sin=Sjn
.

(32)

For i < j ≤ q and r ∈ {0, 1, 2}, further denote

F i,j;rn = {∃(ᾱ, β̄, γ̄) : ᾱ < β̄ < γ̄ ≤ q, Sᾱn = Sβ̄n = Sγ̄n, |{ᾱ, β̄, γ̄} ∩ {i, j}| = r}.
We have that ∑

1≤i<j≤q

E⊗qX 1Fn1Sin=Sjn
=

∑
1≤i<j≤q

E⊗qX

2∑
r=0

1F i,j;rn
1Sin=Sjn

.
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We �rst focus on the term r = 0. By independence, (18) and the union bound,∑
1≤i<j≤q

E⊗qX 1F i,j;0n
1Sin=Sjn

≤
∑

1≤i<j≤q

C

n

∑
ᾱ<β̄<γ̄≤q

sup
xi∈Z2

∑
y∈Z2

3∏
i=1

Pxi(Sn = y) ≤ Cq5

n3
.

When r = 1, the condition in the indicator function becomes that there exist
ᾱ < β̄ ≤ q such that Sin = Sjn = Sᾱn = Sβ̄n . Hence, the term for r = 1 is bounded by∑

1≤i<j≤q

∑
ᾱ<β̄≤q

sup
xi∈Z2

∑
y∈Z2

4∏
i=1

Pxi(Sn = y) ≤ Cq4

n3
.

Similarly, we can bound the term for r = 2 by a constant times q3/n2. Using (32),
we �nd that for all K ∈ J1, NK,

(33) sup
X∈Zq

E⊗qX [vNβ
2
NBN ] ≤ CvN β̂

2

logN

(
q(q − 1)

2
logK +

q5

K2
+

q4

K2
+
q3

K

)
.

For K =
⌊
(logN)3/4

⌋
, and q2 = o(logN/ log logN), we �nd that (31) holds with a

well-chosen vN →∞.

3. No triple intersections - Proof of Theorem 2.1

Recall that T ∈ J1, NK. For compactness of notation in the rest of the paper, set

(34) σ2
N = σ2

N (β̂) = eβ
2
N − 1.

By (2), there exist δN = δ(N, β̂) and δ′N = δ′(N, β̂) that vanish as N → ∞ such
that

(35) σ2
N =

β̂2

RN
(1 + δN ) =

πβ̂2

logN
(1 + δ′N ).

3.1. Expansion in chaos. In this section, we show that the moment without
triple intersections can be bounded by a rather simple expansion. Introduce the
following notation: for n = (n0, n1, . . . , nk) and x = (x0, x1, . . . , xk), let pn,x =∏k
i=1 p(ni − ni−1, xi − xi−1).

Proposition 3.1. For all X = (x1
0, . . . , x

q
0) ∈ (Z2)q, we have

(36) E⊗qX

[
e
β2
N

∑T
n=1

∑
1≤i<j≤q 1Sin=S

j
n1GT

]
≤ ΨN,q(X),

where

(37)

ΨN,q(X) =

∞∑
k=0

σ2k
N

∑
1≤n1<···<nk≤T,(i1<j1),...,(ik<jk)

x1∈(Z2)k,...,xq∈(Z2)k

k∏
r=1

1xirr =xjrr

q∏
i=1

p(0,n1,...,nk),(xi0,x
i),

where we recall (34) for the de�nition of σN .

(By convention, here and throughout the paper, the term k = 0 in sums as (37)
equals 1.)
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Proof. We will use here the lexicographical ordering of 3-tuples (n, i, j) and use
the shorthand notation (n1, i1, j1) < · · · < (nk, ik, jk) to denote a collection of k
3-tuples satisfying (n1, i1, j1) < · · · < (nk, ik, jk) ∈ J1, T K × J1, qK2 with ir < jr for
all r ≤ k. For brevity, we write G for GT .

For X = (x1
0, . . . , x

q
0) ∈ (Z2)q, using the identity e

β2
N1

Sin=S
j
n − 1 = σ2

N 1Sin=Sjn
,

Mno triple
N,q (X) := E⊗qX

[
e
β2
N

∑T
n=1

∑
1≤i<j≤q 1Sin=S

j
n1G

]

= E⊗qX

 ∏
n∈J1,T K,i<j≤q

(
1 + σ2

N 1Sin=Sjn

)
1G

 ,
Expand the previous product to obtain that:

(38) Mno triple
N,q (X) =

∞∑
k=0

σ2k
N

∑
(n1,i1,j1)<···<(nk,ik,jk)

E⊗qX

[
k∏
r=1

1Sirnr=Sjrnr
1G

]
.

Since there are no triple or more particle intersections on the event G, the above
sum can be restricted to 3-tuples (nr, ir, jr)r≤k such that nr < nr+1 for all r < k.
Hence,

Mno triple
N,q (X) =

∞∑
k=0

σ2k
N

∑
1≤n1<···<nk≤T,(i1<j1),...,(ik<jk)

E⊗qX

[
k∏
r=1

1Sirnr=Sjrnr
1G

]
≤ ΨN,q(X),

where Ψ is de�ned in (37), and where we have bounded 1G by 1 in the inequality. �

3.2. Decomposition in two-particle intersections. In this section, we rewrite
ΨN,q in terms of successive two-particle interactions. We generalize a decomposition
used in [7, Section 5.1] that was restricted to a third moment computation (q = 3).
The following notation is borrowed from their paper. Let

(39) UN (n, x) :=

σ2
NE⊗2

0

[
e
β2
N

∑n−1
l=1 1

S1
l

=S2
l 1S1

n=S2
n=x

]
if n ≥ 1,

1x=0 if n = 0,

and

(40) UN (n) :=
∑
z∈Z2

UN (n, z) =

σ2
NE⊗2

0

[
e
β2
N

∑n−1
l=1 1

S1
l

=S2
l 1S1

n=S2
n

]
if n ≥ 1,

1 if n = 0.

Observe that, by the identity e
β2
N1

S1
l

=S2
l − 1 = σ2

N 1S1
l =S2

l
, one has for all n ≥ 1,

(41)

E⊗2
0

[
e
β2
N

∑n−1
l=1 1

S1
l

=S2
l 1S1

n=S2
n=x

]
= E⊗2

0

[
n−1∏
l=1

(
1 + σ2

N1S1
l =S2

l

)
1S1

n=S2
n=x

]

=

∞∑
k=0

σ2k
N

∑
n0=0<n1<···<nk<n

E⊗2
0

[
k∏
r=1

1S1
nr

=S2
nr
1S1

n=S2
n=x

]
.
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Hence for all n ≥ 1:

(42) UN (n, x) = σ2
N

∞∑
k=0

σ2k
N

∑
n0=0<n1<···<nk<n=nk+1

x0=0,x1,...,xk∈Z2,xk+1=x

k+1∏
r=1

pnr−nr−1
(xr − xr−1)2.

Now, in the sum in (37), we observe that (only) two particles interact at given
times (n1 < · · · < nk). So we de�ne a1 = n1 and b1 = nr such that (n1, n2, . . . , nr)
are the successive times that verify (i1, j1) = (i2, j2) = · · · = (ir, jr) before a new
couple of particles {ir+1, jr+1} 6= {i1, j1} is considered, and we let k1 = r be the
number of times the couple is repeated. De�ne then a2 ≤ b2, a3 ≤ b3, . . . , am ≤ bm
similarly for the next interacting couples, withm denoting the number of alternating
couples and k1, . . . , km the numbers of times the couples are repeated successively.

Further let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) with Xr = (x1
r, . . . , x

q
r)

and Yr = (y1
r , . . . , y

q
r) denote respectively the positions of the particles at time ar

and br. We also write X = (xp0)p≤q, for the initial positions of the particles at
time 0. We call a diagram I of size m ∈ N any collection of m couples I = ((i1 <
j1), . . . , (im < jm)) such that {ir, jr} 6= {ir+1, jr+1}. We denote by D(m, q) the set
of all diagrams of size m.

If we re-write ΨN,q(X) according to the decomposition that we just described,
we �nd that:

ΨN,q(X) =
∞∑
m=0

∑
1≤a1≤b1<a2≤b2<···<am≤bm≤T
X,Y∈(Z2)m×q,(ir,jr)r≤m∈D(m,q)

∑
k1∈J1,b1−a1+1K,...,km∈J1,bm−am+1K

σ2k1+···+2km
N

×
∏
p≤q

pa1
(xp1 − x

p
0)
(m−1∏
r=1

∏
p≤q

par+1−br (x
p
r+1 − ypr )

) m∏
r=1

1xirr =xjrr
1yirr =yjrr

×
∑

ar<n1<···<nkr−2<br
z1∈(Z2)kr−2,...,zq∈(Z2)kr−2

kr−2∏
s=1

1zirs =zjrs

∏
p≤q

p(ar,n1,...,nkr−2,br),(xpr ,z
p
1 ,...,z

p
kr−2,y

p
r ).

See Figure 1 for a pictorial description of the intersections associated with a dia-
gram.

Summing over all the con�gurations between time ar and br gives a contribution
of σ2

N1xirr =yirr
when ar = br, and

∞∑
k=2

σ2k
N

∑
n0=ar<n1<···<nk−2<br=nk−1

x0=xirr ,x1,...,xk−2∈Z2,xk−1=yirr

k−1∏
i=1

pni−ni−1
(xi − xi−1)2

= σ2
NUN (br − ar, yirr − xirr ),

when ar < br (in this case kr ≥ 2 by de�nition). It directly follows that:

(43) ΨN,q(X) =

∞∑
m=0

σ2m
N

∑
1≤a1≤b1<a2≤b2<···<am≤bm≤T
X,Y∈Zm×q,I=(ir,jr)r≤m∈D(m,q)

AX,a,b,X,Y,I,



14 CLÉMENT COSCO AND OFER ZEITOUNI

where

AX,a,b,X,Y,I =
∏
p≤q

pa1(xp1 − x
p
0)

m∏
r=1

UN (br − ar, yirr − xirr )1xirr =xjrr
1yirr =yjrr

×
∏

p/∈{ir,jr}

p(br − ar, ypr − xpr)
m−1∏
r=1

∏
p≤q

p(ar+1 − br, xpr+1 − ypr ).(44)

We can further simplify the expression (43). Let I = (ir, jr)r≤m ∈ D(m, q) be
any diagram. For all r ≤ m, denote by k̄1

r the last index l < r such that ir ∈ {il, jl},
i.e. k̄1

r = sup{l ∈ J1, r − 1K : ir ∈ {il, jl}}. When the set is empty we set k̄1
r = 0.

De�ne k̄2
r similarly for jr instead of ir and let k̄r = k̄1

r ∨ k̄2
r . See �gure 1.

Proposition 3.2. For all X ∈ (Z2)q,

(45) ΨN,q(X) =

∞∑
m=0

σ2m
N

∑
1≤a1≤b1<a2≤b2<···<am≤bm≤T
x,y∈Zm,I=(ir,jr)r≤m∈D(m,q)

ÃX,a,b,x,y,I,

where

ÃX,a,b,x,y,I =
∏

p∈{i1,j1}

pa1
(x1 − xp0)

m∏
r=1

UN (br − ar, yr − xr)

×
m−1∏
r=1

p(ar+1 − bk̄1
r+1

, xr+1 − yk̄1
r+1

)p(ar+1 − bk̄2
r+1

, xr+1 − yk̄2
r+1

).(46)

Proof. Denote xr = xirr and yr = yirr . We obtain (46) from (44) by using the
semi group property of the random walk transition probabilities and summing, at
intersection times, over the location of particles not involved in the intersection. �

Proposition 3.3. We have that

(47) sup
X∈(Z2)q

ΨN,q(X) ≤
∞∑
m=0

∑
I∈D(m,q)

σ2m
N Am,N,I,

where

(48)
Am,N,I =

∑
ui∈J1,T K,vi∈J0,T K,1≤i≤m∑m

i=1 ui≤T

p?2u1
UN (vm)

m−1∏
r=1

UN (vr)p
?
vr+2ur+1+2ũr+1

.

with

(49) ũr =

{∑r−1
i=k̄r+1 ui if k̄r < r − 1,

ur−1

2 if k̄r = r − 1,

and p?k = supx∈Z2 pk(x).

Proof. By (45), it is enough to show that

(50) sup
X∈(Z2)q

∑
1≤a1≤b1<a2≤b2<···<am≤bm≤T

x,y∈Zm

ÃX,a,b,x,y,I ≤ Am,N,I.
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im−1

jm−1

jm

am−1 bm−1
am bm

exchanges
· · ·

exchanges
· · ·

im−1

jm−1

im

jm

am−1 bm−1
am bmak̄m

· · ·

· · ·

Figure 1. Two types of diagrams. Note the di�erent types of
exchanges. In the top diagram, k̄m = m − 1 and the mth jump
is considered short (the notion of short and long jumps is de�ned
in Section 3.5). In the bottom, the mth jump is considered long
(with respect to a given L) if m− k̄m > L+ 2. In that case, both
paths im, jm will be involved in an intersection not before am−L−2.

We begin by summing on ym, which gives a contribution of∑
ym

UN (bm − am, ym − xm) = UN (bm − am),

where UN (n) is de�ned in (40). Then summing on xm gives a factor∑
xm

p(am − bk̄1
m
, xm − yk̄1

m
)p(am − bk̄2

m
, xm − yk̄2

m
)

= p(2am − bk̄1
m
− bk̄2

m
, yk̄1

m
− yk̄2

m
) ≤ p?2am−bk̄1

m
−bk̄2

m

.

By iterating this process we obtain that the sum on x,y is bounded (uniformly on
the starting point X) by

p?2a1
UN (bm − am)

m−1∏
r=1

UN (br − ar)p?2ar+1−bk̄1
r+1
−b

k̄2
r+1

.

If we introduce the change of variables ui = ai − bi−1 and vi = bi − ai with
b0 = 0, then equation (50) follows from combining that 2ar+1 − bk̄1

r+1
− bk̄2

r+1
≥
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vr + 2ur+1 + 2ũr+1 with the monotonicity of p?n in n, which follows from

(51) p?n+1 = sup
y

∑
x

pn(x)p1(y − x) ≤ p?n.

�

3.3. Estimates on UN . It is clear from Proposition 3.3 that the function UN plays
a crucial rote in our moment estimates, which we will obtain by an induction in the
next subsection. In the current subsection, we digress and obtain a-priori estimates
on UN (and E[WN (βN )2]). Appendix B contains some improvements that are not
needed in the current work but may prove useful in follow up work.

Proposition 3.4. There exists N0 = N0(β̂) such that for all N ≥ N0 and all
n ≤ N ,

(52) E
[
Wn(βN )2

]
≤ 1

1− σ2
NRn

.

Furthermore, there exists εn = ε(n, β̂)→ 0 as n→∞, such that for all N ≥ n,

(53) E
[
Wn(βN )2

]
= (1 + εn)

1

1− β̂2 logn
logN

.

Proof. We �rst choose N0 = N0(β̂) large enough such that for all N ≥ (n ∨ N0),
we have σ2

NRn < 1. That this is possible follows from (18) which yields that

(54) ∀n ∈ N, Rn =

n∑
s=1

p2s(0) ≤ 1

π

n∑
s=1

1

s
≤ 1

π
log(n+ 1).

For the rest of the proof, we continue in this setup. Similarly to (41), we have
(letting n0 = x0 = 0) that

E
[
Wn(βN )2

]
= E0

[
e
β2
N

∑n
k=1 1

S1
k

=S2
k

]
=
∞∑
k=0

σ2k
N

∑
0<n1<···<nk≤n

∑
x1,...,xk∈Z2

k∏
i=1

pni−ni−1
(xi − xi−1)2.

Hence, we obtain by letting ni − ni−1 run free in J1, nK that

E
[
Wn(βN )2

]
≤
∞∑
k=0

σ2k
N

(
n∑

m=1

∑
x∈Z2

pm(x)2

)k
=

∞∑
k=0

σ2k
N R

k
n =

1

1− σ2
NRn

,

which gives (52). On the other hand, if we let ni − ni−1 run free in J1, n/kK, we
have

E
[
Wn(βN )2

]
≥ 1 +

∞∑
k=1

σ2k
N

 n/k∑
m=1

∑
x∈Z2

pm(x)2

k

≥ 1 +

logn∑
k=1

σ2k
N R

k
n/ logn =

1− (σ2
NRn/ logn)logn+1

1− σ2
NRn/ logn

,
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By (35) and the fact that Rn ∼ 1
π log n as n→∞ by (2), we �nd that for all N ≥ n,

E
[
Wn(βN )2

]
≥ (1 + δn)

1

1− β̂2 logn
logN

,

with δn = δn(β̂)→ 0 as n→∞. Combining this with (52) entails (53). �

Proposition 3.5. For all M ≥ 1, we have:

(55)

M∑
n=0

UN (n) = E
[
W 2
M

]
.

Moreover, there is C(β̂) > 0 such that, as N →∞ and for all n ≤ N ,

(56) UN (n) ≤ C 1(
1− β̂2 logn

logN

)2

1

n logN
.

Remark 3.6. When n → ∞, one can take the constant C that appears in (56)
arbitrarily close to one. See Appendix B.

Proof. By (42), we have, for n ≥ 1,

(57)

UN (n)

= σ2
N

∞∑
k=1

σ
2(k−1)
N

∑
0<n1<···<nk−1<nk:=n

∑
x1,...,xk∈Z2

k∏
i=1

pni−ni−1
(xi − xi−1)2

= σ2
N

∞∑
k=1

σ
2(k−1)
N

∑
0<n1<···<nk−1<nk:=n

k∏
i=1

p2ni−2ni−1(0).

Therefore,

M∑
n=0

UN (n) = 1 +

∞∑
k=1

σ2k
N

∑
0<n1<···<nk−1<nk≤M

∑
x1,...,xk∈Z2

k∏
i=1

pni−ni−1
(xi − xi−1)2

= E[W 2
M ],

which yields (55).
We now prove (56) by expressing UN as a function of a renewal process, see [6]

or [21, Chapter 1] for the general framework in the context of the pinning model.
From (57), we have the following representation for UN (n) when n ≥ 1:

UN (n) =

∞∑
k=1

(σ2
NRN )kP

(
τ

(N)
k = n

)
,

where the τ
(N)
k are renewal times de�ned by

τ
(N)
k =

∑
i≤k

T
(N)
i ,

with (T
(N)
i )i being i.i.d. random variables with distribution

P
(
T

(N)
i = n

)
=

1

RN
p2n(0)11≤n≤N , and RN =

N∑
n=1

p2n(0).
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By [6, Proposition 1.5], there exists C > 0 such that for all n ≤ N ,

(58) P
(
τ

(N)
k = n

)
≤ CkP

(
T

(N)
1 = n

)
P
(
T

(N)
1 ≤ n

)k−1

.

Hence, using that
∑∞
k=1 ka

k−1 = 1
(1−a)2 for a < 1,

UN (n) ≤ C
∞∑
k=1

(σ2
NRN )kkP

(
T

(N)
1 = n

)
P
(
T

(N)
1 ≤ n

)k−1

= C
p2n(0)

RN

σ2
NRN(

1− σ2
NRN

Rn
RN

)2 ,

which gives (56) by (2), (18) and (35). �

3.4. Summing on the vi's. In the following we denote

(59) F (u) =
1

u

1

1− β̂2 log(u)
logN

.

By di�erentiation with respect to u one checks that F is non-increasing.

Proposition 3.7. There exists N0(β̂) > 0 and εN = ε(N, β̂)↘ 0 as N →∞, such

that for all N ≥ N0(β̂),

(60) sup
X∈(Z2)q

ΨN,q(X) ≤
∞∑
m=0

σ2m
N

∑
I∈D(m,q)

(
1

π

)m−1

Ãm,N,I,

where, recalling (49),

(61) Ãm,N,I =
1

1− β̂2

∑
ui∈J1,T K,1≤i≤m

(1 + εN )mp?2u1

m∏
r=2

F (ur + ũr)1∑r
i=1 ui≤T .

Proof. By (53), (48) and (55), summing over vm in Am,N,I gives a factor bounded
by 1

1−β̂2
(1 + o(1)). We will now estimate the sum over the variable vm−1. Let

w = um + ũm. (Note that by de�nition 3/2 ≤ w ≤ T ≤ N , and that w might be a
non-integer multiple of 1/2.) Writing v = vm−1, the sum over vm−1 in (48) gives a
factor

(62)

T∑
v=0

UN (v)p?v+2um+2ũm =: S≤w + S>w,

where S≤w is the sum on the LHS of (62) restricted to v ≤ bwc. Using (56) and

(18), there exists a constant C = C(β̂) > 0 such that

(63) S>w ≤
C

logN

T∑
v=bwc+1

1

v2
≤ 1

logN

C

w
.

Using (51) and (54),

(64) S≤w ≤ p?2w
bwc∑
v=0

UN (v) = p?2wE[W 2
bwc] ≤ p

?
2w

1

1− σ2
NRbwc

.
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where the upper bound holds by (52) for all N ≥ N0(β̂) since w ≤ N . Let δN =

δ(N, β̂) → 0 such that (35) holds, and let N ′0 = N ′0(β̂) > N0(β̂) be such that

supN≥N ′0 supn≤N β̂
2 1+logn

logN (1 + δN ) < 1. By (18) and (54), we obtain that

p?2w
1

1− σ2
NRw

≤ 1

π

1

w

1

1− β̂2 1+logw
logN (1 + δN )

.

Moreover, as there is C(β̂) ∈ (0,∞) such that

sup
N≥N ′0

sup
n≤N

1

1− β̂2 1+logn
logN (1 + δN )

≤ C(β̂),

we see that there exists ε′N = ε′(N, β̂)↘N→∞ 0 such that for all n ≤ N ,∣∣∣∣∣ 1

1− β̂2 1+logn
logN (1 + δN )

− 1

1− β̂2 logn
logN

∣∣∣∣∣ ≤ ε′N
1− β̂2 logn

logN

.

Coming back to (64), we obtain that for all N ≥ N ′0(β̂),

(65) S≤w ≤
1

πw

1 + ε′N
1− β̂2 logw

logN

.

We �nally obtain from (65) and (63) that there exists ε′N = ε′(N, β)↘N→∞ 0 such
that the sum in (62) is smaller than

(1 + ε′N )
1

πw

1

1− β̂2 logw
logN

= (1 + ε′N )
1

π
F (um + ũm) .

Repeating the same observation for vm−2, . . . , v1 leads to Proposition 3.7. �

3.5. The induction pattern. Our next goal is to sum over (ur)r≤m that appear
in (61). We will sum by induction starting from r = m and going down to r = 1.
To do so, we �rst need to de�ne the notion of good and bad indices r. While
performing the induction, encountering a bad index will add some nuisance term
to the estimate. We will then show that, for typical diagrams, the bad indices are
rare enough so that the nuisance can be neglected.

Let L = LN ∈ N \ {1, 2} to be determined later. Given a diagram I ∈ D(m, q),
we say that r ∈ J1,mK is a long jump if r − k̄r > L+ 2, which means that the last
times that the two particles ir, jr have been involved in an intersection are not too
recent. We say that r is a small jump if it is not a long jump. (See Figure 1 for a
pictorial description of short (top) and long (bottom) jumps.) Since small jumps
reduce drastically the combinatorial choice on the new couple that intersects, the
diagrams that will contribute to the moments will contain mostly long jumps. Let
K = K(I) denote the number of small jumps and s1 < · · · < sK denote the indices
of small jumps. For all i ≤ K such that si − si−1 > L + 1, we mark the following
indices {si − kL − 1, k ∈ N, si − kL − 1 > si−1} as stopping indices. We then call
any long jump r a fresh index if r is stopping or if r+ 1 is a small jump. Note that
any stopping index is a fresh index. If m is a long jump we also mark it as a fresh
index. The idea is that all indices smaller than a fresh index avoid nuisance terms,
until we stumble on a stopping index or a small jump; we remark that since our
induction will be downward from m, these nuisance-avoiding indices occur in the
induction following a fresh index. Hence we say that an index r is good if it is a
long jump that is not fresh. An index k is bad if it is not good.
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For a given diagram, one can easily determine the nature of all indices via the
following procedure: (i) mark all small jumps; (ii) mark every stopping index; (iii)
mark all fresh indices; (iv) all the remaining indices that have not been marked are
good indices.

For all I ∈ D(m, q), we de�ne for all r < m

ϕ(r) = ϕ(r, I) ={
inf{r′ ≥ r, r′ is fresh} − L if r is not a stopping index and r + 1 is a long jump,

r otherwise.

We also set ϕ(m) = m. Note that because of stopping indices, the function ϕ
satis�es ϕ(r) ≤ r. Here are a few immediate observations:

Lemma 3.8. (i) If r is good, then r + 1 is a long jump.
(ii) If r ∈ J2,m− 1K is good, then ϕ(r − 1) = ϕ(r).
(iii) If r ∈ J2,mK is fresh, then ϕ(r − 1) = r − L.

Proof. Proof of (i). Suppose that r is good. It must be that r < m since by
de�nition m is either fresh or a small jump. Now, r + 1 must be a long jump
otherwise r would be fresh.

Proof of (ii). Let r ∈ J2,m−1K be a good index. We distinguish two cases. First
suppose that r− 1 is not a stopping index. Then r− 1 cannot be fresh because r is
not a small jump. Therefore ϕ(r−1) = inf{r′ > r−1, r′ is fresh}−L. Furthermore,
by (i), we have that ϕ(r) = inf{r′ ≥ r, r′ is fresh} − L and thus ϕ(r − 1) = ϕ(r).
Now assume that r− 1 is stopping. Then ϕ(r− 1) = r− 1. Moreover, by de�nition
r, . . . , r+L− 1 are long jumps and either r+L− 1 is a stopping index or r+L is
a small jump. Therefore r+L− 1 is a fresh index and r, . . . , r+L− 2 are good, so
that ϕ(r) = (r + L− 1)− L = r − 1 = ϕ(r − 1).

Proof of (iii). Let r ∈ J2,mK be a fresh index. We �rst note that r− 1 cannot be
a stopping index. Indeed, if r is a stopping index, then r − 1 cannot be stopping
by de�nition; if r is not a stopping index, then as r is fresh, r + 1 must be a small
jump and thus r − 1 cannot be stopping. Now, as r − 1 is not stopping and r is
fresh, we obtain that ϕ(r − 1) = r − L. (Note that r − 1 cannot be fresh because
r − 1 is not stopping and r is a long jump.) �

For all v ∈ [1, T ], we further let

f(v) =
logN

β̂2
log

(
1− β̂2 log v

logN

1− β̂2 log T
logN

)
.

Note that f is non-increasing. Recall (49) and the de�nition of F in (59).

Lemma 3.9. For all m ≥ 2, I ∈ D(m, q), k ∈ J1,m − 1K and
∑m−k
i=1 ui ≤ T with

ui ∈ J1, T K,

(66)

∑
ui∈J1,T K,m−k<i≤m

m∏
r=m−k+1

F (ur + ũr)1∑m−k+1
i=1 ui≤T

≤
k∑
i=0

cki
(k − i)!

1(
1− β̂2

)i f
 m−k∑
i=ϕ(m−k)

ui

k−i

.
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with c10 = 1, c11 = 2, ck+1
i ≤ cki + 2γmk

∑i−1
j=0 c

k
j for i ≤ k + 1 with γmk = 1m−k is bad

and cki = 0 for i > k.

Remark 3.10. The cki 's depend on m and I ∈ D(m, q).

Before turning to the proof, we need another result that plays a key role in the
proof of Lemma 3.9 and which clari�es the role of good indices.

Lemma 3.11. For all k ∈ J0,m− 2K, j ≤ k and
∑m−k−1
i=1 ui ≤ T with ui ∈ J1, T K,

(67)

Skf
j(u1, . . . , um−k−1) :=

T∑
um−k=1

F (um−k + ũm−k)f

 m−k∑
i=ϕ(m−k)

ui

j

1∑m−k
i=1 ui≤T

≤ 1

j + 1
f

 m−k−1∑
i=ϕ(m−k−1)

ui

j+1

+ γmk

j+1∑
l=1

j!

(j + 1− l)!
2(

1− β̂2
)l f

 m−k−1∑
i=ϕ(m−k−1)

ui

j+1−l

.

Remark 3.12. When m − k is good, the right hand side of (67) is reduced to a
single term. When m− k is bad, a nuisance term appears.

Proof. We divide the proof into three cases.
Case 1: m− k is good. Necessarily m− k+ 1 is a long jump by Lemma 3.8-(i),

so if we let rfresh = inf{r′ > m−k, r′ is fresh}, then ϕ(m−k) = rfresh−L. Because
of the presence of stopping points, we have that rfresh− (m−k) ≤ L−1. Since also
rfresh > m− k, we obtain

(m− k)− L ≤ ϕ(m− k) ≤ (m− k)− 1.

De�ne

v :=

m−k−1∑
i=ϕ(m−k)

ui ∈ J1, T K.

As m− k is a long jump, we �rst observe that

(68) ũm−k ≥ um−k−1 + · · ·+ um−k−L−1 ≥ v.

Since F and f are non-increasing, see (59), this implies that

Skf
j ≤

T∑
um−k=1

F (um−k + v) f (um−k + v)
j
1um−k+v≤T

≤
∫ T

v

1

u

1

1− β̂2 log(u)
logN

f(u)jdu =

[
− 1

j + 1
f(x)j+1

]T
v

=
1

j + 1
f(v)j+1,

where in the comparison to the integral, we have used that F (x)f(x)j decreases in
x ∈ [1, . . . T ]. Given that ϕ(m− k− 1) = ϕ(m− k) by Lemma 3.8-(ii), we have the

identity v =
∑m−k−1
i=ϕ(m−k−1) ui. Hence (67) holds.
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Case 2: m− k is fresh. By Lemma 3.8-(iii), we have ϕ(m− k− 1) = m− k−L.
This time, we de�ne

v :=

m−k−1∑
i=ϕ(m−k−1)

ui ∈ J1, T K,

and decompose

(69) Skf
j = S≤vk f j + S>vk f j ,

where S≤vk f j is the restriction of the sum in Skf
j to um−k ∈ J1, vK. Given that

m− k is a long jump, the bounds (68) hold again. Hence, using that F and f are
non-increasing, we �nd that

(70)

S≤vk f j ≤
v∑

um−k=1

1

um−k + v

1

1− β̂2 log(um−k+v)
logN

f(um−k)j1um−k+v≤T

≤ 1

v

1

1− β̂2

(
f(1)j +

∫ v

1

f(x)jdx

)
,

by comparison to an integral. By integrating by part and using that f ′(x) =
− 1
x

1

1−β̂2 log(x)
logN

, we see that for all j ≥ 1,

f(1)j +

∫ v

1

f(x)jdx = vf(v)j − j
∫ v

1

xf ′(x)f(x)j−1dx

≤ vf(v)j +
1

1− β̂2

∫ v

1

f(x)j−1dx.

If we iterate the integration by part, we obtain that

f(1)j +

∫ v

1

f(x)jdx ≤ v
j∑
i=0

j!

(j − i)!

(
1

1− β̂2

)i
f(v)j−i,

and so

(71) S≤vk f j ≤
j∑
i=0

j!

(j − i)!

(
1

1− β̂2

)i+1

f(v)j−i.

On the other hand, we have

S>vk f j ≤
T∑

um−k=v+1

1

um−k

1

1− β̂2 log(um−k)
logN

f(um−k)j

≤
∫ T

v

1

x

1

1− β̂2 log(x)
logN

f(x)jdx =

[
− 1

j + 1
f(x)j+1

]T
v

≤ 1

j + 1
f(v)j+1.

Combining the two previous estimates yields (67).

Case 3: m − k is a small jump. We have that f(
∑m−k
i=ϕ(m−k) ui) ≤ f(um−k).

Moreover ũm−k ≥ um−k−1

2 always holds. Hence, if we use the same decomposition
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as in (69) with v = um−k−1, we �nd that

S≤vk f j ≤
v∑

um−k=1

1

um−k + v/2

1

1− β̂2 log(um−k+v/2)
logN

f(um−k)j1um−k+v/2≤T

≤ 2

v

1

1− β̂2

(
f(1)j +

∫ v

1

f(x)jdx

)

≤ 2

j∑
i=0

j!

(j − i)!

(
1

1− β̂2

)i+1

f(v)j−i,

where we have used the integration by part from Case 2. Furthermore, we have
S>vk ≤ 1

j+1f(v)j+1 as in Case 2. Finally, since m−k is bad we have ϕ(m−k−1) =

m− k − 1 and therefore (67) follows. �

Proof of Lemma 3.9. We prove the lemma by induction on k. The case k = 1
follows from Lemma 3.11 with j = k = 0.

Assume now that (66) holds for some k ∈ J1,m − 2K. Then by (67) we obtain
that the LHS of (66) for the index k + 1 is smaller than the sum of all the entries

of the following matrix, where we have set µ = 1 − β̂2 and f = f(v) with v =∑m−k−1
i=ϕ(m−k−1) ui:

ck0
(k+1)!f

k+1 2γmk c
k
0

k!µ fk
2γmk c

k
0

(k−1)!µ2 f
k−1 · · · 2γmk c

k
0

µk
f

2γmk c
k
0

µk+1

0
ck1
k!µf

k 2γmk c
k
1

(k−1)!µ2 f
k−1 . . .

2γmk c
k
1

µk
f

2γmk c
k
1

µk+1

0 0
ck2

(k−1)!µ2 f
k−1 . . .

2γmk c
k
2

µk
f

2γmk c
k
2

µk+1

...
. . .

0 0 0 . . .
ckk
µk
f

2γmk c
k
k

µk+1


,

and summing over the columns gives (66) for k + 1. �

Recall (61). Lemma 3.9 yields the following.

Proposition 3.13. There exists C = C(β̂) > 0 and εN = ε(N, β̂)→ 0 as N →∞,
such that

(72) Ãm,N,I ≤ C(1 + |εN |)m
m−1∑
i=0

cm−1
i

(m− i)!
×
(

logN

β̂2

)m−i
1(

1− β̂2
)iλ2(m−i)

T,N ,

where λT,N is de�ned in (15).

Proof of Proposition 3.13. By Proposition 3.7 and Lemma 3.9 applied to k = m−1,
we have:

Ãm,N ≤
1

1− β̂2
(1 + εN )m

T∑
u1=1

C

u1

m−1∑
i=0

cm−1
i

(m− 1− i)!
f(u1)m−1−i 1(

1− β̂2
)i

≤ C

1− β̂2
(1 + ε′N )m

m−1∑
i=0

cm−1
i

(m− i)!
f(1)m−i

1(
1− β̂2

)i ,
where the second inequality comes from a comparison to an integral. This yields
(72). �
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Lemma 3.14. For all I ∈ D(m, q), for all k ≤ m:

(73) ∀i ≤ k, cki ≤ 3i
k−1∏
r=1

(1 + γmr ).

Proof. We prove it by induction on k. The estimate holds for k = 1 since c10 = 1
and c11 = 2. Suppose that (73) holds for some k ≤ m− 1. Then, for all i ≤ k + 1,

ck+1
i ≤ cki + 2γmk

i−1∑
j=0

ckj ≤
k−1∏
r=1

(1 + γmr )

3i + 2γmk

i−1∑
j=0

3j

 ≤ 3i
k∏
r=1

(1 + γmr ).

�

3.6. Proof of Theorem 2.1. By Proposition 3.1, it is enough to show that

(74) sup
X∈(Z2)q

ΨN,q(X) ≤ ceλ
2
T,N(q2)+o(q2).

for some c = c(β̂) when q → ∞ and c = c(β̂, q0) when q(N) = q0 is a constant.
Using Proposition 3.7, we have

(75) sup
X∈(Z2)q

ΨN,q(X) ≤
∞∑
m=0

σ2m
N

(
1

π

)m−1 ∑
I∈D(m,q)

Ãm,N,I,

where (72) gives an upper bound on the Ãm,N,I. Observe that by (73), we have

cm−1
i ≤ 3i2

∑m−1
i=1 1i is bad ≤ 3i22n(I)+m/L+1,

where n(I) is the number of small jumps in I. Indeed, an index i is bad if it is a small
jump or a fresh index. The number of small jumps is n(I). A fresh index is either a
stopping index or an index adjacent to a small jump or m, so the number of fresh
indices is at most 1+n(I) plus the number of stopping indices. Since stopping indices
are spaced at least L steps apart, there are at most m/L stopping indices. Hence
there are at most 2n(I) +m/L+ 1 bad indices. For a �xed n ≤ m, let us compute
the number of diagrams in D(m, q) such that n(I) = n. One has �rst to choose
the location of the bad jumps, which gives

(
m
n

)
possibilities. Now if m is a small

jump (m− k̄m ≤ L+ 2), it means that at least one of the two particles {im, jm} is
the same as one of the particles {im−L+2, jm−L+2, . . . , im−1, jm−1}, therefore there
are at most 2Lq choices for the couple (im, jm). On the other hand, if {im, jm} is
a long jump, there are at most

(
q
2

)
possibilities. By repeating the argument, we

�nally �nd that the number of diagrams in D(m, q) such that n(I) = n is less than(
m
n

)
(2Lq)n

(
q
2

)m−n
.

Hence, by (75), Proposition 3.13, Lemma 3.14 and (35), there exists εN ↘ 0
such that

sup
X∈(Z2)q

ΨN,q(X) ≤ C(β̂)×

∞∑
m=0

(1 + εN )m
m∑
n=0

(
m

n

)
(2Lq)n

(
q

2

)m−n m∑
i=0

3i22n+m/L+1

(m− i)!

(
β̂2

logN

)i
λ

2(m−i)
T,N(

1− β̂2
)i .
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The sum over n gives a factor of (8Lq +
(
q
2

)
)m. Exchanging the sum in i and m

entails

sup
X∈(Z2)q

ΨN,q(X) ≤ C
∞∑
i=0

(1 + εN )i3i2i/L

(
β̂2

logN

)i(
8Lq +

(
q

2

))i
1(

1− β̂2
)i×

∞∑
m=i

(1 + εN )m−i ×
(

8Lq +

(
q

2

))m−i
2(m−i)/L

(m− i)!
λ

2(m−i)
T,N .

So if we assume that

(76) r = 3(1 + εN )
21/L(

1− β̂2
) ( β̂2

logN

)(
8Lq +

(
q

2

))
< 1,

we obtain the bound:

(77) sup
X∈(Z2)q

ΨN,q(X) ≤ C

1− r
e(1+εN )(8Lq+(q2))21/Lλ2

T,N .

If q(N) = q0 ∈ N is constant, we can let L = 3. Then, the condition (76) is

trivially satis�ed since r → 0 as N → ∞ for any �xed β̂ < 1. Hence (74) holds
in this case. (In fact, when q is constant, it is not necessary to introduce the
distinction between good and bad indexes, as one can treat every index as a bad
index in the induction (Lemma 3.9 and Lemma 3.11) and still arrive to (74) with
the same following arguments.)

If q = q(N) → ∞, then we can choose any L → ∞ such that L = o(q), so that
together with (7), the estimate (74) holds. �

4. Discussion and concluding remarks

We collect in this section several comments concerning the results of this paper.

(1) Our results allow one already to obtain some estimates on the maximum of
YN (x) := logWN (βN , x) over subsets D ⊂ [0, 1]2. Speci�cally, let γ > 0 be
given and de�ne Y ∗N = supx∈D YN (x), where |D| = N2γ . By Chebyshev's
inequality we have that

P
(
Y ∗N ≥ δ

√
logN

)
≤ 2N2γP

(
YN (0) ≥ δ

√
logN

)
≤ 2N2γE[W q

N ]e−qδ
√

logN ≤ N2γ+ q2λ2

2 logN−
qδ√
logN

+o(1)
,

where we used (8) in the last inequality. The optimal q (disregarding the
constraint in (7)) is q/

√
logN = δ/λ2, and for that value the right side

of the last display decays to 0 if δ2 > 4γλ2. The condition on q in (7)

then gives the constraint that γ < 1
6λ

2 1−β̂2

β̂2
, which for β̂ small reduces

to γ < 1/6. Thus, our estimates only allow one to consider, for β̂ small,
the maximum over small subsets, if one shoots for the conjectured optimal
estimate. (We note that one would hope for γ = 1/2, which would allow to
consider the maximum over x ∈ [0, 1]2.)

(2) In view of the last sentence in Remark 1.2, it would be of interest to obtain
a lower bound on E[W q

N ] that matches the upper bound, that is, E[W q
N ] ≥

e(
2
q)λ

2(1−εN ). This is the topic of work in progress that will be reported
elsewhere.
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Appendix A. Proof of (18)

First note that p?2n ≤ p2n(0) since, by the Cauchy-Schwarz inequality,

p2n(x) =
∑
y

pn(x− y)pn(y) ≤
∑
y

pn(y)2 = p2n(0).

Let p
(d)
2n be the return probability of d-dimensional SRW to 0. A direct com-

putation gives that p
(2)
2n = (p

(1)
2n )2 (see e.g. [19, Page 184]). We will show that

an =
√

2np
(1)
2n is increasing. We have,

an =
√

2n2−2n

(
2n
n

)
.

Hence,

an+1

an
=

1

4

√
n+ 1

n

(2n+ 2)(2n+ 1)

(n+ 1)2

=
√

1/(n(n+ 1))(n+ (n+ 1))/2.

Since (a+ b)/2 ≥
√
ab, we conclude (using a = n and b = n+ 1) that an+1/an ≥ 1.

Let p
(1)
2n+1 be the probability of the 1-dimensional SRW to come back to 1 in

2n + 1 steps. By the random walk representation [19, Remark in Pg. 185], we

have that p?2n+1 ≤ (p
(1)
2n+1)2. A similar line of argument to the above shows that

bn =
√

2n+ 1p
(1)
2n+1 is increasing in n. Indeed,

bn+1

bn
=

1

4

√
2n+ 3√
2n+ 1

(2n+ 3)(2n+ 2)

(n+ 2)(n+ 1)

=
2n+ 3

2
√

(n+ 1)(n+ 2)

√
(2n+ 3)(n+ 1)√
(2n+ 1)(n+ 2)

,

where the �rst fraction is bigger than 1 by the formula (a+ b)/2 ≥
√
ab, as well as

the second fraction by expanding the products.
Now, we know from the local limit theorem that an and bn converge to 2/

√
2π,

thus they are always smaller than this limit. This leads to (18). �

Appendix B. Improved estimates on UN

When n is taken large enough, the estimate (56) can be improved as follows.

Proposition B.1. There exists εn = ε(n, β̂)→ 0 such that as n→∞ with n ≤ N ,

(78) UN (n) = (1 + εn)
β̂2(

1− β̂2 logn
logN

)2

1

n logN
.



28 CLÉMENT COSCO AND OFER ZEITOUNI

Proof. Since (S1
n − S2

n)
(d)
= (S2n), we can write

(79) UN (n+ 1) = σ2
NE0

[
eβ

2
N

∑n
i=1 1S2i=01S1

2n=0

]
.

Consider ` = `n = n1−εn with εn = 1
log logn , so that `n = o(n) and εn → 0.

First step: As n→∞ with n ≤ N ,

(80) E0

[
eβ

2
N

∑n
i=1 1S2i=01S2n=0

]
∼ E0

[
eβ

2
N (

∑`
i=1 1S2i=0+

∑n
i=n−` 1S2i=0)1S2n=0

]
.

We compute the norm of the di�erence which, using that |e−x − 1| ≤ |x| for x ≥ 0,
is less than

E0

eβ2
N

∑n
i=1 1S2i=01S2n=0 × β2

N

n−∑̀
j=`

1S2j=0


= β2

N

n−∑̀
j=`

E0

[
eβ

2
N

∑j
i=1 1S2i=01S2j=0

]
E0

[
eβ

2
N

∑n−j
i=1 1S2i=01S2(n−j)=0

]
.

where we have used Markov's property in the second line. By (79) and (56), the
last sum is smaller than

Cβ2
N

n−∑̀
j=`

1

j

1

n− j
≤ 2Cβ2

N

n/2∑
j=`

1

j

1

n/2
≤ 1

n
C ′β2

N log

(
n

`n

)
≤ 1

n
C ′′εn = o(n−1).

Since the left hand side of (80) is bigger than cn−1 for some constant c > 0, this
shows (80).
Second step: As n→∞ with n ≤ N ,

(81)
E0

[
eβ

2
N (

∑`
i=1 1S2i=0+

∑n
i=n−` 1S2i=0)1S2n=0

]
∼ E0

[
eβ

2
N

∑`
i=1 1S2i=0

]
E0

[
eβ

2
N

∑n
i=n−` 1S2i=01S2n=0

]
.

By Markov's property, we can write the LHS of (81) as∑
x∈Z2

E0

[
eβ

2
N

∑`
i=1 1S2i=01S2`=xEx

[
eβ

2
N

∑n−`
i=n−2` 1S2i=01S2n−`=0

]]
=
∑
x∈Z2

E0

[
eβ

2
N

∑`
i=1 1S2i=01S2`=xE0

[
eβ

2
N

∑`
i=1 1S2i=01S2n−`=x

]]
.

Therefore the di�erence in (81) writes
∑
x∈Z2 ∆x with

∆x := E0

[
eβ

2
N

∑`
i=1 1S2i=01S2`=xE0

[
eβ

2
N

∑`
i=1 1S2i=0

(
1S2n−`=0 − 1S2n−`=x

)]]
.

Since E0

[
eβ

2
N

∑`
i=1 1S2i=0

]
≤ C(β̂) by (52), we have∑

|x|>
√
`nε/4

|∆x| ≤ C
∑

|x|>
√
`nε/4

E0

[
eβ

2
N

∑`
i=1 1S2i=01S2`=x

]
.

By Hölder's inequality with p−1 + q−1 = 1, and p small enough so that
√
pβ̂ < 1,

E0

[
eβ

2
N

∑`
i=1 1S2i=01S2`=x

]
≤ E0

[
epβ

2
N

∑`
i=1 1S2i=0

] 1
p

p2`(x)
1
q ≤ C(β̂)`−1

n e−
1
2q
|x|2
`n ,
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for n large enough. Therefore,∑
|x|>
√
`nε/4

|∆x| ≤ C
∑

|x|>
√
`nε/4

`−1
n e−

1
2q
|x|2
`n ,≤ Ce−

1
2qn

ε/2

= o(n−1).

We now estimate the sum on ∆x for |x| ≤
√
`nε/4. We start by bounding the

expectation inside the de�nition of ∆x:

(82)

E0

[
eβ

2
N

∑`
i=1 1S2i=0

(
1S2n−`=0 − 1S2n−`=x

)]
=
∑
y∈Z2

E0

[
eβ

2
N

∑`
i=1 1S2i=01S`=y

]
(p2n−2`(y)− p2n−2`(y − x)) .

By the same argument as above, we can prove that the above sum restricted to
|y| ≥

√
`nε/4 is negligible with respect to n−1, uniformly for |x| ≤

√
`nε/4. On the

other hand, by the local limit theorem we have

sup
|x|≤
√
`nε/4,|y|≤

√
`nε/4

|p2n−2`(y)− p2n−2`(y − x)| = o(n−1).

since `nn
ε/2 = n1−εn/2 = o(n). Thus, the quantity in (82) is bounded uniformly

for |x| ≤
√
`nε/4 by

E0

[
eβ

2
N

∑`
i=1 1S2i=0

]
× o(n−1) = o(n−1).

This completes the proof of (81).
Third step: As n→∞ with n ≤ N ,

(83) E0

[
eβ

2
N

∑n
i=n−` 1S2i=01S2n=0

]
∼ E0

[
eβ

2
N

∑`
i=1 1S2i=0

]
p2n(0).

Equivalence (83) can be proven by following the same line of arguments as used to
prove (81), hence we omit its proof.

Now, combining the three steps leads to the equivalence

E0

[
eβ

2
N

∑n
i=1 1S2i=01S2n=0

]
∼ E0

[
eβ

2
N

∑`
i=1 1S2i=0

]2
p2n(0).

By (53), as log ` ∼ log n, we have

E0

[
eβ

2
N

∑`
i=1 1S2i=0

]
∼ 1

1− β̂2 logn
logN

,

and so (78) follows from (79) and the last two displays. �

Appendix C. Khas'minskii's lemma for discrete Markov chains

The following theorem is another discrete analogue of Khas'minskii's lemma,
compare with Lemma 2.2.

Theorem C.1. Let (Yn)n be any markov chain on a discrete state-space E and let
f : E → R+. Then for all k ∈ N, if

(84) η0 := sup
x∈E

Ex

[
k∑

n=1

(ef(Yn) − 1)

]
< 1,

one has

(85) sup
x∈E

Ex

[
e
∑k
n=1 f(Yn)

]
≤ 1

1− η0
.
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Proof. Denote by Dn = ef(Yn) − 1. We have,

Ex

[
e
∑N
n=1 f(Yn)

]
= Ex

[
N∏
n=1

(1 +Dn)

]
=

∞∑
p=0

∑
1≤n1<···<np≤k

Ex

[
p∏
i=1

Dni

]

=

∞∑
p=0

∑
1≤n1<···<np−1≤k

Ex

p−1∏
i=1

DniEYnp−1

k−np−1∑
n=1

Dn


(84)
≤

∞∑
p=0

η0

∑
1≤n1<···<np−1≤k

Ex

[
p−1∏
i=1

Dni

]
≤ · · · ≤

∞∑
p=0

ηp0 =
1

1− η0
.

�

Corollary C.2. Let (Yn)n be any markov chain on a discrete state-space E and
let f : E → [0, 1]. Then for all k ∈ N, if

(86) η1 := sup
x∈E

Ex

[
k∑

n=1

f(Yn)

]
< 1,

one has

(87) sup
x∈E

Ex

[
e
∑k
n=1 f(Yn)

]
≤ 1

1− η1
.

Proof. Simply observe that ef(x) − 1 ≤ ecf(x) and apply Theorem C.1. �
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