Stochastic approximation of eigenvectors and eigenvalues of the Q-symmetric expectation of a random matrix - Archive ouverte HAL
Article Dans Une Revue Communications in Statistics - Theory and Methods Année : 2024

Stochastic approximation of eigenvectors and eigenvalues of the Q-symmetric expectation of a random matrix

Résumé

We establish an almost sure convergence theorem of the stochasticapproximation process of Oja for estimating eigenvectors of theQ-symmetric expectation of a random matrix, under a correlationmodel between the incoming random matrices. This theorem gener-alizes previous theorems and extends them to the case where themetricQis unknown and estimated online in parallel. We apply it tostreaming principal component analysis of a random vectorZ, whena mini-batch of observations ofZis used at each step or all theobservations up to the current step. We deal with the case ofstreaming generalized canonical correlation analysis, with a metricestimated online in parallel.
Fichier principal
Vignette du fichier
Online estim EV Q-sym matrix 20220823.pdf (888.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03956687 , version 1 (25-01-2023)

Identifiants

Citer

Jean-Marie Monnez. Stochastic approximation of eigenvectors and eigenvalues of the Q-symmetric expectation of a random matrix. Communications in Statistics - Theory and Methods, 2024, 53 (5), pp.1669-1683. ⟨10.1080/03610926.2022.2107225⟩. ⟨hal-03956687⟩
61 Consultations
143 Téléchargements

Altmetric

Partager

More