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Abstract. We establish an almost sure convergence theorem of the stochastic 

approximation process of Oja for estimating eigenvectors of the Q-symmetric expectation 

of a random matrix, under a correlation model between the incoming random matrices. 

This theorem generalizes previous theorems and extends them to the case where the 

metric 𝑄 is unknown and estimated online in parallel.  We apply it to streaming PCA of 

a random vector Z, when a mini-batch of observations of Z is used at each step or all the 

observations up to the current step. We deal with the case of streaming generalized 

canonical correlation analysis, with a metric estimated online in parallel.  

Keywords: big data; online learning; stochastic approximation; streaming gCCA; 

streaming PCA 

1. Introduction 

Let 𝑄 be a positive definite symmetric 𝑝 × 𝑝 matrix called metric, 〈. , . 〉 be the inner 

product and ‖. ‖ the norm induced by 𝑄. For vectors in ℝ , 𝑄-orthogonal and 𝑄-normed 

respectively denote orthogonal and normed with respect to the metric 𝑄. Recall that a 𝑝 ×

𝑝 matrix B is 𝑄-symmetric if 𝑄𝐵 is symmetric; then 𝐵 has p real eigenvalues and there 

exists a 𝑄-orthonormal basis of ℝ  comprised of eigenvectors of 𝐵. Let ℝ ∗ be the dual 

space of ℝ . Let ‖𝐵‖ denote the spectral norm of 𝐵. Let 𝐴т denote the transpose of a 

matrix 𝐴. Let (∙) denote a sequence of matrices or vectors or reals depending on the 

context. The abbreviation a.s. stands for almost surely.  
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In the context of streaming data or big data since one can process the latter sequentially 

as a data stream, stochastic approximation algorithms can be used to estimate online, for 

example, parameters of a regression function (Lalloué, Monnez and Albuisson 2022), 

centers of clusters in unsupervised classification (Cardot, Cénac and Monnez 2012), 

principal components in a principal component analysis (PCA) (Cardot and Degras 

2018). Each incoming observation vector is used to update the estimate sequence until 

the latter converges to the quantity of interest. When using such processes, it is not 

necessary to store the data and, due to the relative simplicity of the computation involved, 

a much greater number of data than with non-sequential methods can be taken into 

account during the same amount of time. Moreover, this type of method uses less memory 

space than a batch method (Balsubramani, Dasgupta and Freund 2013). In this context, 

we deal with the problem of estimating by a recursive process eigenvectors and 

corresponding eigenvalues in decreasing order of the unknown 𝑄-symmetric expectation 

𝐵 of a random 𝑝 × 𝑝 matrix. 

Many articles have been devoted to this problem when 𝐵 is a symmetric matrix (𝑄 =  𝐼). 

See among others the algorithms of Benzécri (1969), Krasulina (1970), Oja (1982), 

Karhunen and Oja (1982), Oja and Karhunen (1985), Brandière (1994, 1995, 1998), 

Brandière and Duflo (1996) and Duflo (1997) in the case of PCA. Oja and Karhunen 

(1985) proved the a.s. convergence to a normed eigenvector 𝑉 , corresponding to the 

largest eigenvalue 𝜆  of 𝐵 of unit multiplicity, of the process (Xn) defined recursively at 

step 𝑛 by 𝑋 =
( )

‖( ) ‖
, assuming the random 𝑝 × 𝑝 matrices 𝐵 , 𝑛 ≥  1, mutually 

independent with expectation 𝐵 and a.s. bounded (‖𝐵 ‖ ≤ 𝑏 ∈ ℝ ), with 𝑎 >

0, ∑ 𝑎 = ∞, ∑ 𝑎 < ∞. They proved the convergence of processes 𝑋 , 1 ≤ 𝑖 ≤

𝑝, of the same type, for estimating, after orthonormalization, eigenvectors 𝑉  

corresponding to the eigenvalues 𝜆  in decreasing order. The assumption of independence 

of the random matrices 𝐵  may not hold, for instance in the streaming PCA of a random 

vector 𝑍 in ℝ , when the expectation of 𝑍 and the metric 𝑀 in ℝ  are estimated online 

(Section 4). Using different methods of proof, Monnez and Skiredj (2021) studied two 

cases where the matrices 𝐵  are not independent, the first when 𝐸[𝐵 |𝑇 ] converges a.s. 

to 𝐵, 𝑇  being the 𝜎-field generated by 𝐵 , … , 𝐵 , the second when 𝐵  converges a.s. 

to 𝐵. 

The present study extends and generalizes previous results in two directions - the metric 

𝑄 is supposed unknown and the matrices 𝐵  not independent -, proves in a single theorem 



the convergence of processes using a mini-batch of observations at each step and of those 

using all the observations up to the current step, and gives applications to streaming PCA 

and generalized canonical correlation analysis (gCCA). The unknown metric 𝑄 is 

estimated online. We use a correlation model between the matrices 𝐵  defined by 

assumptions on the weighted averaging process (𝑈 ) such that 𝑈 = (1 − 𝑎 )𝑈 +

𝑎 𝐵 , 𝑈 = 0. In the vector case, this model was used for Robbins-Monro type processes 

for example by Ljung, Pflug and Walk (1992) and Monnez (1991, 2006). This model has 

for particular cases those studied by Monnez and Skiredj (2021). In Section 2, we define 

processes 𝑋 , 1 ≤ 𝑖 ≤ 𝑟 ≤  𝑝, which converge to eigenvectors corresponding to the 𝑟 

largest eigenvalues of 𝐵 in decreasing order under assumptions on (𝑈 ); a Gram-Schmidt 

orthonormalization is made at step 𝑛 with respect to a metric 𝑄  such that 𝑄  converges 

a.s. to 𝑄 as n goes to infinity; in the same theorem, we prove the convergence of specific 

processes to the eigenvalues (Theorem 1). In Section 3, we give sufficient conditions on 

(𝐵 ) to verify the assumptions on (𝑈 ) and deduce corollaries of Theorem 1. In Section 

4, we give another corollary in the application to streaming PCA of a random vector 𝑍, 

using a mini-batch of current observations of 𝑍 at each step of the processes or all the 

observations up to the current step. In Section 5, we study the application to streaming 

generalized canonical correlation analysis (gCCA) interpreted as a PCA with a specific 

metric that is estimated online by a stochastic approximation process parallel to the 

processes 𝑋 . All the proofs are in Section 6.  

2. Extended almost sure convergence theorem 

For a random metric 𝑄  in ℝ , let 〈. , . 〉  be the inner product and ‖. ‖  the norm induced 

by 𝑄 . For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑝, we recursively define the processes 𝑋 , 𝑌 , 𝑋  in 

ℝ  such that, for 𝑛 ≥ 1: 

𝑌 = (𝐼 + 𝑎 𝐵 )𝑋 , 

𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 𝑋 ,   𝑋 = . 

The set of vectors (𝑋 , … , 𝑋 ) is obtained by Gram-Schmidt orthonormalization with 

respect to 𝑄  of 𝑌 , … , 𝑌 . The assumptions on 𝐵, respectively 𝐵 , 𝑈 , 𝑎 , 𝑄 , 

𝑋 , are denoted H1, respectively H2a, H2b, H3, H4, H5. Assume: 

(H1a) 𝐵 is 𝑄-symmetric. (H1b) The r largest eigenvalues of 𝐵 are simple. 



(H2a) For all 𝑛, 𝐼 + 𝑎 𝐵  is invertible.  

(H3a) 𝑎 > 0, ∑ 𝑎 = ∞, ∑ 𝑎 < ∞. (H4) 𝑄 → 𝑄, ∑ 𝑎 ‖𝑄 − 𝑄‖ < ∞ a.s. 

(H5) 𝑋 , 𝑖 ∈ {1, … , 𝑟}, is an absolutely continuous random variable with respect 

to the Lebesgue measure, independent of the sequence (𝐵 ). 

We recursively define the weighted averaging process (𝑈 ) in the set of 𝑝 × 𝑝 matrices 

and for 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑝, the process Λ  in ℝ, such that, for 𝑛 ≥ 1: 

𝑈 = (1 − 𝑎 )𝑈 + 𝑎 𝐵 , 𝑈 = 0. For 𝑎 = , 𝑈 = ∑ 𝐵 . 

Λ =  〈𝑈 𝑋 , 𝑋 〉 . 

We assume H2b on 𝑈 : 

(H2b) 𝑈 → 𝐵, ∑ 𝑎 ‖𝑈 − 𝐵‖ < ∞, ∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ < ∞ a.s. 

 

Theorem 1. Under H1a,b on 𝐵, H2a on 𝐵 , H2b on 𝑈 , H3a on 𝑎 , H4 on 𝑄  and H5 

on 𝑋 , for 𝑖 ∈ {1, … , 𝑟}, 𝑋  converges to 𝑉  or −𝑉 , Λ  converges to 𝜆 ,

∑ 𝑎 〈𝐵𝑋 , 𝑋 〉 − 𝜆 < ∞ and  ∑ 𝑎 Λ − 𝜆 < ∞ a.s. 

 

In the proof, we use Theorem 1ii of Monnez and Skiredj (2021) as a lemma: 

Lemma 1. Consider the process (𝑋 ) in ℝ  such that 𝑋 =
( )

‖( ) ‖
 . Under H1a,b 

for 𝑟 = 1 on 𝐵, H2a on 𝐵 , H3a on 𝑎 , H5 on 𝑋  and  ∑ 𝑎 ‖𝐵 − 𝐵‖ < ∞ a.s., 𝑋  

converges to 𝑉  or −𝑉 , ∑ 𝑎 (𝜆 − 〈𝐵𝑋 , 𝑋 〉) < ∞, ∑ 𝑎 |𝜆 − 〈𝐵 𝑋 , 𝑋 〉| < ∞ a.s. 

 

3. Particular cases of the correlation model 

3.1 Lemmas 

We establish sufficient conditions on 𝐵  to ensure the assumption H2b on 𝑈 . 𝑇  being 

the 𝜎-field generated by 𝑋 , 𝑄 , 𝐵 , 𝐵 , 𝑄 , … , 𝐵 , 𝐵 , 𝑄 , assume 𝐵 = 𝐵 + 𝐵 , 

𝐸[𝐵 |𝑇 ] = 0, 𝑈 = 𝑈 + 𝑈 , 𝑈 = (1 − 𝑎 )𝑈 + 𝑎 𝐵 , 𝑖 ∈ {1,2}, 𝑈 + 𝑈 = 0, 

and: 

(H2c) ∑ 𝑎  ‖𝐵 − 𝐵‖ < ∞ a.s.  (H2d) 𝐸[𝐵 |𝑇 ] = 0 a.s., 𝑠𝑢𝑝 𝐸[‖𝐵 ‖ ] < ∞. 

(H2e) ∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ < ∞ a.s.   (H2f) 𝑠𝑢𝑝 ‖𝐵 ‖ < ∞ a.s.  

(H3b) 𝑎 > 0, ∑ 𝑎 = ∞, ∑ 𝑎
⁄

< ∞,
 

≤ 1 + 𝛾𝑎 + 𝛾 , 0 < 𝛾 < 2,

𝛾 ≥ 0, ∑ 𝛾 < ∞.  



Assumption H3b implies H3a. Note that, when 𝑎 = , H3b is verified from a certain 

rank 𝑛  for < 𝛼 < 1 and if 𝑎 >  for 𝛼 = 1.  

 

Lemma 2. Under H2c on 𝐵 , 𝑎 > 0, 𝑎 = 𝑜(1) and ∑ 𝑎 = ∞, we have: 𝑈 → B, 

∑ 𝑎 ‖𝑈 − 𝐵‖ < ∞, ∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ < ∞ a.s. For 𝑈 = 0, H2b holds.  

 

Lemma 3. Under H2d on 𝐵 , H3a, 
 

≤ 1 + 𝛾𝑎 + 𝛾 , 0 < 𝛾 < 2, 𝛾 ≥ 0 and   

∑ 𝛾 < ∞, we have: 𝑈 → 0 a.s., ∑ 𝑎 𝐸[‖𝑈 ‖ ] < ∞, ∃ 𝑏 > 0: 𝐸[‖𝑈 ‖ ] ≤ 𝑏𝑎 ; 

for ∑ 𝑎 < ∞ , ∑ 𝑎 ‖𝑈 ‖ < ∞ a.s. 

 

Lemma 4. Under H2c on 𝐵 , H2d on 𝐵  and H3b on 𝑎 , we have: 𝑈 → 𝐵, 

∑ 𝑎 ‖𝑈 − 𝐵‖ < ∞ a.s.; if H2e or H2f on 𝐵  also holds, ∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ < ∞ 

a.s. 

3.2 Corollaries 

Let A be the set of the assumptions H1a,b on B, H2a on 𝐵 , H3b on 𝑎 , H4 on 𝑄 , 

H5 on 𝑋 . By Lemma 4, H2b holds under H2c, H2d, H2e or H2f, H3b; then: 

Corollary 1. Under A, H2c on 𝐵 , H2d on 𝐵  and H2e or H2f on 𝐵 , Theorem 1 holds. 

 

1) Let 𝐵 = 𝐵, 𝐵 = 𝐵 − 𝐵. Let 𝑈 = 𝐵, then 𝑈 = 𝐵 for 𝑛 ≥ 1. H2c,e hold. 

Corollary 2. Under A, 𝐸[𝐵 |𝑇 ] = 𝐵 and 𝑠𝑢𝑝 𝐸[‖𝐵 − 𝐵‖ ] < ∞, Theorem 1 holds. 

This corollary is an extension of Theorem 2 of Oja and Karhunen (1985), which was 

demonstrated by the ODE method assuming 𝑄 = 𝐼, the 𝑟 largest eigenvalues of 𝐵 are 

positive and ‖𝐵 ‖ ≤ 𝑏 a.s. 

 

2) Let 𝐵 = 𝐸[𝐵 |𝑇 ], 𝐵 = 𝐵 −  𝐸[𝐵 |𝑇 ].  

Corollary 3. Under A, ∑ 𝑎 ‖𝐸[𝐵 |𝑇 ] − 𝐵‖ < ∞, 𝑠𝑢𝑝 𝐸[‖𝐵 −  𝐸[𝐵 |𝑇 ]‖ ] < ∞ 

and 𝑠𝑢𝑝 ‖𝐵 −  𝐸[𝐵 |𝑇 ]‖ < ∞ a.s., Theorem 1 holds. 

This corollary, applying when 𝐸[𝐵 |𝑇 ] converges a.s. to 𝐵, is an extension of Theorem 

1i and Corollary 2i of Monnez and Skiredj (2021), which was demonstrated using a 

method of Duflo (1997, 343) and arguments of exterior algebra, assuming 𝑄 known, 



∑ 𝑎 𝐸[‖𝐸[𝐵 |𝑇 ] − 𝐵‖] < ∞, there exists 𝑏 > 0 such that 𝑠𝑢𝑝 ‖𝐵 ‖ < 𝑏 a.s. and 

another assumption not used here.  

 

3) Let 𝐵 = 𝐵 , 𝐵 = 0, 𝑈 = 0, then 𝑈 = 0 for 𝑛 ≥ 1.   

By Lemma 2, H2b on 𝑈  holds under H2c and H3a. Thus ∑ 𝑎 〈𝐵𝑋 , 𝑋 〉 − 𝜆 < ∞ 

a.s. by Theorem 1; under H2c and H4, ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝜆 < ∞ a.s. 

Corollary 4. Under A with H3b replaced by H3a and ∑ 𝑎  ‖𝐵 − 𝐵‖ < ∞ a.s., 

Theorem 1 holds and for 𝑖 ∈ {1, … , 𝑟}, ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝜆 < ∞ a.s. 

This corollary, applying when 𝐵  converges a.s. to 𝐵, is an extension of Theorem 1ii and 

Corollary 2ii of Monnez and Skiredj (2021) demonstrated using the theorem of Robbins 

and Siegmund (1971) and arguments of exterior algebra, assuming 𝑄 known. 

For example, assume that the random matrices 𝐵  are i.i.d. with 𝐸[𝐵 ] = 𝐵, 𝐸[‖𝐵 ‖ ] <

∞. Let 𝑉 = ∑ 𝐵 . Then 𝐸[𝑉 ] = 𝐵, 𝐸[‖𝑉 − 𝐵‖ ] = 𝑂 , 𝑉 → 𝐵 a.s. Assuming 

∑
√

< ∞, we have ∑ 𝑎 ‖𝑉 − 𝐵‖ < ∞ a.s. Defining the processes 𝐹  by replacing 

𝐵  by 𝑉  in the definition of the processes 𝑋 , we can apply Corollary 4 to these new 

processes. 

Likewise, by Lemma 4, under H2c, H2d and H3b, 𝑈 → 𝐵, ∑ 𝑎 ‖𝑈 − 𝐵‖ < ∞ a.s. 

Defining the processes 𝐹  by replacing 𝐵  by 𝑈  in the definition of the processes 𝑋 , 

we can apply Corollary 4 to these new processes. 

4. Application to streaming PCA 

4.1 Formulation of PCA 

Let 𝑍 , … , 𝑍  be the components of a random vector 𝑍 in ℝ  defined on a probability 

space (Ω, 𝒜, P) and 𝐶 = 𝐸[(𝑍 − 𝐸[𝑍])(𝑍 − 𝐸[𝑍])т] its covariance matrix. Let 𝑀 be a 

metric in ℝ  defining a distance between two observations of 𝑍.  

 

Formulation of PCA. For 𝑙 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑝, determine at step 𝑙 a linear combination 

of the centered components of 𝑍, 𝑈 = 𝑐 (𝑍 − 𝐸[𝑍]), 𝑐  ∈  ℝ ∗, called 𝑙𝑡ℎ principal 

component, which is uncorrelated with 𝑈 , … , 𝑈  and of maximum variance under the 

constraint 𝑐 𝑀  𝑐 = 1. 

 



Thus we have to maximize the quadratic form  𝑐 𝐶𝑐 under the constraints 𝑐 𝐶𝑐 = 0, 𝑗 ∈

{1, … , 𝑙 − 1}, and 𝑐 𝑀 𝑐 = 1. 𝑐  is an eigenvector of the 𝑀 -symmetric matrix 𝐵 =

𝑀𝐶 (𝑄 = 𝑀 ) corresponding to its 𝑙𝑡ℎ largest eigenvalue 𝜆 .  

𝑢  = 𝑀 𝑐  is an eigenvector of the 𝑀-symmetric matrix 𝐶𝑀 corresponding to 𝜆  and 

maximizes the quadratic form 𝑢 𝑀𝐶𝑀𝑢 = 𝑢 𝑀𝐸[(𝑍 − 𝐸[𝑍])(𝑍 − 𝐸[𝑍])т]𝑀𝑢 =

𝐸[((𝑍 − 𝐸[𝑍]) 𝑀𝑢) ] under the constraints 𝑢 𝑀𝑢 = 0, 𝑗 ∈ {1, … , 𝑙 − 1}, and 𝑢 𝑀𝑢 =

1. The axis (𝐸[𝑍], 𝑢 ) with origin 𝐸[𝑍] and 𝑀-unit vector 𝑢  is called the 𝑙𝑡ℎ principal 

axis. For all 𝜔 ∈ Ω, (𝑍(𝜔) − 𝐸[𝑍]) 𝑀𝑢  is the abscissa of the 𝑀-orthogonal  projection 

of 𝑍(𝜔) − 𝐸[𝑍] on the axis (𝐸[𝑍], 𝑢 ). The subspace generated by 𝑢 , … , 𝑢  maximizes 

𝐸[‖Π(𝑍 − 𝐸[𝑍])‖ ] with Π the 𝑀-orthogonal projection operator on a 𝑟-dimensional 

subspace containing 𝐸[𝑍]. 

A particular case of PCA is normed PCA, in which 𝑀 is the diagonal matrix of the 

inverses of the variances of the components of 𝑍. Normed PCA is equivalent to using 

standardized data, i.e. observations of 𝑀 ⁄ (𝑍 − 𝐸[𝑍]), and the identity metric, hence the 

same importance is given to each of the components of 𝑍 in this PCA.  

 

4.2 Stochastic approximation of the principal components of PCA 

Let 𝑍 , … , 𝑍 , … , 𝑍 , … , 𝑍 , …  be a sequence of i.i.d. observations of 𝑍, 

𝑍 , … , 𝑍  being taken into account at step 𝑛 of the processes. Let �̅�  be the mean of 

the sample 𝑍 , … , 𝑍  and 𝐶  its covariance matrix, 𝐶 = ∑ ∑ 𝑍 𝑍т −

�̅� �̅�т  with 𝜇 = ∑ 𝑚 ; let a random matrix 𝑀  be an estimator of 𝑀 recursively 

computed from this sample.  

We define the processes 𝑌 , 𝑋 , 𝑋 , Λ , 𝑖 ∈ {1, … , 𝑟} as in Section 2: 

𝑌 = (𝐼 + 𝑎 𝐵 )𝑋 ,   𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 𝑋 , 

𝑋 = , 𝑈 = (1 − 𝑎 )𝑈 + 𝑎 𝐵 , 𝑈 = 0, 

Λ =  〈𝑈 𝑋 , 𝑋 〉 , with 

𝐵 = 𝑀 𝜔 (𝑆 − �̅� �̅�т) + 𝜔 (𝑆 − �̅� �̅�т)  

= 𝑀 (𝜔 𝑆 +𝜔 𝑆 − �̅� �̅�т),  𝑆 = ∑ ∑ 𝑍 𝑍т ,  𝑆 = ∑ 𝑍 𝑍т , 

𝜔 ≥ 0, 𝜔 ≥ 0, 𝜔 + 𝜔 = 1. 

At step 𝑛, the orthonormalization is made with respect to the metric 𝑄 . The matrix 𝐵  

is a convex combination of two matrices. Different time-varying weights can be assigned 



to the set of past observations and the set of current observations. For 𝜔 = 0, past and 

current observations of 𝑍 are used at step 𝑛; for 𝜔 = 0, only the 𝑚  current 

observations are used at step 𝑛. We consider the decomposition:  

𝐵 − 𝐵 = 𝐵 − 𝐵 + 𝐵  with 𝐵 = 𝜔 𝑀(𝑆 − 𝐸[𝑍𝑍т]), 

𝐵 − 𝐵 = (𝑀 − 𝑀) 𝜔 (𝑆 − �̅� �̅�т) + 𝜔 (𝑆 − �̅� �̅�т)  

+ 𝜔 𝑀(𝑆 − 𝐸[𝑍𝑍т]) − 𝑀(�̅� − 𝐸[𝑍])�̅�т − 𝑀𝐸[𝑍](�̅� − 𝐸[𝑍])т. 

Assume: 

(H3c) 𝑎 > 0, ∑ 𝑎 = ∞, ∑
√

< ∞, ∑ 𝑎 < ∞. 

(H6a) 𝑀 → 𝑀 a.s.  (H6b) ∑ 𝑎 ‖𝑀 − 𝑀‖ < ∞ a.s. 

(H7a) 𝑍 has 4th moments.  (H7b) 𝑍 is a.s. bounded.  

Under H7a: 

 �̅� → 𝐸[𝑍], 𝑆 → 𝐸[𝑍𝑍т] a.s., 𝐸[‖�̅� − 𝐸[𝑍]‖] = 𝑂 1/√𝑛 , 𝐸[‖𝑆 − 𝐸[𝑍𝑍т]‖] = 

𝑂 1/√𝑛 ; since ∑
√

< ∞, ∑ 𝑎 ‖�̅� − 𝐸[𝑍]‖ < ∞, ∑ 𝑎 ‖𝑆 − 𝐸[𝑍𝑍т]‖ < ∞ a.s. 

Then, by H3c, H6b and H7b, ∑ 𝑎  ‖𝐵 − 𝐵‖ < ∞ a.s. Moreover, 𝐸[𝐵 |𝑇 ] = 0 and, 

by H7b, ‖𝐵 ‖ is a.s. bounded, thus assumptions H2d,f hold. When 𝜔 = 0 for all 𝑛, 

H7b can be replaced by H7a, 𝐵 → 𝐵 under H6a and H7a, then 〈𝐵 𝑋 , 𝑋 〉 → 𝜆  when 

𝑋 → ±𝑐  a.s. Applying Corollaries 1 and 4 yields: 

 

Corollary 5. Under H1b on 𝐵, H2a on 𝐵 , H3b on 𝑎 , H4 on 𝑄 , H5 on 𝑋 , H6a,b on 

𝑀  and H7b on 𝑍, for 𝑖 ∈ {1, … , 𝑟},  𝑋  converges to 𝑐  or −𝑐 , Λ  converges to 𝜆 ,

∑ 𝑎 〈𝐵𝑋 , 𝑋 〉 − 𝜆 < ∞, ∑ 𝑎 Λ − 𝜆 < ∞ a.s. When 𝜔 = 0 for all 𝑛, the 

same conclusions hold with H3b replaced by H3c and H7b by H7a; moreover, for 𝑖 ∈

{1, … , 𝑟}, 〈𝐵 𝑋 , 𝑋 〉  converges to 𝜆 ,  ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝜆 < ∞ a.s.  

Note that, when 𝜔 = 0 for all 𝑛, the assumption “𝑍 is a.s. bounded” is not required. 

5. Application to streaming generalized canonical correlation analysis 

5.1 Formulation 

Consider the generalized canonical correlation analysis (gCCA) defined by Carroll 

(1968). We use here a probabilistic formulation. Suppose the set of components of a 

random vector 𝑍 in ℝ  is partitioned in 𝑞 subsets of real random variables {𝑍 , … , 𝑍 }, 

𝑘 ∈ {1, … , 𝑞}, ∑ 𝑟 = 𝑝. Let 𝑍  be the random vector in ℝ  whose components are 



𝑍 , … , 𝑍 , 𝐶 = 𝐶𝑜𝑣𝑎𝑟[𝑍 ] be the covariance matrix of 𝑍 , 𝐶 = 𝐶𝑜𝑣𝑎𝑟[𝑍] that of 𝑍, 

𝐶 . = 𝐶𝑜𝑣𝑎𝑟[𝑍 , 𝑍] that of 𝑍  and 𝑍. Assume:  

(H7c) There is no affine relation between the components of 𝑍. 

Then the matrices 𝐶 , 𝑘 ∈ {1, … , 𝑞}, and 𝐶 are invertible.  

Formulation of gCCA. For 𝑙 ∈ {1, … , 𝑟}, 𝑟 ≤ min 𝑟 , … , 𝑟 , determine at step 𝑙 a 

linear combination 𝑈 = 𝜃т(𝑍 − 𝐸[𝑍]) of variance 1 of the centered components of 

𝑍, uncorrelated with 𝑈 , … , 𝑈 , called 𝑙𝑡ℎ general component, and for 𝑘 ∈ {1, … , 𝑞}, a 

linear combination 𝑉 = 𝜂
т
(𝑍 − 𝐸[𝑍 ]) of variance 1 of the centered components 

of 𝑍 , called 𝑙𝑡ℎ canonical component of the 𝑘𝑡ℎ subset of variables, which maximize 

∑ 𝜌 𝑈 , 𝑉 , 𝜌 denoting the linear correlation coefficient.  

5.2 Interpretation of gCCA as a PCA 

Let Π  be the projection operator on the subspace of 𝐿 (Ω, 𝒜, P) with inner product 

〈𝑋, 𝑌〉 = 𝐸[𝑋𝑌] generated by the centered components of 𝑍 .  

Let 𝜃 = (𝜃 )т … 𝜃
т т

, 𝜃 ∈ ℝ , 𝑘 ∈ {1, … , 𝑞}. Let 𝑀 be the block diagonal metric 

in ℝ  whose kth diagonal diagonal block is (𝐶 ) .  

Suppose 𝑈  is determined; then:   

∑ 𝜌 𝑈 , 𝑉  max ⟺  𝜌 𝑈 , 𝑉 = 𝑐𝑜𝑠 𝑈 , 𝑉  max, 𝑘 ∈ {1, … , 𝑞}  

⟺  𝑉 = , 𝑘 ∈ {1, … , 𝑞}.  

It is shown that: 

 

Proposition 1. For 𝑙 ∈ {1, … , 𝑟}, 𝜃  is a 𝐶-normed eigenvector of the matrix 𝐵 = 𝑀𝐶 

corresponding to its lth largest eigenvalue 𝜆  and 𝑉 =  

т

т
, 𝑘 ∈ {1, … , 𝑞}. 

Thus for 𝑙 ∈ {1, … , 𝑟}, the lth general component of the gCCA of 𝑍, 𝑈 = 𝜃т(𝑍 − 𝐸[𝑍]) 

of variance 1, is collinear with the lth principal component of the PCA of 𝑍 with the 

metric 𝑀, 𝑐т(𝑍 − 𝐸[𝑍]) of variance 𝜆 , and 𝜃 = . A particular case of gCCA is 

normed PCA when 𝑟 = 1 for all 𝑘, the diagonal metric 𝑀 being that of the inverses of 

the variances of the components of 𝑍. 

 



5.3 Stochastic approximation of the general and canonical components of gCCA 

Let 𝑍 , … , 𝑍 , … , 𝑍 , … , 𝑍 , …  be a sequence of i.i.d. observations of 𝑍 with 

𝑍 = 𝑍
т

… 𝑍
т т

, 𝑍 (𝑟 , 1), 𝑘 ∈ {1, … , 𝑞}, the mini batch 𝑍 , … , 𝑍  being 

taken into account at step 𝑛 of the processes. For 𝑘 ∈ {1, … , 𝑞}, let �̅�  be the mean of the 

sample 𝑍 , … , 𝑍  of 𝑍 , 𝐶 = ∑ ∑ 𝑍 𝑍
т

− �̅� (�̅� )т with 𝜇 =

∑ 𝑚  be its covariance matrix, both recursively computed.  

Let 𝑀  and 𝑄  be the block diagonal matrices of order 𝑝 whose 𝑘𝑡ℎ diagonal blocks 

are respectively 𝑀  defined below and 𝐶 . The matrix 𝑄  is positive definite symmetric 

from a certain rank. Under the assumption H7a, 𝐶 → 𝐶  a.s., 𝐸[‖𝐶 − 𝐶 ‖] =

𝑂 = 𝑂
√

, since 𝜇 ≥ 𝑛. Since ∑
√

< ∞ under H3c, ∑ 𝑎 ‖𝐶 − 𝐶 ‖ < ∞ 

a.s. Thus 𝑄 → 𝑀 , ∑ 𝑎 ‖𝑄 − 𝑀 ‖ < ∞ and ∑ 𝑎 ‖𝑄 − 𝑀 ‖ < ∞ a.s.; 

assumption H4 on 𝑄  holds.  

For 𝑘 ∈ {1, … , 𝑞}, to obtain an estimation of 𝑀 = (𝐶 ) , we define the stochastic 

approximation process (𝑀 , 𝑛 ≥ 1) such that:  

𝑀 = 𝑀 − 𝑎 𝐶 𝑀 − 𝐼 ; thus 𝑀 = 𝑀 − 𝑎 (𝑄 𝑀 − 𝐼). 

Theorem 2. Under the assumptions 𝑎 > 0, 𝑎 = 𝑜(1), ∑ 𝑎 = ∞ and H7a,c, 𝑀  

converges to 𝑀 and ∑ 𝑎 ‖𝑀 − 𝑀‖ < ∞ a.s. 

Thus assumptions H6a,b on 𝑀  hold. We define the processes 𝑌 , 𝑋 , 𝑋 , Λ , 

𝑖 ∈ {1, … , 𝑟}, used for PCA (Section 4). Applying Corollary 5 with the additional 

assumption H7c yields: 

 

Corollary 6. Under H1b on 𝐵, H2a on 𝐵 , H3b on 𝑎 , H5 on 𝑋  and H7b,c on 𝑍, for 

𝑖 ∈ {1, … , 𝑟}, 𝑋  converges to 𝑐 = 𝜆 𝜃  or −𝑐 , Λ  converges to 𝜆 ,

∑ 𝑎 〈𝐵𝑋 , 𝑋 〉 − 𝜆 < ∞, ∑ 𝑎 Λ − 𝜆 < ∞ a.s. When  𝜔 = 0 for all 𝑛, the 

same conclusions hold with H3b replaced by H3c and H7b by H7a; moreover, for 𝑖 ∈

{1, … , 𝑟}, 〈𝐵 𝑋 , 𝑋 〉  converges to 𝜆  and  ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝜆 < ∞ a.s. 

At step 𝑛, we obtain an estimation of 𝑐  and 𝜆 , thus of 𝜃 . We can estimate 𝐸[𝑍 ] by �̅�  

and 𝐶  by 𝐶 , thus estimate the general and canonical components of gCCA. 



6. Proofs of theorems 

6.1 Some concepts of exterior algebra 

Let 𝑒 , … , 𝑒  be a basis of ℝ . For 𝑟 ≤ 𝑝, let 𝛬ℝ  be the exterior power of order 𝑟 of 

ℝ , generated by the 𝐶  exterior products 𝑒 𝛬𝑒 𝛬 ⋯ 𝛬𝑒 , 𝑖 < 𝑖 < ⋯ < 𝑖  ∈

{1, … , 𝑝}. 

Let 𝑄 be a metric in ℝ . The inner product ⟨.,.⟩ in Λℝ  induced by 𝑄 is such that 

〈𝑒 Λ𝑒 Λ ⋯ Λ𝑒 , 𝑒 Λ𝑒 Λ ⋯ Λ𝑒 〉 = ∑ (−1) ( )
∈ 〈𝑒 , 𝑒 ( )〉 ⋯ 〈𝑒 , 𝑒 ( )〉, 

𝐺  being the set of permutations σ of {k1, . . ., kr} and s(σ) the number of inversions of σ. 

Let ∥. ∥ denote the associated norm. Note that if 𝑥 , . . . ,  𝑥  are 𝑄-orthogonal, then 

‖𝑥 Λ ⋯ Λ𝑥 ‖=∏ ‖𝑥 ‖ and if 𝑒 , … , 𝑒   is a 𝑄 -orthonormal basis of ℝ , then the set 

of the 𝐶  exterior products 𝑒 Λ𝑒 Λ ⋯ Λ𝑒  is an orthonormal basis of Λℝ . 

Let 𝑈 be an endomorphism in ℝ . For 𝑗 ∈ {1, … , 𝑟}, the endomorphism 𝑈 in Λℝ  is 

such that:  

𝑈(𝑥 Λ ⋯ Λ𝑥 ) = ∑ 𝑥⋯  
Λ ⋯ Λ𝑈𝑥 Λ ⋯ Λ𝑈𝑥 Λ ⋯ Λ𝑥 ; 

for 𝑗 = 1, 𝑈(𝑥 Λ ⋯ Λ𝑥 ) = ∑ 𝑥 Λ ⋯ Λ𝑈𝑥 Λ ⋯ Λ𝑥 . 

The following properties hold. 

(P1) Assume 𝑈 has p real eigenvalues 𝜆 , . . . , 𝜆  and, for 𝑗 ∈  {1, . . . , 𝑝}, let 𝑉  be an 

eigenvector corresponding to 𝜆 . Then the 𝐶  vectors 𝑉 Λ𝑉 Λ ⋯ Λ𝑉 , 𝑖 < 𝑖 < ⋯ <

𝑖  ∈ {1, … , 𝑝}, are eigenvectors of 𝑈; for 𝑗 =  1, the corresponding eigenvalues are 

𝜆  + · · ·  + 𝜆  and for 𝑗 = 𝑟, the products 𝜆  · · ·  𝜆 ; thus if 𝑈 is invertible, so is 𝑈. 

(P2) If 𝑈 is 𝑄-symmetric, 𝑈 is symmetric with respect to the metric induced by 𝑄 

in Λℝ . 

(P3) (𝐼 + 𝑈) = 𝐼 + ∑ 𝑈. 

(P4) There exists 𝑐(𝑟)  >  0 such that, for 1 ≤  𝑗 ≤ r, ∥ 𝑈  ∥ ≤  𝑐(𝑟) ∥ 𝑈 ∥ . 

6.2 Proof of Theorem 1 

The writing of fixed 𝜔 belonging to the intersection of the a.s. convergence sets is 

omitted. Let 𝑊 = 𝑈 − 𝐵; 𝑊 = (1 − 𝑎 )𝑊 + 𝑎 (𝐵 − 𝐵). Since 𝑊  converges to 

0 by H2b, 𝐼 − 𝑊  is invertible from a certain rank, assumed equal to 1 without loss of 

generality. We use Lemmas 1 and 5. Let 𝑋 = 𝑋 𝛬 ⋯ 𝛬𝑋 . 



Lemma 5. → 1,
⋯

→ 1, ∑ 𝑎
〈 , 〉

−
〈 , 〉

< ∞ under 

H4. 

 

Outline of the proof. In Step 1, we prove Lemma 5. In Step 2, defining, for 𝑖 ∈ {1, … , 𝑟}, 

𝑍 = (𝐼 − 𝑊 )𝑋 , 𝑍 = 𝑍 Λ ⋯ Λ𝑍 , 

we show that there exists a 𝑝 × 𝑝 random matrix 𝐶  such that  

𝑍 = (𝐼 + 𝑎 𝐶 ) 𝑍 , 

𝐶 → 𝐵 and ∑ 𝑎 ‖𝐶 − 𝐵‖ < ∞ under H2b.  

In Steps 3, 4, using a proof similar to that of Corollary 2ii of Monnez and Skiredj (2021), 

we deduce by Lemma 1, with 𝜆 = 𝜆 + ⋯ + 𝜆 ,  

→ ±𝑉 = ±𝑉 𝛬 ⋯ 𝛬𝑉 , ∑ 𝑎 𝜆 − 〈 , 𝐵 〉 < ∞, 

then → ±𝑉 , 𝑋  → ±𝑉 , Λ → 𝜆 . 

In Step 5, we infer that ∑ 𝑎 𝜆 − 〈 , 𝐵 〉 < ∞, then by Lemma 5,  

∑ 𝑎 𝜆 − 〈 𝑋 , 𝐵 𝑋 〉 < ∞, 

therefore ∑ 𝑎 𝜆 − 〈𝑋 , 𝐵𝑋 〉 < ∞ and ∑ 𝑎 Λ − 𝜆 < ∞. 

 

Step 1. Proof of Lemma 5 

1) Since  𝑄 → 𝑄,
〈 , 〉 〈 , 〉

=

т
( )

 → 0; thus, for 𝑗 = 𝑘, → 1, and, 

since the vectors 𝑋  are 𝑄 -orthogonal, 
〈 , 〉

→ 𝛿  (Kronecker symbol). Therefore 

⋯
= ∑ (−1) ( ) 〈 ,

( )
〉

( ) ⋯∈
〈 ,

( )
〉

( ) → 1, 

𝐺  being the set of permutations 𝜎 of {1, … , 𝑖} and 𝑠(𝜎) the number of inversions of 𝜎.  

  

2) 〈 𝑋 , 𝐵 𝑋 〉 = ∑ 〈𝑋 Λ ⋯ Λ𝑋 , 𝑋 Λ ⋯ Λ𝐵𝑋 Λ ⋯ Λ𝑋 〉 

= ∑ ∑ (−1) ( )
∈ 〈𝑋 , 𝑋

( )
〉 ⋯ 〈𝑋 , 𝐵𝑋

( )
〉 ⋯ 〈𝑋 , 𝑋

( )
〉. 

Replacing each inner product 〈𝑋 , 𝑋
( )

〉 by 〈𝑋 , 𝑋
( )

〉  + 𝑋
т
(𝑄 − 𝑄 )𝑋

( ), and 

using Landau notation 𝑂(. ), 



〈 ,
( )

〉
( ) =  

〈 ,
( )

〉
( ) + 𝑂(‖𝑄 − 𝑄‖) = 𝛿 ( ) + 𝑂(‖𝑄 − 𝑄‖)  

and 
〈 , 

( )
〉

( ) =  
〈 , 

( )
〉

( ) + 𝑂(‖𝑄 − 𝑄‖); then: 

〈 ,
( )

〉⋯〈 ,
( )

〉⋯〈 ,
( )

〉

 ⋯
=

〈 ,
( )

〉 ⋯〈 ,
( )

〉 ⋯〈 ,
( )

〉

 ⋯
+  𝑂(‖𝑄 − 𝑄‖). 

Since the vectors 𝑋  are 𝑄 -orthogonal, 𝑋 = 𝑋  ⋯ 𝑋 . Thus:  

〈 , 〉
=

〈 , 〉

 ⋯
=

〈 , 〉
+  𝑂(‖𝑄 − 𝑄‖). 

Likewise, = 1 +  𝑂(‖𝑄 − 𝑄‖). Then: ∑ 𝑎
〈 , 〉

−
〈 , 〉

  

= ∑ 𝑎
〈 , 〉

1 − +
〈 , 〉

−
〈 , 〉

   

= ∑ 𝑎 𝑂(‖𝑄 − 𝑄‖) < ∞ by H4. 

 

Step 2. Let, for 𝑖 ∈ {1, … , 𝑟}, 𝑍 = (𝐼 − 𝑊 )𝑋 . 

𝑍 = (𝐼 − 𝑊 )𝑋 = (𝐼 − 𝑊 )𝑌 − ∑
〈 , 〉

𝑍 . 

𝑍 = 𝑍 Λ ⋯ Λ𝑍 = (𝐼 − 𝑊 )𝑌 Λ ⋯ Λ(𝐼 − 𝑊 )𝑌 . 

(𝐼 − 𝑊 )𝑌 = (𝐼 − 𝑊 )(𝐼 + 𝑎 𝐵 )𝑋 = (𝐼 − 𝑊 )(𝐼 + 𝑎 𝐵 )(𝐼 − 𝑊 ) 𝑍  

= (𝐼 − 𝑊 + 𝑎 𝑊 + 𝑎 𝐵 − 𝑎 𝑊 𝐵 )(𝐼 − 𝑊 ) 𝑍 = (𝐼 + 𝑎 𝐶 )𝑍 , 

𝐶 = (𝐵 + 𝑊 − 𝑊 𝐵 )(𝐼 − 𝑊 ) = 𝐵 + (𝐵𝑊 + 𝑊 − 𝑊 𝐵 )(𝐼 − 𝑊 ) . 

By H2a,b, ∑ 𝑎 ‖𝐶 − 𝐵‖ < ∞, 𝐼 + 𝑎 𝐶 = (𝐼 − 𝑊 )(𝐼 + 𝑎 𝐵 )(𝐼 − 𝑊 )  is 

invertible. 

𝑍 = (𝐼 + 𝑎 𝐶 )𝑍 𝛬 ⋯ 𝛬(𝐼 + 𝑎 𝐶 )𝑍 = (𝐼 + 𝑎 𝐶 ) 𝑍  = 𝐼 + 𝑎 𝐷 𝑍 , 

𝐷 = 𝐶 + ∑ 𝑎 𝐶  by P3. 

 

Step 3. With 𝑆 = , we have 𝑆 = . Let us show that the process (𝑆 ) 

verifies the assumptions of Lemma 1 with 𝐵  replaced by 𝐷  and 𝐵 by 𝐵.  

By P2, since 𝐵 is 𝑄-symmetric, 𝐵 is symmetric with respect to the metric induced by 

𝑄 in Λℝ . By P1, under H1b, the largest eigenvalue 𝜆 = 𝜆 + ⋯ + 𝜆  of 𝐵 is simple; 



a corresponding normed eigenvector is 𝑉 = 𝑉 𝛬 ⋯ 𝛬𝑉 . Thus assumptions H1a and H1b 

of Lemma 1 hold for 𝐵.  

By P1, since I + a C  is invertible, so is (𝐼 + 𝑎 𝐶 ) = 𝐼 + 𝑎 𝐷 ; H2a holds. 

By P4, there exists 𝑐(𝑖) > 0: for 1 ≤  𝑗 ≤ 𝑖,  (𝐶 − 𝐵) ≤  𝑐(𝑖)‖𝐶 − 𝐵‖ ; 

by P3, since ∑ 𝑎 ‖𝐶 − 𝐵‖ < ∞ and ‖𝐶 ‖ ≤ 2 ‖𝐶 − 𝐵‖ + ‖𝐵‖ : 

∑ 𝑎 𝐷 − 𝐵 = ∑ 𝑎 (𝐶 − 𝐵) + ∑ 𝑎 𝐶  

≤ 𝑐(𝑖) ∑ 𝑎 ‖𝐶 − 𝐵‖ + ∑ 2  ∑ 𝑎 ‖𝐶 − 𝐵‖ + ‖𝐵‖ < ∞; 

H2b holds. Then by Lemma 1: 

𝑆 = → ±𝑉 = ±𝑉 𝛬 ⋯ 𝛬𝑉 , ∑ 𝑎 𝜆 − 〈𝑆 , 𝐵𝑆 〉 < ∞. 

By P3, 𝑍 = (𝐼 − 𝑊 ) 𝑋 = 𝐼 + ∑ (−1) 𝑊 𝑋 ;  

by P4, 𝑊 ≤  𝑐(𝑖)‖𝑊 ‖ → 0, then → 0, → 1, → ±𝑉 . 

 

Step 4. Assume → 𝑉 , → 𝑉 , → 𝑉 , 𝑗 ∈ {1, … , 𝑖 − 1}, prove → 𝑉 .  

〈 , 𝑉 〉 =
⋯

∑ (−1) ( ) 〈 , 𝑉 ( )〉 ⋯ 〈 , 𝑉 ( )〉 → 1∈ . 

〈 , 𝑉 ( )〉 → 𝛿 ( ), 𝑗 ∈ {1, … , 𝑖 − 1}; by Lemma 5, 
⋯

→ 1, then:  

〈 , 𝑉 〉 → 1, → 𝑉 , and since → 1, 𝑋 = → 𝑉  and by H2b and H4, 

Λ = 〈𝑈 𝑋 , 𝑋 〉 → 𝜆 . 

 

Step 5. Let 𝑅 =   . By Step 3, ∑ 𝑎 𝜆 − 〈𝑆 , 𝐵𝑆 〉 < ∞. Let us show that 

∑ 𝑎 〈𝑆 , 𝐵𝑆 〉 − 〈𝑅 , 𝐵𝑅 〉 < ∞. Let 𝐸 = ∑ (−1)  𝑊 . 

By Step 3, 𝑍 = 𝐼 + 𝐸 𝑋 , then 𝑆 = = .  

Since 𝐵 is symmetric with respect to the metric induced by 𝑄 in Λℝ , 

𝐼 + 𝐸 𝑅 〈𝑆 , 𝐵𝑆 〉 − 〈𝑅 , 𝐵𝑅 〉  

= 〈 𝐼 + 𝐸 𝑅 , 𝐵 𝐼 + 𝐸 𝑅 〉 − 𝐼 + 𝐸 𝑅 〈𝑅 , 𝐵𝑅 〉 

= 〈𝑅 , 𝐵𝑅 〉 1 − 𝐼 + 𝐸 𝑅 + 2〈𝐸 𝑅 , 𝐵𝑅 〉 + 〈𝐸 𝑅 , 𝐵𝐸 𝑅 〉 



= 〈𝑅 , 𝐵𝑅 〉 −2〈𝑅 , 𝐸 𝑅 〉 − 𝐸 𝑅 + 2〈𝐸 𝑅 , 𝐵𝑅 〉 + 〈𝐸 𝑅 , 𝐵𝐸 𝑅 〉. 

Since 𝑊 → 0 and ∑ 𝑎 ‖𝑊 ‖ < ∞, 𝐸 → 0 and ∑ 𝑎 𝐸 < ∞. Since ‖𝑅 ‖ = 1, 

𝐼 + 𝐸 𝑅 → 1 and ∑ 𝑎 〈𝑆 , 𝐵𝑆 〉 − 〈𝑅 , 𝐵𝑅 〉 < ∞. Then:  

∑ 𝑎 𝜆 − 〈𝑅 , 𝐵𝑅 〉 = ∑ 𝑎 𝜆 −
〈 , 〉

< ∞; 

by Lemma 5: ∑ 𝑎 𝜆 −
〈 , 〉

< ∞; since vectors 𝑋  are 𝑄 -orthogonal and 

𝑋 = , 𝑋 = 𝑋 ⋯ 𝑋 , 𝑋 = 𝑋 Λ ⋯ Λ𝑋 = , thus: 

∑ 𝑎 𝜆 − 〈 𝑋 , 𝐵 𝑋 〉 < ∞. 

Since 〈 𝑋 , 𝐵 𝑋 〉 = ∑ ‖𝑋 ‖ ⋯ 〈𝑋 , 𝐵𝑋 〉 ⋯ 𝑋 = ∑ 〈𝑋 , 𝐵𝑋 〉 , for 

𝑖 ∈ {1, … , 𝑟}, ∑ 𝑎 ∑ (𝜆 − 〈𝑋 , 𝐵𝑋 〉 ) < ∞, then ∑ 𝑎 𝜆 − 〈𝑋 , 𝐵𝑋 〉 <

∞.  By H2b and H4,  

∑ 𝑎 𝜆 − 〈𝑋 , 𝑈 𝑋 〉 = ∑ 𝑎 Λ − 𝜆 < ∞. 

6.3 Proofs of Lemmas 2, 3, 4.  

Lemma 6 is a deterministic version of the convergence theorem for nonnegative almost 

supermartingales of Robbins and Siegmund (1971).  

 

Lemma 6. Assume (𝑧 , 𝑛 ≥ 1), (𝛼 , 𝑛 ≥ 1), (𝛽 , 𝑛 ≥ 1) and (𝛿 , 𝑛 ≥ 1) are four 

sequences of non-negative numbers such that for all 𝑛 ≥ 1, 𝑧 ≤ 𝑧 (1 + 𝛼 ) + 𝛽 −

𝛿 , ∑ 𝛼 < ∞, ∑ 𝛽 < ∞. Then the sequence (𝑧 ) converges and ∑ 𝛿 < ∞. 

Assume 𝑎 < 1 for 𝑛 ≥ 1 without loss of generality. The abbreviation “a.s.” is omitted. 

 

Proof of Lemma 2. The writing of fixed 𝜔 belonging to {∑ 𝑎 ‖𝐵 − 𝐵‖ < ∞} is 

omitted. Since 𝑈 − 𝐵 = (1 − 𝑎 )(𝑈 − 𝐵) + 𝑎 (𝐵 − 𝐵),  

‖𝑈 − 𝐵‖ ≤ ‖(𝑈 − 𝐵)‖ + 𝑎 ‖𝐵 − 𝐵‖ − 𝑎 ‖𝑈 − 𝐵‖. 

Under H2c, by Lemma 6:  

∃𝑇 ≥ 0 such that ‖𝑈 − 𝐵‖ → 𝑇 and ∑ 𝑎 ‖𝑈 − 𝐵‖ < ∞;  

since ∑ 𝑎 = ∞, 𝑇 = 0. 

∑ 𝑎 ‖𝑈 − 𝐵‖ ≤ ∑ 𝑎 ‖𝑈 − 𝐵‖ + ∑ 𝑎 ‖𝐵 − 𝐵‖ < ∞;  

∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ ≤ ∑ 𝑎 ‖𝑈 − 𝐵‖(‖𝐵 − 𝐵‖ + ‖𝐵‖) < ∞.  



 

Proof of Lemma 3. Since 𝐸[𝐵 |𝑇 ] = 0 and 𝑈 = (1 − 𝑎 )𝑈 + 𝑎 𝐵 , 

𝐸[‖𝑈 ‖ |𝑇 ] = (1 − 𝑎 ) ‖𝑈 ‖ + 𝑎 𝐸[‖𝐵 ‖ |𝑇 ]      

= (1 + 𝑎 )‖𝑈 ‖ + 𝑎 𝐸[‖𝐵 ‖ |𝑇 ] − 2𝑎 ‖𝑈 ‖ . 

By H2d and H3a, ∑ 𝑎 𝐸[‖𝐵 ‖ |𝑇 ] < ∞. By Robbins-Siegmund theorem (1971), 

∃𝑇 ≥ 0 such that ‖𝑈 ‖ → 𝑇 and ∑ 𝑎 ‖𝑈 ‖ < ∞; 

since ∑ 𝑎 = ∞, 𝑇 = 0. 

Moreover, 𝐸[‖𝑈 ‖ ] = (1 + 𝑎 ) 𝐸[‖𝑈 ‖ ] + 𝑎 𝐸[‖𝐵 ‖ ] − 2𝑎 𝐸[‖𝑈 ‖ ]. Since 

∑ 𝑎 < ∞ and 𝑠𝑢𝑝 𝐸[‖𝐵 ‖ ] < ∞, by Lemma 6, ∑ 𝑎 𝐸[‖𝑈 ‖ ] < ∞, 𝐸[‖𝑈 ‖ ] →

0, thus there exists 𝑓 > 0 such that:  

𝐸[‖𝑈 ‖ ] ≤ (1 − 2𝑎 ) 𝐸[‖𝑈 ‖ ] + 𝑓𝑎 . 

Let 𝜇 = 2 − 𝛾 > 0, 𝑐 = 𝜇𝑎 − 𝛾 , thus 𝑎 = (𝑐 + 𝛾 ). Under the assumptions on 

(𝑎 ) and (𝛾 ), 𝑐 → 0, ∑ 𝑐 = ∞, ∏ (1 − 𝑐 )  → 0, there exist 𝑐 > 0 and 𝑁 ∈ ℕ such 

that for 𝑛 ≥ 𝑁 , 𝑐 < 1 and 

𝑑 =
𝐸[‖𝑈 ‖ ]

𝑎
≤ (1 + 𝛾𝑎 + 𝛾 )(1 − 2𝑎 )𝑑 + 𝑓(1 + 𝛾𝑎 + 𝛾 )𝑎  

≤ (1 − (2 − 𝛾)𝑎 + 𝛾 )𝑑 + 𝑐𝑎 ≤ (1 − 𝑐 )𝑑 + 𝑐𝑎  

≤ 𝑑 ∏ (1 − 𝑐 ) + ∑ (𝑐 + 𝛾 ) ∏ (1 − 𝑐 ). 

∑ 𝑐 ∏ (1 − 𝑐 ) = ∑ (∏ (1 − 𝑐 ) − ∏ (1 − 𝑐 ) ) = 1 −

∏ (1 − 𝑐 ) < 1, then 𝑑 ≤ 𝑑 + + ∑ 𝛾 = 𝑏 ; thus, for 𝑛 ≥ 𝑁 − 1, 

𝐸[‖𝑈 ‖ ] ≤ 𝑏 𝑎  and there exists 𝑏 > 0 such that 𝐸[‖𝑈 ‖ ] ≤ 𝑏𝑎  for 𝑛 ≥ 1. Since 

∑ 𝑎
/

< ∞ by H3b, ∑ 𝑎 ‖𝑈 ‖ < ∞. 

 

Proof of Lemma 4. By Lemmas 2 and 3, 𝑈 − 𝐵 → 0 and ∑ 𝑎 ‖𝑈 − 𝐵‖ < ∞.  

∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ = ∑ 𝑎 ‖𝑊 𝐵 ‖ = ∑ 𝑎 ‖𝑊 (𝐵 + 𝐵 − 𝐵 + 𝐵 )‖. 

By H3b, there exists 𝑑 > 0 such that 𝑎 ≤ 𝑑𝑎 , then 

(1) ∑ 𝑎 ‖𝑊 𝐵‖ ≤ 𝑑 ∑ 𝑎 ‖𝑊 ‖‖𝐵‖ < ∞; 

(2) ∑ 𝑎 ‖𝑊 (𝐵 − 𝐵)‖ ≤ ∑ 𝑎 ‖𝑊 ‖‖𝐵 − 𝐵‖ < ∞ by H2c  and 𝑊 → 0; 

(3) ∑ 𝑎 ‖𝑊 𝐵 ‖ ≤ 𝑑 ∑ 𝑎 ‖𝑊 ‖‖𝐵 ‖ < ∞ by H2f; 

(4) ‖𝑊 𝐵 ‖ ≤ ‖(𝑈 − 𝐵)𝐵 ‖ + ‖𝑈 𝐵 ‖; ∑ 𝑎 ‖(𝑈 − 𝐵)𝐵 ‖ < ∞ by H2e, 

𝐸[‖𝑈 𝐵 ‖] ≤ (𝐸[‖𝑈 ‖ ]) (𝐸[‖𝐵 ‖ ]) = 𝑂 𝑎  by Lemma 3, 

∑ 𝑎 ‖𝑈 𝐵 ‖ < ∞ by H3b, then ∑ 𝑎 ‖𝑊 𝐵 ‖ < ∞. 



Thus by (1), (2), (3 or 4), ∑ 𝑎 ‖𝑊 𝐵 ‖ < ∞. H2b holds. 

6.4 Proof of Theorem 2 

The writing of fixed 𝜔 belonging to the set {∑ 𝑎 ‖𝑄 − 𝑀 ‖ < ∞} is omitted. 

𝑀 − 𝑀 = (𝐼 − 𝑎 𝑄 )(𝑀 − 𝑀) − 𝑎 (𝑄 − 𝑀 )𝑀. Let 𝑀 = 𝑀 − 𝑀. 

‖𝑀 ‖ ≤ (‖𝐼 − 𝑎 𝑀 ‖ + 𝑎 ‖𝑄 − 𝑀 ‖)‖𝑀 ‖ + 𝑎 ‖𝑄 − 𝑀 ‖‖𝑀‖. 

Let 𝜆  be the lowest eigenvalue of 𝑀 . Since 𝑎 = 𝑜(1), ‖𝐼 − 𝑎 𝑀 ‖ = 1 −

𝑎 𝜆  for 𝑛 sufficiently large. Thus 

‖𝑀 ‖ ≤  (1 + 𝑎 ‖𝑄 − 𝑀 ‖)‖𝑀 ‖ + 𝑎 ‖𝑄 − 𝑀 ‖‖𝑀‖ − 𝑎 𝜆 ‖𝑀 ‖. 

Since ∑ 𝑎 ‖𝑄 − 𝑀 ‖ < ∞, by Lemma 6, ∃ 𝑇 ≥ 0 such that ‖𝑀 ‖ → 𝑇 and 

∑ 𝑎 ‖𝑀 ‖ < ∞; since ∑ 𝑎 = ∞, 𝑇 = 0; note that ∑ 𝑎 ‖𝑀 ‖ < ∞. 
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