On the largest prime factor of quartic polynomial values: the cyclic and dihedral cases - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2022

On the largest prime factor of quartic polynomial values: the cyclic and dihedral cases

Résumé

Let P (X) ∈ Z[X] be an irreducible, monic, quartic polynomial with cyclic or dihedral Galois group. We prove that there exists a constant c_P > 0 such that for a positive proportion of integers n, P (n) has a prime factor ≥ n 1+c _P .
Fichier principal
Vignette du fichier
Revision.pdf (935.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03951306 , version 1 (23-01-2023)
hal-03951306 , version 2 (02-02-2024)

Identifiants

Citer

Cécile Dartyge, James Maynard. On the largest prime factor of quartic polynomial values: the cyclic and dihedral cases. Journal of the European Mathematical Society, In press, ⟨10.48550/arXiv.2212.03381⟩. ⟨hal-03951306v2⟩
89 Consultations
114 Téléchargements

Altmetric

Partager

More