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On the largest prime factor of quartic
polynomial values: the cyclic and dihedral cases

Cécile Dartyge and James Maynard

Abstract

Let P(X) € Z[X] be an irreducible, monic, quartic polynomial with
cyclic or dihedral Galois group. We prove that there exists a constant
cp > 0 such that for a positive proportion of integers n, P(n) has a prime

factor > nlter.
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1 Introduction

Let P(X) € Z[X] be an irreducible degree polynomial with d > 2. As-
suming that there is no local obstruction, it is widely believed [17] that
P should take on infinitely many prime values, but unfortunately this
conjecture remains completely open for all non-linear polynomials P.

As an approximation to this problem, one can look for integers n for
which P(n) has a large prime factor. For general polynomials P, the
best known bound is due to Tenenbaum [I8], who shows that there are
infinitely many integers n such that P(n) has a prime factor of size at
least nexp((logn)®) for any a < 2 —log4. When the degree of P is 5 or
more, this is the best known result, but for some low degree polynomials,
one can produce bounds which are much stronger.

Hooley [9] proved the first result of this kind, showing that the largest
prime factor PT(n? 4 1) of n® + 1 satisfies P (n? 4 1) > n''/1 infinitely
often. The exponent 11/10 has been improved by Deshouillers and Iwaniec
[5], next by La Bretéche and Drappeau [2] and the current record due to
Merikoski [I5] is that P (n? + 1) > n'2" infinitely often. Heath-Brown
[8] showed that PT(n®+2) > pltio?% infinitely often. Irving [I0] proved
fifteen years later that exponent 1+ 1073% can be replaced by 1+ 1
It seems plausible that the underlying methods could be adapted to more
general degree 2 or degree 3 polynomials.

For degree 4 polynomials, results can currently only be obtained when
the Galois group G of P(X) takes a simple form. When P(X) = X*— X2+
1, the twelfth cyclotomic polynomial, Dartyge [4] proved that there are
infinitely many n such that P™(n*—n?+1) > n! 107" 1 Breteche [
generalised this result to quartic irreducible even monic polynomials with
Galois group isomorphic to the Klein group V' := Z/27Z x Z/2Z. For such
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polynomials P, he proved that there exists cp > 0 such that PT(P(n)) >
n'teP for a positive proportion of integers n. It seems plausible that the
methods of [I] and [4] may be adapted for some more general quartic
polynomials, but the condition that the Galois group is V is crucial to the
method.

In this work we obtain results for irreducible quartic polynomials with
Galois group isomorphic to the cyclic group Cy := Z/4Z or the dihedral
group D4 = Z/27Z x Z/47Z. Our method doesn’t work for polynomials
with Galois group A4 or S4 which are the most frequent Galois groups for
quartic irreducible polynomials. However, the fifth cyclotomic polynomial
Ps(X) = X*+ X3+ X2+ X +1, X* —5X2 45, X* + 13X + 39 are
examples of polynomials with cyclic Galois group and X*+2, X4 4+3X 43,
X* — 5X? + 3 are polynomials with Galois group Ds. (cf. [3] for other
examples of quartic polynomials with dihedral or cyclic Galois group).

Theorem 1.1. Let P(X) be a monic quartic irreducible polynomial with
Galois group Ca or D4. Then there exists a constant cp > 0 such that for
x > zo(P), we have

Hz <n<2z:PT(P(n) >z} > 2.

The key new technical innovation behind our proof of Theorem is
to incorporate ‘Type II’ or ‘bilinear’ information into the method of de-
tecting large prime factors; previous approaches had relied solely on ‘Type
I’ information. This Type II information allows us to handle polynomi-
als with Galois groups C4 or D4 which were out of reach of the Type I
approach. In principle one could hope to handle the remaining possibil-
ities A4 or Si to cover all Galois groups by a similar procedure, but we
do not know how to handle the relevant Type II estimates in this case,
and so our paper is limited to C4 and Ds. Following the approaches of
Heath-Brown [8], Dartyge [4] and La Bretéche [I], the key to obtaining
estimates like Theorem is showing that a certain multivariate poly-
nomial ¢ associated to P(X) has a convenient prime factorisation for a
positive proportion of its values.

For quartic P(X), this associated polynomial ¢ = ¢(a1,a2,a3) is a
ternary sextic form. If P has a Galois group V, then ¢(ai,a2,a3) =
qi(a1,az2,a3)q2(a1,az,as)qs(a1, az,as) is a product of 3 ternary quadratic
forms, and the methods of [4] and [I] could then produce many suitable
prime factorisations by showing equidistribution of ¢; and g2 in suitable
arithmetic progressionsﬂ (This is why we refer to their methods as ‘Type
I’ methods.) When P has a larger Galois group, then the form ¢(a1, as, as)
is the product of a quartic and a quadratic (if G = C4 or D4) or is an
irreducible sextic (if G = A4 or Si). Unfortunately one cannot obtain
a suitable factorisation by just considering analogous equidistribution in
arithmetic progressions in these cases, since one would need to work with
moduli which are too large for equidistribution to occur.

We find that if G = C4 or Dy, the ternary quartic factor of ¢ has
the additional algebraic structure of being an ‘incomplete norm form’.

1Similarly, in the work of Heath-Brown [8] dealing with cubic P(X), the associated form
q is a binary cubic, and it suffices to just obtain distribution estimates for ¢ in arithmetic
progressions



Maynard [14] produced various Type II estimates which were used to
count prime values of incomplete norm forms. By adapting the ideas
underlying these estimates to our situation we are able to show that ¢ has
a convenient prime factorisation for a positive proportion of its values.
This part corresponds to Theorem [£.1] announced in Section [

Combining this result with the previous machinery (suitably gener-
alised to our situation) then yields Theorem (1.1

1.1 Outline of the proof of Theorem (1.1

The proof of Theorem [[-1]takes three key steps. Step 1 is an argument due
to Heath-Brown [§] (see also [6]), which reduces the problem to showing
the existence of many integers where P(n) has an unusually large friable
part (i.e. a part without large prime factor).

Step 2 follows and generalises [8 4], [I] and shows that by using the
g-analogue of Van der Corput’s method, it suffices to show that a cer-
tain ternary form g¢(a1,az,as) associated to P takes many values with
a suitable prime factorisation. This step makes use of the fact that P
is a quartic polynomial. The key new ingredient in our work is Step 3,
where we establish that g(a1, a2, as) takes on many values with the suit-
able prime factorisation when P has Galois group C4 or D4. For this final
step we incorporate ideas of Maynard [14] on prime values of incomplete
norm forms.

Step 1: Reduction to many integers with large friable part.

Let 1 € Q be a root of P(n), K = Q(r1) and Np = Ng/g the
associated norm. Then we see that Np(n — r1) = P(n), and so we are
interested in counting integers n such that the ideal (n — r1) has a prime
ideal factor of large norm. In particular,

> 1= > 1> 10;3 > > logNp(p).

né€lz,2z] ne(z,2z) nelz,2z] p¢l(n—r1)
P (P(n))>attn 3p|(n—r1): Np(p)>z' 7 Np(p)>z'tn

By inclusion-exclusion and the fact that 3. ., _, ,logp = log P(n), we
have that the double sum on the right hand side is given by

> logP(m)— Y. > logNe(p)— > > logNe(p).

n€(z,2z] n€(z,2z] p¢|(n—r1) n€lz,2z] pel(n—r1)
Np(p)<2z 2c<Np(p)<z't?

Since P(n) =< n*, the first sum is (4 4+ o(1))zlogz. Swapping the or-
der of summation and applying the Prime Ideal Theorem shows that the
second sum is (1 + o(1))zlogz. Let A be the set of integers n with
2 pl(ner),Np(p)<2s 108 NP(p) = (1 + do)logz. We split the third sum

according to whether n € A or not. Therefore the above expression is

(B+o(1)zlogz — Y > logNp(p)— > > log Ne(p).

n€lz,2z]  p®|(n—r1) n€lz,2z]  p¢|(n—r1)
neA 2z<Np(p)<z't? n¢A 2¢<Np(p)<zlt?

If n € A then since prime ideals with Np(p) < 2z contribute at least

(1+do)logz to 32,y log Np(p) = (4 4 o(1))logz, the contribution



from prime ideals with Np(p) > 2z must be < (3 — g — o(1))logz. If
n ¢ A then we note from size considerations there can be at most 3 prime
ideals with Np(p) > 2z dividing (n — 71), and so the inner sum over p is
at most 3(1 4+ n) log z. Substituting these bounds into the above, we find

Z Z log Np(p) > do#Alogz — (3n+ o(1))zlog .
n€fz,2z] p®|(n—r1)
Np(p)zz'tn

In particular, if #.4 > x then choosing n = do#.A/(4x) shows that the
left hand side is > x log x. Thus it suffices to show

#{n € [z,2x] : H Np(p) > :B1+60} > x.
pel(n—r1)
Np(p)<=
Step 2: Reduction to values of a polynomial with convenient
factorisation.
By concentrating on multiples of friable principle ideals J = (a0 +
ai1m + azri + azry) of norm < 1% where r; is a root of P, we find it
suffices to show there is some dense set A C Z* N [1,227%)/4] such that

Z Z 1>z

(ap,a1,a2,a3)€A n€lz,2x]
(ao+arritasri+azry)|(n—r1)

The condition (ao+a1r1+azri+asrs)|(n—r1) is equivalent to a congruence
condition n = ka (mod Np(ao+airi +azr? —|—ag,7"§’))7 and so by completion
of sums and swapping the order of summation, it suffices to obtain a
power-saving in the exponential sums (for small integers h # 0 and with
the standard notation e(t) = exp(2int))

Z e( hk"ao,al,a'z,% )

2 3y )
worar amagen “Nplao +arry 4 azri + asry)
This is complicated by the fact that the variables ao,a1,a2,as appear
in both the numerator and denominator. However, for quartic P we
find that there are polynomials Bi4(ao, a1, a2, as), Bis(ao, a1, az,as) and
q(a1,az,as) with no common factor such that

e( hkag,a1,a2,03 ) N (hBlg(ao,al,a2,a3)B14(a0,a1,a2,a3))
Np(ao + ai1r1 + asre + asrs) q(ai,az,az3) '

and now the denominator is independent of ap. We wish to obtain a
power-saving estimate for the sum over ag, but this is complicated by the
fact that the modulus of the expression g(a1, a2, as) < z8(1+%0)/4 is much
larger than the length 2(190)/4 of summation of ap. To estimate such
short exponential sums, we can use the g-analogue of Van der Corput’s
method provided the modulus g(a1,as2,as) consists only of small prime
factors.

Thus our task has reduced to showing that for a positive proportion
of integers ai,aq,as € [l,x(1+50>/4] we can ensure that the polynomial



q(a1,a2,a3) has a convenient prime factorisation. Specifically, we will
require that
q(a17a25a3) :d()dl"‘dr (11)

where do < 227°, max(dy,...,d,) < z'7%, min(do, ..., d,) > z° for some
fixed € > 0.

Step 3: Counting factorisations of incomplete norm forms

So far we have followed a similar approach to the works [4, [1]. If
the Galois group of P is the Klein group, then it turns out that the
polynomial ¢(a1,az2,as) is the product of three quadratic polynomials.
By considering the distribution in suitable residue classes one can then
guarantee that each quadratic has a suitable factor, and so q(a1,az2,as)
then has a suitable prime factorisation.

When the Galois group of P is Cy or Dy, it turns out that ¢(a1, az,as) =
qi(a1,az2,a3)q2(a1,az,as) is the product of a quartic polynomial and a
quadratic polynomial. Unfortunately the fact that one factor is quartic
means that one cannot guarantee a suitable prime factorisation by looking
at variables in residue classes to reasonably small moduli. The difficulty
here is that ¢1(a1,a2,a3) ~ (max; ai)47 so the size of the values consid-
ered are very large compared to the size of the variables a;. Indeed, it is
not known that an arbitrary ternary quartic form ¢; takes infinitely many
values compatible with the factorisation .

Fortunately in our problem the form ¢; is not arbitrary, and in fact we
can show that g1 corresponds to an incomplete norm form of a number
field. More precisely, we prove that there exist a number field K of degree
4 over Q depending only on P and some elements v1,v2,v3 € K such that
q1(a1,a2,a3) = Nicjo(37_, aivs)-

Maynard [I4] gave asymptotic formulae for the number of primes
represented by incomplete norm forms; that is primes p such that p =
N(a1 + asw + -+ + an_kw’“k*l) where ai,...,a,_ are integers, w is
a root of monic and irreducible polynomial f € Z[X] of degree n > 4k
and N is a norm of the corresponding number field. For k = 1 and
n = 4 this result counts values quartic norms in 3 variables with a par-
ticular type of prime factorisation. We adapt the methods of [I4] to our
situation to count representations of the type (1.1). Unfortunately we
require various additional technical conditions (such as a localized ver-
sion of Maynard’s estimates where the variables lie in suitable arithmetic
progressions), which means that large parts of [I4] have to be generalised
to our specific situation. Once suitable technical estimates have been ob-
tained, we find is satisfied for a positive proportion of a1, a2, as, as
required.
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3 Initial steps

Following the argument of Heath-Brown sketched as ‘step 1’ in our outline,
we have the following result.

Lemma 3.1. Let P € Z[X] be an irreducible quartic and monic polyno-
mial of degree 4 with root r1, and let

E@):={X<n<2X: [[ Ne(p)=x"} (3.1)

pel(n—r1)
Np(p)<=

If 60,01 > 0 are such that for all X large enough in terms of do, 51, P we
have |E(d0)| > 61X, then we have for sufficiently large X

{n €]X,2X]: PH(P(n)) > X5 > (5162 + o(1)) X.

Proof. This is essentially |8, Lemma 2|, (or [I, Lemme 4.1]) after noting
that 3y pn) <z 108D 2 Dopjnry) Np ()< 108 NP (P)- -

Thus it suffices to show that |E(dp)| > X for some small absolute
constant do > 0. To do this we will choose a set of ideals J (the explicit,
technical choice is made in Section @ such that

[ Ne@) = xte VieJ. (3.2)
pel3
Np(p)<X
Let Jo :={J € J: P (Np(3)) > X%} for some small absolute constant

6o > 0. Then we see that for any n € [X,2X] there are at most 246, "
ideals J € J» with J|(n —r1), since (n — 1) can have at most 49" prime
ideal factors with norm bigger than X% . We then see that

|€(0)| > {X <n <2X:3J€ T such that J[(n —r1)}
dejz ‘53|
T SUWpx<pu<ox {J € T2 0 J[(n—1)}

> Z &,

JeJg
PT(Np@)=xY

where & = {X < n < 2X : J|(n —r1)}. Every ideal J has at most
ay ! representations as § = KL for K a prime ideal with Np(K) €
[X40 X5%0) Thus we see that

£(0) > > > |ExLl,

KeK p=(Np(L))>x"%
KLeJg

where
K= {K prime ideal, Np(K) € [X4QO7X5D‘0}}- (3.3)



We apply a linear sieve of level X3% to bound the condition P~ (Np(L)) >
X% from below, giving

E@0) > > > < > A;)gm
KeK KLeJ \d|Np(L)

where )\, are the usual Rosser-Iwaniec lower bound linear sieve weights
(J12] and |I1]) supported on d < X3% with p|d = p < X%. We see that
if X is large enough &5 has density pp(Np(J))/Np(J), where

op(J) :=card{0 < n < Np(J) : n=r1 (mod J)}. (3.4)
With this in mind, we define the error Rj in the approximation by

yer(NPQ))

Ry :=|&| — = 3.5
J | Cf| NP(J) ( )
Thus
|€1] > X So + Si,
where
— —\ er(KL)
S SIDM (D oy =)
KeK KLeJ(K) \d|Np(L) (3.6)
TSI Wl (D oty s
KeK KLeJ(K) \d|Np(L)

To obtain Theorem we see it suffices to prove the following two key
propositions.

Proposition 3.2 (Estimate for Sp). Let 0y be sufficiently small, and J
be the set of ideals described in Section[f. Then we have
So > 1.

Proposition 3.3 (Estimate for Si1). Let 0y be sufficiently small, and J
be the set of ideals described in Section[f Then we have

Sl = O(X)

Together these propositions rely heavily on our key technical result,
Theorem 1] Section [7]is devoted to establishing Proposition [3.3} which
uses the fact that J is a set of ideals with small prime factors to bound
the relevant exponential sums. Sectionis devoted to establishing Propo-
sition [3:2] assuming Theorem [I.I] The rest of the paper is then devoted to
establishing Theorem@ which asserts that 7 is a set of nonzero density.

4 Localised divisors of values of incom-
plete norm forms

As described in the outline, the key to the proof of Theorem is to
show that for a positive proportion of a1, as2,as (in a box like [A, 24]3)



an auxiliary polynomial g(a1,a2,a3) = qi(a1,az2,as3)qz2(a1,az2,as) takes
values where P (g2(a1,a2,a3)) < A?>™¢ and P"(qi(a1,as,a3)) < A"
The term g2 will be a quadratic form, and so PT(g2(a1,as,a3)) < A*~¢
if plgz2(a1, az,as) for some p € [A%, A%], which occurs if a1,az,as lie in
suitable residue classes (mod p). Thus it suffices to show that there
are the expected number of (a1,az,a3) such that P (qi(a1,az2,a3)) <
A'"¢ and (a1,a2,as) lies in a suitable residue class modulo p on average
over p € [A% A%]. Since ¢ will be an incomplete norm form for a
quartic extension, we see that we are therefore counting friable values of
an incomplete norm form (with some additional congruence constraints).
The aim of this section is to introduce the notation to state Theorem [4.1]
and then to explain how this technical statement relates to our specific
problem by giving a suitable asymptotic for such friable values of auxiliary
forms.

Let K be a quartic extension of Q with a Z-basis {v1, v2,v3, va} for Ox
such that 11 =1 and K = Q(v2). Given a large value X, we wish to count
the number of (a1, az, az) in a small box such that Ny q(a1v1+a2v2+a3vs)
has only small prime factors, and such that an auxiliary quadratic form
f(a1,az2,as) is a multiple of some fairly small p € [X7, XT/].

With this in mind, we consider the box X given by

3
X =10 X (1 +m)], (4.1)

=1

where 171 € R and X1, X2, X3 € Z are parameters satisfying

m := (log X)~'%, (4.2)
X1, X9, X3 € [mX, X], (4.3)
NK/Q(XIVI + X21/2 + X3V3) 2 1’]}/10 mza.x(Xf) (44)

We are then interested in the sets

A= {(a‘17a25a3) € Z3 n X}v
A(u07m7p) = {(a17a25a3) cA:a= Uo (mOd m)7 p|f(a1,a2,a3)},

Ad(ao, m,p) := {(a1,az2,a3) € A(uo,m,p) : d|Ngg(arv1 + asve + azvs)}.
(4.5)

Since we wish to count points when Nk g(aiv1 + aava + azvz) has small
prime factors, we will count how often d| Nk q(ai1v1 + az2va + azvs) for an
integer d of the form d = ¢q; - - - ¢ where each ¢; is a prime localised to lie
in an interval [X %, X 9;'] for some fixed constants 6;,0;. We will require

0,05 satisfy the following conditions.

e (Non-trivial intervals counting primes which are not too large)
§<0;<0;<1—-8 VI<i<UL (4.6)
e (g1, are distinct primes)

[0:,0;)N[0;,0;] =0 V1I<i<j<CL (4.7)

Ne



. (H§:1 q1; is not too large to divide N)
¢
> bi<4-a (4.8)
i=1
e (Impossible for ¢7; to divide N(aiv1 + azva + asvs))

4
0;+> 0:>4+6 VI<j<i (4.9)

=1

e (The product of the first gi; is of controlled size) There exists VA=
[1,€ — 1] such that

4 4
146<) 0:i<> 0, <24 (4.10)
=1 1=1

The conditions — are minor constraints to avoid some technical
issues and to ensure that we expect that d|Ng g(a1v1 + azv2 + azvz) can
actually occur; these constraints could be significantly weakened at the
cost of some effort. The condition is a technical condition which is
vital for our method.

To avoid some further technical issues we will focus on the case when
the quadratic form f is irreducible but not geometrically irreducible, and
so the condition f(a1,az2,as) becomes a product of two linear factors over
F, after restricting p to an arithmetic progression. Again, this setup could
be relaxed at the cost of additional technical effort, but is the situation
that arises when dealing with Theorem[I.1]} It would be also interesting to
have a more general result for incomplete norm forms and ternary forms
f-

Finally we are in a position to state our counting result.
Theorem 4.1 (localised factors of values of incomplete norm forms). Let

f(X1,X2,X3) € Z[X1,X2,X3] be a homogeneous quadratic polynomial
which splits into two distinct linear factors

f(X1, X2, X3) = L1(X1, X2, X3)L2(X1, X2, X3)

over a suitable extension of Q. Let Dy € N such that if p =1 (mod Dy)
then the Fp-reduction of the two linear forms L1(X1, X2, X3), L2(X1, X2, X3)
are in Fp[X1, X2, X3].

Let K be a quartic extension of Q with {v1,v2,vs,v4} being a Z-basis
for Ok such that i = 1 and K = Q(v2). Let X1, X2, X3 satisfy
and (&4). Let £,0' € N such that 1 < €' < £ and 61,0}, ...,0,,0; be reals
satisfying —. Let 0 < 7 < 7' satisfy

100 ’ 100 ’

Let Aq(u,m,p) be as given by (4.5).

< min( (4.11)

10



Then for any choice of ug (mod m) and K > 0, we have

> > | Agy--.q, (00, m, p)|

peE[XT X"/] qlseees 7] lp?‘ime
, A
p=1 (mod Dy) q;e[x% x"]vi<j<e

2log(Z) - 0; X1 X2 X
3 et AN - Nog YK
=1 X1 X2X3 m3o(D;) 11 log(ei) + O((logX)K).

The implied constant depends on f, K, A, and the v;,0;,0, only.

At first sight Theorem [41] looks like a Type I estimate since we are
counting ai,az,as such that NK/Q(au/l + az2v2 + asvs) is a multiple of
q1 - - - q¢e. However, since there are typically no values of a1, a2, as such that
this occurs (it is only a thin set of ¢;’s when there is a solution), we instead
are required to view this as a Type II estimate counting Ny, q(aiv1 +
asvz + azvz) = mimg where m; = qi---qp is a product of ¢ primes of
constrained size and ma = qg/ 41 - - - ger is the product of £ — ¢’ primes and
some other integer r.

4.1 Application to Theorem |1.1

If P is an irreducible monic quartic polynomial, then (generalising previ-
ous works) there is an auxilliary sextic form g(a1, a2, as) such that pro-
vided g takes suitably friable values a positive proportion of the time, then
we can use exponential sum methods to establish Theorem [[.I] If P has
Galois group Cy or Dy, then it turns out that the roots ri,ra, 73,74 of
P can be ordered such that rir2 + r3rs € Z (c.f. Lemma [5.9), and that
q factorises as qig2 for a quartic form ¢1 and a quadratic form g2 (c.f.
Lemma which split completely in the splitting field of P.

Moreover, we find that for the quartic extension K := Q(r1 + r3) of
Q, the form ¢ satisfies

q1(a1,az2,a3) = £Ngg(ar + az(r1 +r3) + a3(7“f +rirs + Tg)),

and so takes the shape of an incomplete norm form (c.f. Proposition[5.11)).
The quadratic g2 takes the form

q2(a1,az2,a3) = [a1 + (r1 + r2)az + (Tf +rire + rg)a;,»]

) ; (4.12)
x [a1 + (13 + ra)az + (r3 + r3ra + 71)as).

Since the two polynomials P;(X) := (X — (r1 + 72))(X — (r3 + r4)) and
Po(X) := (X — (ri +rire +r3)) (X — (r3 +r3ra+73)) are in Z[XEL 714712
and r? 4+ r1ry + r3 are of degree at most 2 over Q. Let A; and As be the
discriminant of these two polynomials and

(4.13)

D . [8,A1,Az]  if AjAg #0,
2718, A1 4+ Ag]  otherwise.

2We can check that Py(X) + (rire + rarq) and Pa(X) + (rir2 + rara)(X + i<y TiTs)
have coefficients which are symmetric integer polynomials in the 7;, and so are in Z[X]. Since
rire + r3ra € Z, it follows that P;(X) and P>(X) are in Z[X].

11



Since P is irreducible of degree 4, we don’t have A; = Ag = OEI If
p=1(mod Dg,) and A1Az # 0, then (A1/p) = (Az/p) = 1 where (n/p)

is the Legendre symbol. Thus the polynomials P; and P, modulo p factor

into products of two degree one polynomials. The linear factors of g2 in
have their coefficients in F,,. We also verify that it is still the case
when p =1 (mod Dg,) and A1Az =0.

Then NK/Q(E:ZL:1 a;v;) is a quartic form in the integer variables a1, a2, as, a4,

and we have for all a1, a2,as,a4 € Z

4 4

NK/Q(;GUJ@') =11 ( 1aj0'i(1/j))7

i=1  j=

where 01, 02, 03,04 are the different embeddings of K/Q.

Given an irreducible quartic polynomial P € Z[X] with Galois group
Cy or Dy it is the case (see Lemma that the distinct roots r1, 72,73, 74
of P can be ordered such that rire + r3rs € Q. We are interested in the
auxiliary polynomial g2 (see (5.25)), given by

To ensure that q1(a1, a2, as) = Nk ,g(ai1v1 + azva + asvs) is composed
only of suitably small prime factors, we will look for a1, a2, as such that

11412913414 - - - Q1Z|NK/Q((11V1 + azva + asvs)

for some suitable primes qi1, g12, q13, q14, - - ., qre < X' ~° with Hf.:l qij >

X3+ In the application to Theorem we will only need the case £ = 6,
but the proof in this particular case is exactly the same as in the general
case.

5 Algebraic properties of auxilliary poly-
nomials

5.1 Ideals
Let 71 be a root of P. We define for any ideal J of Z[r1] the function

opr(J) =card{0 <n < Np(J) :n=r1 (mod J)},

where Np = Ng(r,)/q is the norm on Q(r1). If J is principal, J = (a), we
will write simply op(«) in place of op(()).

Lemma 5.1. Let J be an ideal of Og(r,y such that (Np(J), Disc (P)) = 1.
If the equation n = r1 (mod J) has a solution with n € Z then J is
a product of prime ideals whose norm is a prime number. Furthermore
J can’t be divisible by two different prime ideals with the same norm.
Conversely, if J satisfies these different conditions then this congruence
admits some solutions and op(J3) = 1. Finally if J is an ideal such that
opr(J3) =1 then for m € Z, Jjm < Np(J)|m.

Proof. This is [I, Lemma 3.1]. The particular case P = ®12 is handled in
[4 Lemma 3.1]. O

3If Ay = A = 0 then the roots of r1 4+ ro and riry are in Q. This contradicts the fact
that [Q(r1) : Q] = 4.

12



5.2 The roots of P modulo m

In this part only we suppose that P(X) = X" +c,—1 X" '+ 4co € Z[X]
is monic, irreducible of degree n. In our problem, the degree of P is 4 but
the argument of this part is valid for all irreducible and monic polynomials
and might be used in other contexts. Throughout the rest of the paper
we fix a root r1 of P.

For a € Z[ri], we write & = ap+a171 +asr?tasri+-- -—i—an,lr;‘_l. Let
ma : Q(r1) — Q(r1) be the multiplication-by-a map: mqa(xz) = az. Let
M., be the matrix of m,, with respect to the basis {1,r1,r7,7%,..., 777}
and Np(a) = Ng(p)/o(e@) its determinant. For P(X) = X* 4 2 the
corresponding matrix is

ap —2a3 —2a2 —2a1
a1 ao —2a3 —2a2
az ail ap —2&3
as as ai ao
. —1
More generally since ri' = —cog — c171 — -+ — cn—177 , We have
ao —CoQn—1 * e ES
al apg — C1an—1 * *
an—1 An—-2 — Cn—10n—1 * et *

In this section we prove results analogous to [4, Lemma 4.1] or [I}
Lemma 3.2]. As in these two papers, we let B;; = B;;(«) be the cofactor
formed by taking the determinant of the (n — 1) x (n — 1) matrix formed
by removing line i and column j from M, and multiply it by (—l)i”. If
a=ag+a1r1+---+an—177 " then B;; is a polynomial in the a;. By an
abuse of notation we will sometimes use B;; to refer to this polynomial,
and sometimes the value attained at a particular point (ao, a1,...,an—1).
The intended usage should be clear from the context.

Lemma 5.2. Let o =ag+air1 +---+ anflr?_l, with ag,...,an—1 € Z
be such that (Np(a), BinDisc(P)) = 1. Then there exists an integer ke,
with 0 < ko < Np(«) such that we have

n—r; =0 (mod () & n =k (mod Np(a)).
This integer ko, satisfies the congruence
k’a = BgnBln (mod NP(Oé)).

Furthermore, if § is an ideal of Z[r1] containing a principal ideal (o) with
a as above then there exists a unique ky with 0 < ky < Np(J) and

n—ry €J < n=ky (mod Np(J)).

Proof. The starting point is the following trivial observation: ar! € (a)
forall j =0,1,2,3,...,n—1. Let (m; j)i<s,j<n be the coefficients of M,.
We obtain the equations

mij 4+ ma 1+ +mu iy =0 (mod (a)), V1< j<n.

13



This system can be represented as

me1 M3 Mn,1 1 —mi,1
2
m22 M32 Mp,2 1 —mi,2
. . = . (mod (a)) (5.2)
n—1
ma,n msa,n Mn,n T —Min

If we remove the i-th line in this system and apply Cramer’s rule, we find

ma1 ms.1 Mn,1 —mai1 ms1
moi—1  M3,i—1 Mp,i—1 —Mi,i—1 M3,i—1
ridet | mait1 M3 Mpit1 | = det | —miit1 M3
ma,n—1 ms3an—1 Mn,n—-1 —Min-1 ms3an—1
man ms3,n Mn,n —Min m3,n .
(5.3)

The transpose of the matrix on the left is the submatrix of M, obtained
by removing the first line and the ' column. The matrix on the right
is the submatrix of M, obtained by removing the second line and the *"
column and by multiplying all elements of the first column by —1.

We recall that the B;j;, 1 < 4,7 < n, are the cofactors of M, so that

Bll BQl e Bn1
. 1 Bia Ba ... Bp2
o = . . . . (5.4)
Np(a) : Do
Bln B2n C B’nn
With this notation, (5.3) becomes
(—l)iJrlBliTl = —(—1)i+2Bzi (mod (Ot))
In particular, this gives
Bli""l = BZi (mod (Oz)) (55)

By Lemma [5.1] (and the assumption (N(c), Disc (P)) = 1), if an integer
is congruent to 0 (mod («)) then it is divisible by Np(«). Therefore
considering i = n now gives the claim of the first part of Lemma [5.2

For the second part when J|(«), thus it suffices to take ks € [0, Np(J)]
such that ks = ka (mod Np(J)). The claim now follows from (5.5). O

We end this subsection by observing some connection between the
cofactors By; and Ba; with 1 <4,5 < n. Since (moé)f1 =m,-1, we have

1 n—1
B B .-+ Bin ,
Np(a)( 11 + Biar1 + + Binry )
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and the columns of M ! satisfy the same relations (5.1) as the one in M,.
By the relations (5.1]) for M, -1, we see that

B2 —coBin
Baa Bi11 — ca1Bin
: = : (5.6)
B2(n—1) Bl(n—Z) - C'n72Bln
Bo, Bl(nfl) —cn—1B1n
In particular the last line implies that
B2n = Bl(nfl) - Cn—lBln~ (57)

For n = 4, and c¢3 = 0, we recover the formula B1471 = B2s4 = Biz (mod (),
proved in [I] and in [4].

5.3 Elimination of ag

The aim of this subsection is to approximate the fraction k3/Np(«) by a
fraction whose denominator depends only on a1, a2, as. Now and for the
rest of this paper we restrict our attention to P having degree 4. In this
subsection we prove the analogue of [I, Lemma 3.3], or [4, Lemma 6.2].
A natural way to proceed is to work with some resultants of the different
forms defined previously.

Lemma 5.3. There is a homogeneous polynomial g3 = q3(a1,az2,a3) in
ai,az,as such that

B24B13 — B1aB23 = g3 Np(). (5.8)

Proof. We note that the argument giving (5.5 holds for any o # 0. Ap-
plying this with ¢ = 3,4, n = 4 we find

71 B13B24 = r1B14B23 (mod Np(a)).

Since this holds for all ag, a1, a2, as, we deduce that there exists a form
gs = qs(ao, a1, az,a3) such that whenever (Np(a), Disc (P)) = 1 we hav<ﬂ

B24B13 — B1aB23 = g3 Np(a). (5.9)

Since both sides are polynomials, this must actually hold for all a (in-
cluding (Np(a), Disc (P)) # 1.) Therefore we just need to show that g3
actually doesn’t depend on ag. Np(a) has degree 4 in ap while the poly-
nomials B;j, ¢ # j are of degree 2 in ag, and so by equating the coefficients
of a§ we see that ¢s must not depend on ao. O

Remark. One can explicitly compute g3 in terms of the coefficients ¢; of
P; it is given by

gs(ai,az,a3) = a3 — aias — csazas + caas. (5.10)

When c3 = 0 this coincides with the form —qa given in [1, equation (2.7)].

4In [I] and [4] this form corresponds to the form g4.
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Remark. Lemmal5.3 makes important use of the fact that P is a quartic
polynomial. For polynomials P of degree d > 4 the form qs would have
degree d — 4 in ag, and so would be no longer independent of ag.

Following the notation of [I] and [4], we write Resultant(P1, P2;x) for
the resultant of the polynomials P;, P> with respect to the variable z. We
will be interested by the two following resultants

R := R(a1, a2, as3) = Resultant(B14, Np(a); ao) (5.11)
Ro := Ro(a1,az, as) = Resultant(Bis, Bia;ao) '
Lemma 5.4. With the previous notation we have
BR=RE.

Proof. The proof of Lemma is the same as that of [I, Lemma 2.1].
Since Bia is of degree 2 in ag, we have

¢35 R = Resultant(B14, ¢sNp(a); ap) = Resultant(B14, B2saB13—Bi14Bos; ao).
But B4 = Bi1s — c3Bi4 and B3 is also of degree 2 in ag. We deduce that
@GR = Resultant(Bia4, B, ap) = R2.
This ends the proof of Lemma O
We see that the polynomial g3 divides R, and so we can write
Ro = qqs (5.12)

for some homogeneous polynomial ¢ = ¢(a1,az,as). Moreover, since Ro
is the resultant of Bis and Bi4, there are two polynomials U and V €
Z[ao, a1, a2, as] such that

UBi3 + V Bi4 = qqs. (5.13)

We are now ready to state the main result of this section. It is analogous
to [4, Lemma 6.2] or [1, Lemma 3.3].

Lemma 5.5. Suppose ao, a1, a2, as are such that (Bia(ao, a1, az,a3),q(a1,az2,a3)) =
1. Then (Np(a), Bia(ao,a1,a2,a3)) =1 and for h € Z we have

e( —hke ) _ (—hU(ao,a1,a27a3)314(a0,a1702,a3)
Np(a) q(a‘17a27a3)

where U = Ulao, a1, az,a3) is defined by (5.13) and R is given by

v By
qBia  Np(a)Bis'

+hR(a0, ai,az, a3)) s

R(CL(), ai, a2, a3) =
Proof. To simplify notation, for the proof let q, g3, U, B14, B14, B23, B4, Np(«)

denote the values of the polynomials evaluated at ao, a1, az, as.

Since g divides the resultant R defined in (5.11)), if ¢ is coprime with
B4, we have (Np(a), Bi4) = 1. By Lemma 5.2}

e(Nl:?a)) :e(%;(%;)'
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We use the Bézout relation

f— 1 j—
= (mod 1) for (u,v) =1, (5.14)

S|

—+

SRS

and the fact that

—

Np(a), B14) = 1. This yields the formula

(mm) = (- 2 ) 60
Combining , and , we obtain
UNp(a)qs = U[Bi3(B13 — c3B14) — B14Bas)]
= U(B%s — B14(Bas + ¢3Bi3))
= Bi13(q3q — VB14) — UB14(B23 + ¢3Bi13)).
This rearranges to give
(UNp(a) — qB13)q3 = B14(—V Biz — U(Ba3z + c3B13)).
Since g3 and B4 are coprime, we deduce that
UNp(a) — gB13 =0 (mod Bia). (5.16)

Since B4 = Bis (mod Bis), we obtain

BQ4NP(CM) = Bl3NP(Oé) (mod 314) = U(j (mod Bl4).

We insert this in (5.15)) and apply (5.14]) one more time. This gives the
desired result. |

5.4 Explicit computations of B3, B4, U, V.

We have used SAGE to explicitly compute the polynomials q, Bis, Bia,
U and V. The cofactors Bis and Bi4 are of degree 2 in ag

Bis = — azal + (af + czaras + (—c3 + c2)as + (—2c2)a1as

3 2 2 2
+ (c3 — cac3 + c1)azas + (—cac3 +c; + cics — cO)ag)ao

+ (—c3)ai + c3atas + (—cacs)aras + (cics — co)as

+ (fcg + 20203)a§a3 + (czc?), — 3cics + 2¢0)arazas

+ (—clc§ + 20003)a§a3 + (—6303 + 2¢103 — 200(:3)a1a§

+ (e1e2c3 — €03 — coca)aza3 + (—cies + cocacs + coci)ay, (5.17)
Bis = — azag + (2a1a2 — c3a3 — csaras + ciazas + (—cacs + 261)a§)ao

3 2 2 3 2 2

—aj + czajaz — cea1as + cras + (—c3 + 2c2)aias + (c2c3 — 3c1)arazas
2 2 2

+ (—cie3 + co)azaz + (—¢5 + 2c1c3 — co)ara;

+ (c1c2 — coes)azas + (—¢ + coca)as. (5.18)
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The quantities U and V are of degree 1 in ag. In some step we will need
the explicit formula for the coefficient in ag in U and in V'

2 2 2 2 3 3
U =ago (7(11043 + 2a1a3a3 — 2c3a1a2a3 + 2caa1a3 — czasas+

(265 — c2)aza3 + (—c3 + c1)azal + (cach — ¢35 — cres + co)aé)
+ 3a§a2a3 203a1a3 4a1a2 + 403a1a§a3
+ (c§ — 602)&%&20,3 + (703 + 3cacs + 201)a?a§
+ 4dcsarans + (—9¢3 + 3c2)aradas + (6¢5 + cacs — 3c1)arazas
+ (—cj3 1 5620% + 305 + 2c1c3 + co)alagag + (0203 + clcg —4cico — COC3)a1a§ — cgag
(303 — CoC3 — cl)a2a3 + (= 30§ + 5c1c3 — 2co)aga§
+ (c5 + 3cach — 2c5¢3 — Tercs + ciea + 4deoes)azal
+ ( 20203 + 0203 + 30103 + 2c1c003 — 20003 — 01 — 20002)a2a3
+(c3

c5 c — 0203 — 3010203 + 20102 + 6163 + 2cpcocs — cocl)ag, (5.19)

2 3 2 2 4
V =ao (alagag — 2a1a3 + 2czaiasas — 2c2aiaza3 + c3as

+ (—2c§ + 02)aga3 + (cg — cl)agag + (—0203 + cg + cie3 — co)agag)
—ajas + dla3 — 2csalazas + dcaadal + 2csalal + (—cg - 402)a¥a§a3
+ (—¢3 + Beacs)afazal + (20265 — 6¢5 — 2c1c3 + 2c0)atal + (—3¢3 + ca)aras
+ (6¢5 — cacs — c1)aradas + (—3¢3 — Teach + 53 + 6eres — beg)arasal
70203 dcies — 50103 + 50003)a1a2a§ + (-4 203 +46S + dereacs — 40002)a1a3

c3 — cacs + cl)a2 + (- 3c3* + 4020§ — cg — 3cic3 + 2c0)a§a3

6 3
c3 — 20203 + 50203 + 30103 — 202 —4cicacs — 20003 + 40002)(12(13

(

+(

+(c3

+ (3¢5 — 3cach 4+ c1c5 + crea — 20063)aga§

+ (=

+ (20203 30203 — 20103 + CQC3 + 010203 + 20003 + 0103 — 2cpcacs — cocl)agaé
+ (-

A 2 2 2\ 5
0203 + 20203 + 261CQC§ co — 2c1C5¢3 — clc3 2606263 + 26062 + 2¢cocic3 — ¢h)as.
(5.20)

We don’t write the expression for ¢ because it would take more than one
page and we won’t need to know its precise shape during the proof. Let
U=ayUi +Uy, V=0aoVi + V. Then U; satisfies:

2 2 2 2 3 3
Ui = —aja3 4+ 2a1a3a3 — 2c3aiaza3 + 2c2a1a3 — c3asa3+
2 2 2 3 3 2 2 4
(23 — c2)azaz + (—c3 + c1)azaz + (ca2cs — ¢3 — c1cs + co)as

2 2 2 3
= as (—alag + 2a1a3 — 2c3a1az2a3 + 2caa1a3 — czas+

(265 — c2)azas + (—c3 + c1)azas + (caci — ¢35 — cre3 + co)a3)
(5.21)

‘We observe that
axU1 + a3V = 0. (5.22)
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5.5 Factorisation of ¢

Lemma 5.6. Let P € Z[X] be an irreducible monic quartic polynomial
and r1,72,73,74 1ts roots. Let R and Ry be the two resultants introduced
wn (5.11). Let a(r) := ao + a1 + aar? + asr®. Then there exists tp € QF

such that
R(ai,a2,a3) =tp H (a(ri) — a(ry))?.

1<i<j<4

Furthermore, the resultant Ro is divisible by

IT (at) —a(ry).

1<i<j<4

Proof. This is [I, Lemme 7.1] in the special case of quartic polynomials.

O

Lemma 5.7. The coefficient tp in Lemmal[5.6 is given by

1
= A =

1<i<j<4

Proof. The proof follows the argument of La Bretéche and Mestre, but
for completeness we repeat the main steps.

We note that Np () is the determinant of the linear map g, : Q[X]/P(X) —
Q[X]/P(X) given by g.(H(X)) = a(X)H(X) where a(X) = ao + a1 X +
a2 X? +a3 X3 Let L1(X),..., Ly(X) be the Lagrange interpolation poly-
nomials for the roots r1,..., 74 of P. Thus Li(z) = [, ,(x—r;)/(ri —r;)
and in particular L;(r;) =1if i =7, 0if ¢ # j. Then for all i = 1,2,3,4,

9a(Li(X)) = a(X)Li(X) =Y a(r;)Li(X)Li(X) = a(r:) Li(X),

Jj=1

in Q[X1/(P), since P(X)|L:(X)L;(X)if i # j and P(X)|(L?(X)—Li(X)).
Thus the matrix of g, with respect to the basis {L1(X), L2(X), La(X), La(X)}
is diagonal with coefficients a(r1),a(rz2), a(rs), a(rs) on the diagonal.

Let T be the matrix of the polynomials L1(X), L2(X), L3(X), La(X)
with respect to the standard basis {1, X, X2, X3}. Then the matrix of
Np(a)g, ' with respect to the standard basis is Np(a)M,* with M;*
given by . Thus have

Bi1 Ba1 Bs1 Ba I1,1 a(r;) 0 0 0

Bi2 B2 Bs2 Baa | _ T 0 Hj;éQ a(r;) 0 0

Biz Bss Bss Baa| 0 0 I3 a(rs) 0

Bi4 B2a B3s Bu 0 0 0 [1;.4a(r;)
(5.23)

The form Np(a) = [];_, a(r;) is quartic and monic in ag. If we write
Bis = Bia(ao) as an element of Z[a1, az, as][ao], the resultant R satisfies

4
R =] Bu(d),
i=1
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where d; = —air; — agrf — ag,m3 for ¢« = 1,2,3,4 are the roots of y —

Np(y + air1 + aor? + aszr}). Let Pi(X) = di + a1 X + a2 X? + a3 X3
Formula (5.23)) with dy in place of ao, gives

Bii(d1) B2i(d1) Bsi(di) Buai(dy) Hhﬂ Pi(re) 0 0 O
Bi2(d1) Ba2(di) Bsa(di) Bao(di) | T 0 0 0 O
1313(d1) 1323(d1) l?gg(dl) 1334(d1) o 0 0 0 O
Bi4(d1) Boa(di) Bsa(di) Baa(dr) 0 0 0 O

We have similar formulas for the polynomials P>, P3, Ps. The first
column of the matrix of the left corresponds to the coordinates in the
standard basis of the image of the constant polynomial 1 by the map
Np(a)gs'. The decomposition of the polynomial 1 in the Lagrange basis
is 1 = L1(X) + L2(X) + L3(X) + La(X). The first column of the left

matrix is then

Bii(dy) [lezy Pr(re) 0 0 0 1 H?:2 Pi(r;)
Bia(d1) | 0 00 of (1] 0
Bis(di) | — T 0 0 0 0 | =7 0
Bia(dy) 0 0 0 0/ \1 0

In particular we deduce that Bi4(d;) is the coefficient of X® in the poly-
nomial H?:z Py (rj)L1(X). Since Li(X) = H;;Q(X —r;)/(r1 —1rj), we
get
[T, Pi( (r;) —a(r1)
Bia(d1) = 177 Yy ) = alr)
H?:Q(rl 21_[2 T

In the same way we prove for ¢ = 2, 3, 4:

Bi4(d;) = 71_[]# _H (r5) :? T’)

[T (ri =) i
This completes the proof of Lemma O

Remark. Lemma is stated for quartic polynomials but is in fact
also wvalid for irreducible polynomials of degree n > 2. For these poly-
nomials, if the resultant is between Np(a) and the cofactor Bin, then
tpt = (=1)" [Ticicjcn(ri — r;)%. For the resultant between Np(a) and
B¢ for some 1 <€ <n—1, we may also have for tp an explicit but more
complicated formula, involving the coefficients of X¢ in the Lagrange in-
terpolation polynomials associated with the roots r1,...,rn of P(X).

Lemma 5.8. The polynomial q(a1,az2,as) € Qla1, az,as] satisfies
q= i H - TJ)
. 7’1] ’
1<i<j<4

where a(r) := ag + a1r + asr? + asrs.

Proof. This follows immediately from putting together Lemmas [5.6] -
and 5.7
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5.6 The factor ¢; as a an incomplete norm form

A key point in the work of [4] and [I] is that the form ¢ may be factored
as a product of 3 quadratic forms whenever P has a suitably small Galois
group. In this section, we prove that if G = C4 or D4 then q is a product
of two forms ¢ = q1q2, where ¢1 has degree 4, g2 has degree 2 and ¢; is
related to a norm form of a certain number field.

Lemma 5.9. Let P(X) € Z[X] be a monic quartic with Galois group Cy
or Dy. Then there is an ordering of the roots r1,72,7r3,74 of P such that

rire + r3ry € Z.

Proof. We recall the notation P(X) = X*+e3X3+eaX?+c1 X +co. The
cubic resolvent of P is

R3(X) = (X = (rira + 7374) )(X — (r1r3 + 1272)) (X — (1174 + 7r273))
= X3 e X?+ (eser —4co) X — (cgco + cf — 4eacp),

which clearly lies in Z[X]. By Gauss’ lemma, any rational root of R(x)
must then lie in Z. We therefore see that the claim of the lemma is
equivalent to R3(X) having a root in Q when P(X) has Galois group
G = C4 or Dy. This fact (often stated in the form that the splitting
field of R3(X) is a degree 2 extension) is a standard fact about cubic
resolvants; see for example the web page of K. Conrad [3] or the book of
Jensen, Ledet and Yui [I3] for some nice expositions on the Galois group
of quartic polynomials. O

Remark. The resolvent R3(X) has a unique rational root when the Galois
group is Cy or Ds. When the Galois group is the Klein group, all roots of
R3(X) are in Q and when the Galois group is alternating or symmetric
(A4 or Si), no root of R3(X) is rational (cf. [3] or [13)]).

Lemma 5.10. Let P(X) have Galois group Cy or Ds. Then the form
q € Q|a1, az,as] has the factorisation
q==Eqq2

where g1 € Q[a1, az,as] has degree 4 and g2 € Qla1, az,as] has degree 2.
These are explicitly given by

_ (a(r1) = a(rs))(a(r1) — a(re))(a(rz) — a(rs))(a(r2) — a(r4))

(r1 —73)(r1 — ra)(ra — r3) (12 — 74)

’

(5.24)
and
(a(r1) — a(rz2))(a(rs) — a(rs))
(r1 —r2)(rs —ra)
where a(X) = ao + a1 X + a2 X? + asX® and r1, 72,73, 74 are the roots of
P(X), ordered such that rirs + rars € Q.

q2 = 5 (525)

Proof. We recall from Lemma that the explicit formulae (5.24) and
(5.25) give a factorisation ¢ = +q1g2 over Q. Thus we wish to show that
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in fact q1,¢2 € Qa1, az, as], so that this is also a factorisation over Q. A
direct computation gives for all 1 <i < j < 4:

a(ri) — a(ry)

= a1 + az(r; + ;) +az(r; +riv; +17). (5.26)

If G = C4 then G = (o) for some 4-cycle . Then we can label the
roots such that o is the permutation o = (rirsrars). With this choice
of root ordering, we have o(rirs + r3ra) = rira + r3ra. Since o(q1) = 1
and o(g2) = g2, we have that rire + 7374, ¢1 and g2 are fixed by all of
G = {Id,0,0% 6%}, and so rire 4+ r3rs € Q and q1,q2 € Q[a1, a2, asl,
giving the result in this case.

If G = Dy, then G = (o,7) where 7 is a transposition and o a 4-
cycle. We can label the roots such that 7 = (rsrs). This implies that
o(rs) # ra, since otherwise we could suppose that o = (rsgrarirz) and G
would contains the following subset of 9 permutations :

{Id,7,0,0% 0% o7, (07),70,(70)*} = {Id, (rsra), (r1irarsra), (rirs)(rara),

(rirarsra), (rirars), (rirare), (rirers), (rirara)},

which is not possible since |G| = 8. We prove in the same way that
o(ry) # rs. We can thus label the roots of P so that o(r3) = r2. This
implies that o(r4) = 71, 0(r2) = 74 and o(r1) = 73, that is 0 = (rirsraora).
Again we observe that r1r2 + r3rs € Q since it is fixed by ¢ and 7.

Since 7(q1) = g1 = o(¢q1) and 7(g2) = g2 = o(g2) we also observe that
q1,q2 € Q[a1,az, as] in this case. This completes the proof. O

The main result of this section is the following proposition.

Proposition 5.11. Let P(X) € Z[X] be irreducible, monic, quartic with
Galois group Cs or Da. Let r1,72,73,74 be the roots of P ordered such
that rire +r3ra € Q and let K := Q(r1 + r3). Then the form q1 defined
n satisfies

q1(a1,a2,a3) = £Ngg(a1 + az(r1 +13) + az(r; +rirs +73)).

Proof. We consider the cases when G = Cy and G = D4 separately.
Case 1: G = Cy. Let G = (o) with o = (rir3rars) and rir2 + 1374 € Q.
We see that

3
0" — HU’(G(H) a(m)) = Nogryyjo(a1+as(ri+rs)+as(ri+rrs+r3)).
i=0 TL—Ts

To finish the proof, it remains to prove that Q(r1 + r3) = Q(r1) is the
splitting field of P. Since it is obviously contained in the splitting field,
we just need to verify the field is not fixed by o®. But ¢z = —(r1 + r2 +
r3 +1ry) = —(r1 4+ 13) — o2(r1 + r3) so if Q(r1 + r3) is fixed by o2 then
Q(r1 + r3) = Q. But in this case r1 +r3 = o(r1 + r3) = r3 + r2, so
the roots would not be distinct, which contradicts our assumption. Thus
Q(r1 +73) = Q(r1) as desired.

Case 2: G = D4. Let G = (0, 7) with o as above and 7 = (r3rs). We
work with the permutation o7 = (r17r3)(r274). Let L be the splitting field

22



of P(X) and Ko = {z € L : o7(x) = z}. Then L/K) is a Galois extension
of degree 2 and [Ky : Q] = 4. We observe that r1 + 3, M € Ko.

Now, by looking the orbit of {1, 3} under the subgroup of S, generated
by {(1324), (34)}, we see that

Nrsg (7G(T;3 — :£T3)) = q

and

Ni/xk, (a(m) - a(rs)) _ (a(rl) — a(rg))z’

T —7Ts T — T3

since M € Ky. By the transitive property of the norms,

We deduce that ¢1 = £Ng, /g (%)

As in the case (i), to finish the proof it remains to check that Q(r1 +
r3) = Ko. We have already seen that Q(r1 + r3) C Ko, and so it suffices
to show [Q(r1 + 73) : Q] = 4. This follows from an identical argument to
that of case 1 because the intermediate extension between Ky and Q is

the subfield of Ko fixed by 02 = (r17r2)(r3r4). O

We will apply Theorem 1| with K = Q(r1 +r3) and 11 = 1, 1o =
r1+ 73, v3 = r? + 12 + rir3. In the next lemma, we verify that these
3 vectors v1, va, vs are linearly independent over Q (even though the
situation would be simpler if there was a linear dependence).

Lemma 5.12. With the previous notation, 1,71 + rg,r% + rg + rir3 are
linearly independent over Q.

Proof. In the proof of Proposition [5.11] we have seen that r1 + r3 € Q,
and so certainly 1 and r1 + r3 are linearly independent. Suppose that
there exists u,v € Q such that r3 +73 +717r3 = u+v(r1 +73). If we apply
o? = (r172)(rsrs) to this expression, we find ri4ridrory = u+v(ra+7ra).
Summing this two equations gives
4
er +rirg + rora = 2u +v(r1 + r2 + 13 + r4).

=1

This contradicts the fact that rirs+rars & Q (since Y, 74, Y, e Q). O

5.7 On the solutions of some congruence equa-
tions with By, and ¢

In this section we compute the number of solutions of various equations
involving the factors ¢i1, g2 and the cofactors Bis, B14. These preliminary
lemmas will be applied in several places in the proof of Theorem [I.1]

Some parts of this section are similar to [I, Lemma 3.9] or [4, Section
13], but both of these previous approaches relied on the condition G =
(Z./27)* which we do not assume, and so we require a slightly different
approach.

Let dp be the discriminant of the splitting field of P.
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Lemma 5.13. Suppose that (p,a3dp Disc P) =1 and a2 € Z. Let Qp(az2,as)
denote the number of integers a1 with 0 < a1 < p such that

gi(a1,az2,a3) = g2(a1,a2,a3) =0 (mod p). (5.27)

Then
1, if P((a2 — czas)az) =0 (mod p);

0, otherwise.

Qp(az; as) —{

Proof. Let L be the splitting field of P and Oy, its ring of integers. Since
(p,0p) = 1, p is not ramified in O, and so its decomposition into prime
ideals is pOr = [[;_; PB: with Np(P;) = p' for some integers s,t with
st = [L : Q). Formulas (5.24), (5.25), (5.26) give us the factorisation
of the polynomials ¢1 and g2 over Or. The condition ¢i(a1,a2,a3) =
q2(a1,az2,a3) =0 (mod p) is equivalent to one of the factors of g1 and one
of the factors of g» vanishing (mod 9B,,) for each 1 <m < s.

First we suppose that has a solution. Thus for all 1 < m < s,
there exists (4,7) € {(1,3),(1,4),(2,3),(2,4)} and (k,¢) € {(1,2),(3,4)}
such that

(mod P,

a1 + az(ri +15) + as(r] + rirj +17)
(mod PBin).

=0
a1 + as(rk +710) + as(ri +rere +17) =0

Eliminating a1, we find
ax(ri +71j —TE —T¢) = ag(ri +orpre i —r2— rirj — 7“]2) (mod B, ).

For notational simplicity we concentrate on the casei =k =1,j=3,¢=
2; the other cases are entirely analogous (noting that {i,7} N {k, £} # 0).
We obtain

(r3 —r2)az = as(ra —r3)(r1 + r2 + r3) (mod Pin).

Since p { Disc (P) and (r3—r2)| Disc (P), we see that rs—ra #Z 0 (mod P ),
and so (recalling c3 = —11 — 12 — r3 — r4a € Z) we have a2 = az(csz +
r4) (mod Pn). This implies that r4 = (a2 — ascs)as (mod P, and so

P((a2 — ascz)az) =0 (mod P ).

Since this argument is valid for all m, we find that P((a2 — asc3)az) =
0 (mod p). Thus if P((az — csas)az) # 0 (mod p) then Qp(az,as) = 0.

Now we suppose that P((az2 —csas)as) = 0 (mod p). Then there exists
j € {1,2,3,4} such that r; = (a2 — ascz)az (mod p). We may suppose
that j = 4; the other cases are analogous. We see that this implies that
a2 = az(—r1 — r2 — r3) (mod p) and that r4 € Z 4+ pOr. Moreover, we
check that

az(r1 +713) + ag(r% +7rirs + r?) = az(—ca — c3ra — TZ) (mod p),

a2 (1 4 12) + az(ri + rire +73) = as(r1 4 r3) + az(r + rirs +73) (mod p).

Thus the system (5.27) admits the solution a; = —(az2(r1 + 73) + as(ri +
r1rs +13)) (mod p), noting this is in Z 4+ pOr. Thus Q,(asz,as) > 1.
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Moreover, there are no other solutions modulo p, because the previous
computations showed that for any {i, 5, k, £} = {1,2,3, 4}, if we have

a1 + ax(ri + ;) + as(r; +rir; +77) =0 (mod Pin),
a1 + az(ri + i) + az(r? +rir +1r2) = 0 (mod P ),

then we must have (az—csas)as = r¢ (mod PBr,). But the roots r1, 72,73, 74
are distinct modulo p when (p, Disc P) = 1, and so we must have ¢ = 4.
Thus the only solution is a1 = —az(ri +r;) — as(r] + rirj +1r3) (mod p)
(noting that these are the same for all choices of {3, j, k} = {1, 2,3}). Thus
Qp(az,a3) =1 when P((az — csaz)az) = 0 (mod p). O

Recall that B4, Bis are cubic forms in ag, a1, az, as given explicitly by
and . For later estimates, we need to understand the number
of solutions in aop of the equations Bi4 = 0 (mod p) or Bz = 0 (mod p).
Since Bi4 has degree 2 in ag, we can get an explicit formula for its roots
in F, with the discriminant.

Lemma 5.14. Let A4 € Z[a1, a2, as] be the discriminant of B1s4 viewed
as a polynomial in ao. Then
A14 = 7(]3’1, (528)

where h is given by

h(a1,az2,a3) = —4a? + desaras + (—3c§ +4cg)aras — c3al + (cg — 4cq)azas
+ (chcg + 4cie3 — 4co)a§
= (r1 + 72 —r3 —r4)°gs(a1, az,a3) — g2(a1, az, as).

We remind the reader that g3 is the form defined in (5.10) and g2 is
the form given by (4.12]).

Proof. This follows from explicit computation using the formula for the
discriminant of a quadratic. O

We recall that we have ordered the roots of P, ri,72,73,74 so that
rire +rarg € Q.
Lemma 5.15. Let t1 := rira + 13714 and t2 := (r1 + r2)(rs + 74). Then
ti,t2 € Z.

Proof. First we note that ¢, is fixed by the permutations (rirzrars) and
(rsra), so t2 € Q. Let R(X) be a cubic resolvent associated to P, given
by (see B])

R(X) :==(X = (r1 +r2)(rs + 7)) (X = (r1 +73)(r2 + 7)) (X — (r1 +74)(r2 + 73))
= X3 —2c, X% + (cg + cger — 4eo) X + (cgco +8— c3C201).

Then we see that R(X) € Z[X] and it is a well-known fact that when P
has Galois group C4 or D4, R(X) has a unique root over Q, which must
be t2. Since R(X) is monic we see that to € Z. Since t1 +t2 = c2 € Z we
see that ¢t € Z. O
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Remark. (i) If t2 = 0, that is (r1 + r2)(r3s + r4) = 0, then we have in
fact 11 + 12 =13+ 14 = 0 since o(r1 + r2) = r3 + ra. This implies that
cs = 0 = c1. This situation is analogous to [1, Lemma 3.9] (or also [}
Lemmas 13.2 and 13.3] for the polynomial X* — X% +1.)

(i) We have t1 # 0, since otherwise we would have r1 —re = +(rz—r4).
If we compose with the embedding T = (rsra), we findri—re =rg—ra =0
which is mot possible.

Lemma 5.16. Let a1, az,as € Z be such that (q(a1, a2, as), gs(a1,az,a3)) =
1 and q(a1, az,a3) is squarefree. Let to = (r1 4+ 1r2)(rs +1r4) € Z.
Let p be a prime with plq(ai,az,as) and pt azazdp Disc P.

(1). If plgi(a1, az,as) OTp)(cg — 4to, then
{0 < ao <p: Bia(ao,a1,a2,a3) =0 (mod p)}| = 2.
(i3). If plgz(a1,az,as) and p|c§ — 4ta then
{0 < ao < p: Bia(ao,a1,a2,a3) =0 (mod p)}| = 1.
(#i). We have
[{0 < ao < p: Bis(ao,a1,as2,as) = Bia(ao,a1,az,a3) =0 (mod p))}| = 1.

Proof. We recall from and that ¢|Ro, the resultant of Bis
and Bi4 viewed as polynomials in ag. Therefore since p|g(a1, az,as), we
have that p|Ro(a1,az2,as), and so the two quadratic polynomials in ao,
B3 and Bi4 have a common root in some finite extension of Fy,.

If this common root is not in F,, then its conjugate is also a common
root of B1s and Bi4, and so we would have Ro(a1, a2, a3) = q(a1,az,as)qs(a1,az,a3) =
0 (mod p?). But this is impossible since we assume that g(ai, az,a3) is
squarefree and coprime to ¢3(a1, a2, as) with p|q(a1,az, as). Therefore the
common root must lie in Fj,. This proves assertion (iii).

Since the common root of Bi3z and Big is in F, and Bi4 is quadratic,
both the roots of Bis4 (seen as a polynomial in ag) are in Fp. Thus the
number of 0 < ag < p with Biy4 = 0 (mod p) is 1 when p|A4 and 2
otherwise.

If p|g2, by Lemma p|A14 if and only if p|(ri +r2 —r3 — 7"4)2. This
gives the assertion (i) and (ii) in the case p|g2 because (r1+72 —r3—rs)? =
C% — 4ts.

We now consider the case p|gi. Let L be the splitting field of P, Or
its integer ring and pOr = []. _, Pm, the decomposition of p in Of.
Then for all m there exists (4,j) € {(1,3),(1,4),(2,3),(2,4)} such that
a1 = —az(ri + ;) — as(ri + rir; +r7) (mod PByn). We may suppose that
i = 1 and j = 3, the other cases being similar. Substituting —a2(r1 +
r3) —as(r? +rirs +r2) for a; in the expression for h in Lemma gives

h(a1,az2,a3) = —(asz(r1 + ro +r3) + a2)(as(r1 + r3 + ra) + a2)

X (ri—r2+r3 — 7"4)2 (mod PBrn,). (5:29)

We have that az(r1 + r2 + 7r3) + a2 Z 0 (mod PB,). If this were not
the case we would have as(—cs — 74) + a2 = 0 (mod Br), and then
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P((az — ascs)as) = 0 (mod p). By Lemma [5.13] we would have p|(q1, g2)
which is not possible when q is squarefree. Similarly as(r1+7r3+7rs)+az Z
0 (mod Pm).

Thus A4 = 0 (mod Byy,) if and only if 71 —r2+73 —74 = 0 (mod Pirn)
for all m. But this is equivalent to 71 — r2 + 73 — r4 = 0 (mod p), and
so y(r1 —rz2 + 13 —r3) = 0 (mod p) for all embeddings . Applying this
with v = ¢, 7 we see that p|A14 if and only if r1 = 72 (mod p), which is
impossible since p t Disc (P). Thus when p|¢; we have p { A4, and so
Bi4 has two roots (mod p). O

Lemma 5.17. Let ao,a1,az2,a3,p € Z be such that (¢(a1, a2, a3),qs(a1,az,a3)) =
1, q(a1,az2,as) is squarefree and p|(q(a1,az,as), Bia(ao,a1,a2,as)). Then
we have

p|Np(a) <:>p|Blg(ao,a1,a2,a3).

where o = ag + a1r1 + azr% + agri”.

Proof. This is a variant of [4, Lemma 13.3] (or [1} Section 6.1]). By (5.6)
and (5.8)), we have

(B13 — ¢3B14)B13 — B1a(B12 — c2Bi4) = ¢3Np(a).

The Lemma follows from this formula since (p, gs(a1, a2, as)) = 1. O

6 The set of ideals 7

In this section we define a set J of principle ideals which correspond to
the forms ¢1 and ¢2 having a convenient prime factorisation. This will
have a slightly technical definition to ensure that it is compatible with
later arguments.

It is known (see |[14) Lemma 4.2]) that there is a fundamental domain
Dp of the units action group such that if & = ag+a171+asri+asrs € Dp,
then max(|aol, |a1], |azl, las|) < Np(a)** and so |o(a)| < Np(a)'/* for
all embeddings 0. We recall that the forms g1 (a1, a2, as) and gz2(a1, a2, as)
are defined by and (5.25)), the polynomials Pi(X) := (X — (r1 +
r2)) (X — (rs-+74)) and Pa(X) i= (X — (r2+rira-+73)) (X — (13 +rora+72)
with discriminants A; and Aj respectively, Dg, from , and dp is the
discriminant of the splitting field of P. With this notation we introduce
a constant qo depending only on the polynomial P

go = 512(1 + ¢3 + |c2| + |t1] + |t2])dp Disc P, (6.1)

where ¢1 and ¢y are the integers defined in Lemma [5.15] The set J will
depend on various auxiliary absolute constants

040,9117. . ~,016792177117~ ..,T16,T21 € (0, 1).
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These constants will be required to satisfy various inequalities, specifically

[91-]-,91-3- + Tz‘j} N [Ol/]/ﬁ rir Ti/jl] =0 for (’L,]) * (1'17]',)7 (642)
0 < 6015 <0y +T1j<7/32 forall 1 < j <6, (6.3)
1
ap < 2157 (64)
6
2013 +T1] <1+a0/2 (65)
6
011,012,013, 014,015,016,021 > 1+ o — Z 615, (6.6)
j=1
1 2
_ZO‘O < b1+ 0124613 < —2040 — T T Tz — T8, (6.7)
2+ ap 2?21(911' + T14)
021 + 121 < 200 50 » (6.8)
4(611 + 012 + 613) 2+ o
-1 . .
021 + 21 < ( 1+ o ) 00 (6.9)

There is reasonable flexibility in how we might choose these constants
(and the above constraints could likely be weakened significantly), but for
concreteness, we can chose the following explicit values of these variables:

ap = 0.00001, 647 =0.1398, 012 = 0.1401, 613 = 0.1402,

014 = 0.21, 015 = 0.19, 016 = 0.1799, 021 = 0.001,

75 = 0.0000001 for all (4,7) € Ic.

Now we are ready to define the set J. The set J is the set of all
principal ideals (&) of Og(y,) with generator a = ao + a1m1 + asr? + azr}
where (ao, a1, az,a3) € Z*NDp, satisfying the conditions (C1), (C2), (C3),
(C4) and (C5) below.

(C1) q(a1,az,as) is squarefree.
(C2) Size conditions: We have
qla, az, az) > X%/,
|Bia(ao, a1, as, az)| > X*/*,
Np(a) € [X'Ta0/2 xtteo],
(C3) Factorisation conditions on «: There exists ideals K, L such that
(o) = KL with K a prime ideal satisfying
X1 < Np(K) < X5, (6.10)
(C4) Factorisations conditions of auziliary polynomials: The values of the

forms qi(a1,az,a3) and g2(a1,az,as) evaluated at a1, az2,as can be
factored as:

q1 ai a27(13 qij
’ H ” (6.11)

q2(a1, a2, a3) = g21g22 with g21 =1 (mod Dy,),
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where 21, 11, q12, ¢13, q14, 15, 16 are prime numbers satisfying
gij € [X %, X0iitTia)

for all (17]) € {(17 1)a (17 2)7 (17 3)7 (1a4)7 (17 5)7 (27 1)}7 and where q22, 416
are integers (not necessarily prime) with

P~ (g22), P~ (q17) > qo

where qo is given by .
(C5) Coprimality conditions:
(a) (a2,a3) =30 and a2, a3 = 30 (mod 900), a; =1 (mod 30).
(b) (Ne(@),qo) = 1.
(c) (q(ar,a2,as),q3(a1,az2,a3)) = 1.
(d) (q(a1,a2,as), Bia(ao,a1,az,as)) = 1.
(e) (q(a1,az2,as),azas) = 1.
With this definition of J, we can verify the property if o is chosen

small enough.

Lemma 6.1. We have that for all 3 € J

[T WNe() > x'teos,

pell3
Np(p)<X

Proof. This is a consequence of (C2) which forces Np(a) > X'+eo/2
and (C3), which forces all ideal factors of (&) to have norm at most
max(X50 X17320) < X (We note that (6.4) implies that 19ao < 1). O

The next Lemma says that the congruence n = r1 (mod J) can be
solved when J € J. We recall that gp is defined in (3.4).

Lemma 6.2. For all J € J we have op(J) = 1.

Proof. Let J € J. There exists a = ao + air1 + agrf + agrf with
(a0, a1, a2,a3) € Z* N Dp satisfying (C1),(C2),(C3),(C4),(C5) and such
that J = (). By Lemmal5.5land (C5)(d), (Np(3J), Bia(ao, a1, az, as)) = 1.
The condition (C5)(b) and Lemmas and imply then that op(J) =
1.

O

Remark. As mentioned in Section@ we will work with the set J> which
is the set of 3 € J such that P~ (Np(3)) > X%. This condition implies
(C5)(b).

We see from condition (C2) that if a € J then a = (ao + a1v1 + agve +
azvs) for some a € Z* which lies in the region

R = {a ER*NDp: TXH2 < N(ao, a1, a2, as) < X170,

(6.12)
|Bia(ao, a1, a2, a3)] > X*/*, |g(ar, a2, a3)| > Xa/z}-
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Here we have written Kfp as the extension of Np(«) to R4;

N(al,az,a3,a4) = ﬁ (iajm(z/j)) (6.13)

i=1  j=1

By our choice of Dp we see that if a € R then |a;| < X A+e0)/4 for all
1 € {1,2,3,4}. For notational convenience we set I¢ to be the set

Ic :={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1)}, (6.14)

so that condition (C4) forces q;; € [X %4, X% T7ii] for all (i,5) € Ic, for
example.

7 Proof of Proposition [3.3; The term S

In this section we establish Proposition [3.3] by bounding the sum S; de-
fined by . The overall approach is similar to previous works. First we
reduce to controlling exponential sums, then remove the ao-dependence
in the denominator of the phase which means that we can apply the ¢-
analogue of Van der Corput’s method whenever the denominator of the
phase takes a suitably friable form.

Lemma 7.1 (Reduction to exponential sums). Let Si1 be as given by

13.6), and no, ao, b0 > 0 be such that
9
ap <mo <1-— an, 12600 + 19a0 < 1.

Then for X > 2, H = X" we have

Ei(X,h; KA Ey(X,h; KA
S1 < (log H) Z Z Z | En ( )|+ 1E2( )l +o(X),

oI/
Np () Px90) "
Np(A)<x3%
(7.1)
where for £ € {1,2}
X  hUB
Ei(X,h; KA) := Z e( — )
G2y Vel q
KA|(a)
Proof. This is [I, Lemma 5.1]. O

To show that S; is small, our task is therefore reduced to showing
cancellation in the exponential sums E,;. Lemma [5.5] allows us to put the
exponential phase into a form where we can then apply the g-analogue of
Van der Corput’s method. The bounds from this method are summarised
in the following lemma.

Lemma 7.2 (¢g-Van der Corput for short exponential sums). Letk, D > 1,
€>0. Let f,g,v € Z|X] of degree < D andr = ro - - -, be squarefree such
that P~ (r) > 2*D. Suppose that for every p|r there is no polynomial w €
Z[X] of degree < k + 1 such that f(X) = w(X)g(X) (mod p). Moreover,
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suppose that v(X) is not the zero polynomial (mod p) for any p|r. Then
for A, B,h > 1 we have

Z e <hf(n:g(n)> <Lk,D,e TEB[(%)I/2H1 + (Ar;2)1/2k+1

A<n<A+B
(v(n)g(n),r)=1

Tk+1—j /27
2 )

j=1
where A := (ro, h).
Proof. This is [I, Lemme 3.10] (a small variation of [8] Theorem 2]). O

To apply this lemma, the denominator g(a1, az2,as) in our exponential
phase must have a good factorisation. We will apply Theorem [1] to
show that for a positive proportion of (a1, a2,as) the denominator ¢ =
q(a1, a2, as) has such a factorisation. We want the e(hUU B14/q) factor to
oscillate suitably to give this cancellation via Lemma [7.2] The following
lemma will ensure that this factor is not degenerate.

Lemma 7.3. Let U = aoUi + Uy, V = aoVi + Vo as in and in
. If ag,a1,a2,a3 € Z are such that (ap + a1 + agr% + (137"%) e J,
then

(Uo(al,az,ag),U1(a1,a2,a3),q(a1,a2,a3)) =1.

Proof. Imagine for a contradiction that p|q(a1, a2, as),Us(a1, a2, as), Ui(a1, az,as).
Condition (C4) implies that g(a1, a2, as) has no prime factors smaller that

o, so certainly p > 2. Then U(ay, a1, az,a3) = 0 (mod p) for all aj, and

so the equation UBi3 + V B14 = qqs simplifies to give

V(ag, a1, a2, as)Bia(ay, a1, az,a3) = 0 (mod p)

for all ag. Condition (C5)(d) then implies that Bi4(ag, a1, a2, as) does not
identically vanish (mod p), so Vi(a1, az,as) = Vo(a1,az,a3) = 0 (mod p).

By conditions (C1) and (C5)(c), a1,as2,as satisfy the hypotheses of
Lemma [5.16f But this implies that there is a choice of af such that
Bis(ap, a1, a2, as) = Bis(ag, a1, az2,as) = 0 (mod p). Evaluating at
ag, a1, az,as then implies that

q(a1,az2,as)gs(a1, az,as) = 0 (mod p°).

This is impossible since (q(a1,a2,as3), gs(a1,az2,a3)) = 1 and q(a1, a2, as)
is squarefree by conditions (C5)(c) and (C1). This gives the result. O

Finally, we need a short lemma to show that we can restrict attention
to g(a1, az,as) being not too small.

Lemma 7.4 (Bounding terms with ¢2(a1, a2, as) small). Let 720 > 0 and
for £ = 1,2, Ej(X,h; KA) be the contribution in E¢(X,h; KA) given by
the () € J such that |g2(a1, a2, a3)| < X(1F20)/2=720 - Thep
, e KA X 1teo—T20/2
E;(X,h; K -
Z( s Iy ) < NP (KA)
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Proof. If E;(X, h; KA) = 0 then the result is trivial. If Ej(X,h; KA) # 0
then there exists at least an ideal (&) € J such that Np(AK)|(&). By
the last assertion of Lemmal[5.2] this implies that there exists an integer j
such that 1 = j (mod K A). The condition K A|(«) is therefore equivalent
to
ao = —a1j — azj’ — azj® (mod Np(AK)).
Thus, for any given a1, as,as there are O(X(1720)/4 /Np (K A)) terms ao
in E)(X, h; KA).
We recall that g2(a1,az2,as) = HLO L;(a1, az2,a3) with for ¢ = 0, 1:

Li(a1,a2,a3) = a1 + (r142; + r212:)a2 + (1112 + T142ira42i + raya;)as.
If |g2(a1, az, a3)| < X (+@0)/2=720 then

m(l)nl |L2i(a1a az, a’3)| < X(1+a0>/477—20/2' (72)
=0,

For any given as, a3, the number of a; satisfying (|7.2]) is O(X(HO‘U)/‘FT?O/Q).
Since there are O(X (1t20)/2) choices of az, as, the total number of terms
in E'(X,h; KA) is O(X+e0=m20/2) O

We are now able to bound S; suitably.

Proof of Proposition[3.3 First we wish to apply Lemma By (6.4),
we have ag < 1/20, so the conditions of the lemma hold if 7o is slightly
larger than «g and 6y is sufficiently small. This gives

|E1(X, h; KA)| + |E2(X, h; KA)|
Si<(logH) > > ey +o(X),
Kek A h<H?2
Np(A)|P(x%) ~
Np(A)<x3%
where -
htX hUBi4
Ei (X, h;KA) := - ).
Z( s Ity ) Z e(NP(Oé) q )
(a)eT
KA|(e)

We write Ey = Ej, + E, where Ej; is the contribution from terms in E
with |g2(a1,a2,a3)] < Y, and Ey is the contribution from terms with
lg2(a1,a2,as)| > Y. By Lemma the contribution to S; from Ej is
O(X =<MWy provided

Y < X(1+040)/2—4770—€_ (73)

Therefore we concentrate on the contribution from E;. As in the proof
of Lemma/[7.4] there exists an integer j such that the condition K A|(c) is
equivalent to

ao = —a1j — a2j® — asj” (mod Np(AK)). (7.4)

Let ag = ao(a1, az,as; K A) be a solution of the congruence (7.4). We may
write ag = @o + mNp(KA) with m € R'(a1, a2, as) where

R'(a1,az2,a3) := {m : (G0 + mNp(KA),a1,az2,a3) € R}.
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(We recall that R is the domain defined in (6.12)).) This set R'(a1,az,as)
can be written as a finite union of intervals I’ (a1, a2, as).

Any ap of the above form ensures that conditions (C2) and (C3) are
satisfied. Conditions (C1), (C4) and (C5) parts (a),(c),(e) don’t depend
on ag. Thus we find

htX  hUBi4
E/ (X, KA) < 3 3 e( _7)‘
! ) , Ne(a) g
ar,az,az<Xx (1 +e0)/4 mel’(ay,a2,a3)
g2(a1ag,a3)>Y (Np(e),q0)=(q,B14)=1

Here by > @) We mean that the summation is constrained by the fac-
torisation condition .

We now need to control the ged between Np(KA) and q. We define
t = (Np(KA),q) and t' = q/t. Since q is squarefree, (¢,t') = 1. We apply
Bezout formula to separate the congruence in ¢ and in t' and use
partial summation to remove the factor e(h¢X/Np(«)). This gives for
£=1,2, (as in [1, p. 239])

" . 2no+ap /4 ht_f(m)g( )
E/(X,h: KA) < X ( S . mas, §<B e(# :
al,as,a X m=
42(a1 a9009)>Y PENETRA  (g(m) t')=1
()

(7.5)
where C is the projection of R onto the final 3 coordinates and

fim):=U(ao + mNp(KA)), g(m):= Bis(ao+mNp(KA)).

We recall from that for all a1, a2, as under consideration g(a1, az, as)
factors as H:zl qii H§:1 g2; for some integers ¢;; of constrained sizes. We
now wish to apply Lemmal[7.2} which requires that for all a1,az, as under
consideration and all p|g(ai1, a2, as), there is no polynomial w(X) € Z[X]
of degree less than 10 such that f(X) = w(X)g(X) (mod p).

Let plq(a1, az,as3). By (C5)(e), as is coprime with p, and so by 7
Bis (mod p) is a polynomial of degree exactly two in ag since its lead
coefficient is —a3. By Lemma7 (p,Uo(a1,az2,as3),U1(a1,az,a3)) = 1,
and so U(ao, a1,az2,a3) (mod p) is not identically zero and has degree at
most 1 in ag. This implies that for all p|g, there is no polynomial w € Z[X]
such that U(X, a1, az,a3) = w(X)B14(X,a1,a2,a3) (mod p) and we can
apply Lemmawith k = 8. We take 1o = g22/(qa2,t), r1 = q21/(g21,1),
re = qi7/(q17,t), 73 = q16/(qs,t), ..., rs = qi1/(qu1,t). By and
, we observe that gi7 < ¢i; for all 1 < j < 6. Let

emaz + Tmaz = sup (02] + Tij)a (76)
(1,9)€lc

where we recall from (6.14) that

Ic :={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1)}.
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Then the sum over m in (|7.5)) is bounded by

| oMty

m<B
(g(m),t")=1

c h )y 1/2° 1/29 i\ 1728
<q B((( , q) (422, )) +(q%) + sup (g) )
q22 B (ipele N B

We insert this bound into E}' (X, h; KA), and then subsitute this into 5.
Writing oo = X922, this gives

S1 K X2’7°+1+5(Z +e (X*"22279 + X(922*1+42%+600+10a0)2*9

_|_X<9maz+rmaz—“C%Jrseo%ao)rg) 4 x1oete()

Thus we see that S1 = o(X) provided

50[0 022
2no + 4 < 29
(%) 1 /14 ag Sa
g2 - _ 1 9 —
2 < 29( g 00“)) Ty
Omaz + Tmaz 1 /14w 5
_— — — 3600 —5 ) —2n9g — —.
98 98 ( 1 0T a0 A Ty

We recall that gaz = g2(a1, az,a3)/qgz1, that go(a1, as,a3) € [Y, X (1+20)/2]
and g1 € [X9217X021+721]. Thus on choosing ¥ = x (tao)/d=dno—c o,
(7.3) is satisfied, we see that the bound S; = o(X) holds provided

5a 1+ oo 1
2770+T<( 1 —921—7'21—47]0)2*9
1 /140 1 /140 S5ap
= _ = _ 1 ) Oy — 220
3o (T ) < 55 (5 06— 10a0) — 200 - 7
Omaz + Tmax 1 /1+ oo 5Ye )
- — 300 — — 9y — 220
28 28 ( R 5%) K
These follow from (6.3)), (6.4) and on taking g sufficiently small and
no sufficiently close to ag. O

8 Proof of Proposition [3.2} The sum S

In this section we estimate the sum Sy from (3.6]) and establish Proposition
[3:2] all under the assumption of Theorem [1}

8.1 The variable qq in S

With the notation o = ag + a171 + a2ri + asrs, we consider the subset

R € R* is defined by (6.12).
For Sy we proceed in the same way as in [I], [4], [8] but with slight
differences in some steps where a bound in O(X¢) is not always sufficient.
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Lemma 8.1 (Removing the variable ao). Let 1200 + 22c0 < 1. We have

So = (% log(5/4)log2 + 0(1)) H (1 — %%))501 + O(X*"‘O/SL

p<X§
where
501 = Z I(al,az,ag)h(q(a1,ag,a3)), (81)
(a1,a2,a3)€CNG

g(p) == {B : Np(B) =p}|, (8.2)

C :={(a1,a2,a3) € R%: 3ap € R s.t. (ag,a1,a2,a3) € R},
(8.3)
G :={(a1,a2,a3) € Z* : Jap € Z s.t. (a) € T}, (8.4)

1-2/p)
h(q) := p? (71 _ , 8.5
(q) H (q)g 1 7g(p)/p P~ (q9)>q0 ( )
I(a1,a2,a3) ::/ &, (8.6)
ap€D(a1,a2,a3) NP(ll07al7a27a3)

D(a1,az,a3) := {ag € R: (ao, a1, az2,a3) € R}. (8.7)

Here Np(ao, a1, az,as) is the quartic form coinciding with Np(ao+aim1 +
asr? + agri)’) on integers.

Proof. We want to isolate the variable ap. We note that the condi-
tion («) € J implies that (¢(a1,a2,as3), Bia(ao,a1,a2,a3)) = 1 and that
(ao,a1,a2,a3) € R but otherwise there are no further dependencies be-
tween ap and a1, az,a3. We use Md&bius inversion to detect the condition
(¢, Bia) = 1 when evaluated at ao, a1, a2,as. This give rise to a square-
free 7|(q, B14) which we decompose as r = riry with r{|Np(KA) and
(ry, Np(KA)) = 1. This yields

— I

So=2 2 Avpy 2 DIRNICY
KeKk A (a1,a2,a3)€CNG r{|Np(KA)
rilg(a1,az,a3)

, 1 (8.8)
D SN S SR
rhlq(a1,a2,a3) ag€S(ry,m5) ag€D(a,az,a3)
(rh,Np(KA))=1 ap=ao (mod rHNp(KA))

where C, G are as in (8.3)) and (8.4

S(ri,ry) == {0 < ap < ryNp(KA) : r1r5|Bia(ao, a1, a2, a3), KA|(a)}.
(8.9)
(We have suppressed the dependence of S(ry,r5) on a1, as,as for nota-
tional convenience.) The inner sum over ap is now over points in an
interval with a congruence constraint, and so by partial summation (and
recalling from that Np(a) > X720/ for all a € R), we obtain

1 I(a1 a2 a3) 1
= a0, O( ) 8.10
2 Ne(@ ~ riNp(AR) O\ KFar) (810)
ap€D(ay,a2,a3)
ap=ag (mod rhNp(KA))
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The O(X ~(1+20/2)) error term in (8.10)) contributes to So a total

1 —1/44300+21ag/440(1)
< X1+ag/2-0(1) Z Z Z l<X ’ ’ ’

Np(K)<KX%* Np(A)<x3% (a1,a2,a3)€C

(Recall that if a € R then [|ajoc < X1T20)/4 by our choice of funda-
mental domain). This is O(X ~*/4+°(W) if 126, 4 22a0 < 1, as in the
assumptions of the lemma.

Thus we are left to consider the contribution from the main term of

(8-10), namely
- iy [8(re,me) | (as, az, as)
Z Z Z)‘NP(A) Z M(Tl)u(h) rng(AK) .

(a1,a2,a3)€C KeK A rirhla(al,az,az)

) INp(KA)
(r5,Np(KA))=1

(8.11)
By the Chinese Remainder Theorem, we have

|S(Tl177n/2)| = H |S(Tl1,7”é,p)|, (812)

plrh Np (KA)
where

{0 < ao < p: p|(Bia(ao, a1, az2,as), Np(a))}|, if p|ri,
|S(r1, 75, p)| := < |{0 < ao < p : p|Bia(ao, a1, az,a3)}|, if p|ry,
{0 < ao < p:p|Np(a)}, if p|Np(KA)/r1.

We compute |S(rf, ry, p)| using Lemmas and Under the condi-
tion P~ (q) > go we find

2 if p|r}
1St 72.p)| = {1 ifi:J\Z(KA).
Using this bound in gives
|5(r )| = 202,
Inserting this in the previous expression for the main term of Sp,

we see that the sum over ri is 1 if (q(a1,az2,as3), Np(KA)) = 1, and 0
otherwise. Thus the expression (8.11)) simplifies to

> f(al’a2,a3)( > w)hl(q(ah%aa)),

(a1,a2,a3)€C r4la(a1,a2,a3) &
where
a) == ( > 1)( > ANP“")
n iex Ne(K) (Np(A),q)=1 Np(4) )

(Np(K),q)=1
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Recalling that K is the set of prime ideals with norm between X**° and
X520 we see that for ¢ < X

> o = oG/ + o),

) ANp(a) S Az 9(d)

Np(A d

R Sl CO R
(d,q)=1

:(26”;7%2%(1)) I (-2 1 (1-9®

p p

pla

p<Xx%
p<xf

Here we used the fact that the linear sieve lower bound function evaluated
at 31is 2e” log 2/3. Putting these expressions together now gives the result.
O

8.2 Splitting into small boxes

We see from condition (C2) that if a € J then a = (ao+a1r1+azri +asrs)
for some a € Z* which lies in the region R given by (6.12). We recall that
m = (logx)~'%. We cover the region R by hyper-rectangles of type

H =]Ao, Ao + mAo]x] A1, Ar (1 +m)]x] Az, Ao (1 + m)]x]As, A3(1 + m)].
(8.13)
The number of such hyper-rectangles is O(n;*)(log X)* = O(n®).
Furthermore the contribution to So1 from hyper-rectangles such that
min(|A;|) < X1/47720/8 §5 O(X 1~ *0/8+¢) which is sufficiently small.
We will say that H is a ‘good’ hyper-rectangle if H C R and

min(| Ao, |A1], | Az, |As]) > X /47708,
min(|Aol, [A1], Az, |As]) > m max(|Aol, [A1],[Az], |As]), (8.14)
q1(A1, Az, Az) > 77}/10 max(| A, |As|, [As])*.

If H is not ‘good’ then we say H is ‘bad’. We note that the second and
third assertions in this definition corresponds to the conditions and
@)

We denote by ##% the set of all good hyper-rectangles. To each hyper-
rectangle H we associate its projection to R® by ignoring ao:

H' =]A1, Ai(1 4+ m)]x] Az, Ao (1 4 m)]x] Az, Az(1 4 m)]. (8.15)

Lemma 8.2 (Splitting into small boxes). Let So1 be as in Lemma
We have that
Aom

So1 > — So2(H),
HEZ%OR NP(AO7A17A27A3)
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where

SOQ(H) = Z Z h(‘](alua27a3))'

aije[x?id, x%iitTij) (a1,a2,a3)€H’
(i,5)€lc [15_1 a1jlq1(a1,a2,a3)
g21=1 (mod qu) g21]g2(a1,a2,a3)
(a(a1,a2,a3),q3(a1,a2,a3))=1
(g,a2a3)=1

(a2,a3)=30, a1 =1 (mod 30)
ag,a3=30 (mod 900)

We recall from (6.13) that Np(ao, a1, as,as) is the quartic form coin-
ciding with Np(ao + air1 + asr? + agr?) on integers.

Proof. By splitting the sum over a1, a2,as and the integral over a¢ into
the hyperrectangles #, and then restricting only to good hyperrectangles
for a lower bound, we find

So1 > Z So1(H),

HeAp
where
S(/JI(H) = Z h(q(a1,az,a3))fﬂ(a1,a2,a3)7
(a1,a2,a3)ECNH'NG
Ag(1+m1) d A 1+ 1
Iy (a1, az2,a3) ::/ _ a0 — o ( o(1)) .
Ao NP(a07a17a27a3) NP(AO,A17A27A3)

We recall from that if (a1, az2,a3) € G then ¢1 (a1, az,a3) and g2(a1, az, as)
factor as H?:l q1i and @21q22 respectively with g21,q11, 912,13, q14, Q15
primes satisfying ¢;; > X% In particular, we see that for any choice

of a1, az,as there are O(1) choices of ¢;; such that ¢;(a1,az,a2) = H]. Gij -
Thus, summing over these representations, we find

Aom

So1(H) > =
Np(Ao, A1, Az, As)

So2(H),

say, with So2(#) as given by the lemma and I¢ defined in (6.14]). This
gives the result. (I

8.3 Preparation for the application of Theorem

4.1l

Following [l Section 6.2] or [4, Section 15], we do several manipulations
in order to take care of the different coprimality conditions and the multi-
plicative weight h(g). In our situation it is important that we are slightly
more careful than these previous works. We do not impose congruence
conditions to moduli larger than (log X)°™) since this would cause issues
related to Siegel zeros (the argument of the previous papers would intro-
duce a congruence constraint of modulus X for some ¢y > 0). This means
we need to be careful not to lose the fact that when (ao, a1, a2,as) € H,
the a; are in small intervals. Let

Z = (log X),  Z' .= x0/10000 (8.16)
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where g is the constant used to define the set K (which will be chosen
sufficiently small later on) and Ag is a fixed constant (which will be chosen
sufficiently large). From the bound , we certainly note that since
ag < 1 we have

Z1000 < Z'0o < min(Ao,Al,A27A3). (817)
For brevity we will write
Ny = Np (Ao, A1, As, A3). (8.18)

Lemma 8.3 (Removing the condition (g,q3) = 1). Let So2(H) be as in
Lemmal823 Then we have

3
niA1A2 Az
Soz(H) = Soz(H) + O(W)’
where
Sos(H) ==Y p(d) > > h(q(a1,az,as)).
d<z qijE[Xeij,Xeij+Tij] (a1,a2,a3)€H’
(j)€Elc 15—, a15lq1(a1,a2,a3)
g21=1 (mod Dq,) g21q2(a1,a2,a3)

d|q(a1,a2,a3)
dlgz(a1,a2,a3)
(q(a1,a2,a3),93(a1,a2,a3))=1
(g,a2a3)=1
(a2,a3)=30, a1=1 (mod 30)
ag,a3=30 (mod 900)

Proof. First, we detect the condition (g, gs) = 1 via M6bius inversion

502(H) = Z Z h(‘l(a17a21a3)) Z :u’(d)

qjje[Xeij,Xeij+7ij] (a1,a2,a3)eH’ dlq(ay,az,a3)
(i,5)€lc [15-1 a1lq1(a1,a2,a3) dlas(a1,02,a3)
g21=1 (mod Dg,) 92192 (a1,a2,a3)
(q¢(a1,a2,a3),93(a1,a2,a3))=1
(g,a2a3)=1

(a2,a3)=30, a1 =1 (mod 30)
ag,a3=30 (mod 900)

We split So2(H) into three sums,
So2(H) = Sos(H) + U1 (H) + Uaz(H),

where Sos(H) is the contribution of the terms in So2(H) with d < Z,
Us1(H) is the contribution from Z < d < Z’ and U22(H) is the contribu-
tion from d > Z’. We note that Sos(H) is as given in the lemma, so we
are left to bound Usz1 (H) and Uz (H).

First we bound Us1. Recall that ¢g3(a1,az2,a3) = —aias +a%—c3azas —
c2a2, so the condition g3 = 0 (mod d) implies that a1 = (Tg(ag — c3a0a3 —
c2a3) (mod d). (We restrict ourselves to (as,q(a1,az,a3)) = 1 so (az,d) =
1.) Inserting this into the condition ¢(a1,a2,a3) = 0 (mod d) and multi-
plying by a$ gives Q(az2, a3) := q(a3 —csazas —c203, azas, a3) = 0 (mod d),
for a polynomial Q(az2,as) which is of degree 12 in a2 (and non-zero).
For any given az the number of roots of Q(az,a3) (mod d) is O(12*D).
For any choice of a1, a2,as under consideration, there are O(1) choices
of primes q;; € [X%, X%i*7ii] with qi;|q1 (a1, az,as)g2(ar, az,as). Thus,
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letting b(az2,a3) = (Tg(ag — c3asa3 — 02(1%)7 and noting Z’' < A9-9° (recall
(8.17)), we deduce

e Y Y )3 >

Z<d<Z'a3z€[A3,Az(1+n1)] a2€[Az,A2(1+m1)]  a1€[A1,A1(14+m)]
Q(agz,a3)=0 (mod d) aj=b(az,a3) (mod d)

124 -
< A1A2A37’]§ Z - < A1A2A377§Z 3/4.
Z<d<2z’
We now consider Usz. Since Q(az,a3) = 0 (mod d), if Q(az,as3) # 0
there are O(X°¢) choices of d given a2, as. We have Q(az,a3) = 0 if and
only if 3(4,j) such that

(a% — c3a2a3 — @aﬁ) + (ri +7j)azas + ag(r? + iy + 7"72) =0,
which rearranges to
a3 + azas(ri +1j — c3) + a3(ri + iy + 15 —c2) = 0.

Since a3 # 0, az/as is a root of X2+ (ri4+mj —c3)X + T2+ riry + 7"]2- —c2
and there are at most two such roots. Thus for each choice of as there are
at most 2 choices of as such that Q(a2,a3) = 0. Moreover, in this case
we still have d|gs(a1,a2,as) # 0, so there are O(X°) choices of d given
ai,as,asz. We deduce that (using Z’ < A1, As)

Un(H) < Y u(d) > 1+ > k4@

>z’ (a1,az2,a3)€M’ d>Z' (a1,az,a3)€H’
Q(az,a3)#0 Q(az,a3)=0
a1=b(az,a3) (mod d) dlgqz(a1,a2,a3)

< > 2 > > 1

a2€[A2,A2(14n1)] a3€[A3,A3(1+m)]  d>Z’ a1 €[A1,A1(14m1)]
Q(az,a3)#0 d\%(az,%) a1=b(az,a3) (mod d)
we(d)=1

PO DD DR

a1<KA,a2<K A 0<a3<k A3 dlq3(ar,az2,a3)
0

Q(az,a3)=
A A1 A2 A3 X*®
< 7} Z T(Q(a27a3))+A1A2X€ < %
az€[Az,Az(141n1)]
az€[Az,Az(14n1)]
Q(az,a3)#0
This gives the result. O

Lemma 8.4 (Removing the condition (g,asas) = 1). Let So3(H) be as
giwven in Lemma[8.3 Then we have

3
niA1A2A3
Soa(H) = Soa(H) + O( L2252,
where
Soa(M) == > p(d)pu(s2s3) > > h(q(ar, s2a3, s3a3)).
Ji=Z iy €[x %5, x %5t Tij] . (1,520 s3a3) €’
208> v (3,5)€lc [Tj=1 q1jlq1(a1,52a5,53a3)

q21=1 (mod Dg,) q21q2(a1,s2a%,s3a})

[d,s2s3]|q(a1,s2a5,53a5)
d|qg(a1,a2,a3)
(52a'2,53ag):30, a1=1 (mod 30)
sgaé,sg.agESO (mod 900)
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Proof. We remove the condition (azas, ¢(a1,a2,a3)) = 1 via Mobius in-
version, giving

Sos(H) = D u(d) > > > p(s)h(g(a1, az, as)).

d<Zz qijG[XGf,j ’Xei,j‘FTi,j] (a1,a2,a3)eH’ slazas
(i,5)€lc [1S-1 a1jla1(a1,a2,a3)  [dsllalar,az.a3)
g21=1 (mod Dg,) g21/q2(a1,a2,a3)

(az,a3)=30, a1=1 (mod 30)
az,a3=30 (mod 900)
d|q3(a1,a2,a3)

We write s as s = s2s3 with sa]as and ss|as, and write as = s2ah, ag =
ssas. Let Us(H) denote the contribution given by the s > Z and So4(H)
the remaining contribution with s < Z. Thus we are left to bound Us(H).

Since each g¢;(a1,s2a5,s3a3) has a finite number of prime factors in
[X %3, X%3+7i5] there are O(1) choices of the gi;, so

Us(H) < > p?(d) > pP(s2ss) > L.

d<z Z<5253<<N?1{/4 (al,SQa'z,s?aé)E/'H/
[d.s]la(a1,a5s2,a553)
d|q3(a1,afs2,a%s3)

The form g is monic of degree 6 in ay (by (5.24), ) and [d, s2s3]
is squarefree, so given sa,ss3,a,a3 there are O(6% ’5253])) choices of
a1 (mod [d, s2s3]) such that g(a1,a3s2,a3s3) = 0 (mod [d, s2s3]). Since
(a1, abs2,a4ss3) € H' we obtain

Us(H) < Z 12(d) Z 12 (8286 (152534 (?71A2 " 1) (771A3 " 1)( m Ay ] + 1)

S2 S3 [s2s3,d
a<z Z<5253<<N;_(_/4

A1 AQASU%

—=_ _7X°*
min(Al, Az, A3)

K ZNYME + ZN[ (A + | Al + |As]) +

g ((d:s])

+ "I?AlAzAB Z Z W

d<Z s>Z

This final term is seen to be O(nf A1 A2 Az (log Z)°V) /Z). Since max (A1, Az, A3) <
N71-t/4 and Z = (log X)°W, this gives
N3 A1 Az As NL/2He
Z1/2 H .
This gives the result. O

Us(H) <

Lemma 8.5 (Simplifying the function h). Let Soa(H) be as in Lemma
Then we have

3
A1 A A
Soa(H) = Sos () + O L2252,
where
Sos(H) =Y p(d)p(s2s3)t(u) > > 1,
u< 220 aij€lx %3, x %5 FTi5) (a1,s2a%,s3a5)€H’
dggz v (i,5)€lc 1_[?:1 q1jlq1(a1,s2a5,53a5)
$283>

g21=1 (mod Dg,) q21lq2(a1,s2a%,s3a%)

[d,s2s3,ullq(a1,s2ah,s3a%)
d|gq3(a1,a2,a3)
(sgaé,sgag):SO, a1=1 (mod 30)
sga/z,sgaéESO (mod 900)
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and ¢ is the multiplicative function defined by

%7 ifp>qo and v =1,
op) = -1, f7<p<q andv =1,
PUTN v, ifv=2,

0’ Zfl/237

with qo given by (6.1)).

Proof. Recalling (8.5, we see that h = 1 % £ where £ is as given by the
lemma. In particular,

h(q(ar, s2a3, ssa3)) = > ().

ulg(ay,sgak,s3af)

Since a; = 1 (mod 30) and 30|(az2, as), (u,30) = 1. We substitute this into
our definition of So4(#), and consider separately the contribution Sos(H)
from u < Z2° and the contribution Uy (H) from u > Z2°.

Since £(u) = 0 when there exists p such that p®|lu, we may write
u = v?w with p?(vw) = 1. Since Us(H) has u > Z%°, it suffices to
separately bound the contribution of terms Usq (H) with w > 7% and the
contribution Usz(H) of terms with v? > Z'0 > w.

First we bound Ui (H) with w > Z19. Since qo > 10, we see that
|0(u)] < 104" /1. Following an entirely analogous argument to our
bound for Uz(H) in Lemma [8.3] we can find that

w(vw)
Un(H) < Z Z Z ,uQ(vw) (60) (771141 n 1) n? Az As

w wv? S253
5283<Z  4>z10
12 (s2s3)=1 wo?|q
A1 Ax A3

< A2 AsX® + U?A1A2A3(IOgX)Z_3 < 7

Thus we are left to bound Uiz (#) involving terms with v > Z%. We see

Unn(M) SV/(H)+ > Vi(H),

(i,9)€lc

where Vi;(H) denotes those terms with g;;|v for some ¢;; € [X %3, X0 +7is],
and V'(H) denotes those terms with (I jyer, @is-v) = 1 for all gi; €
(X0, XPutu], (i) € Ie.

First we consider Va1(H). By (6.6), we have >0 61; + 621 > 1+
ao. We recall gi(a1,az2a3) < Xteo for all (a1,a2,a3) € H and that
H?:1 q1j]q1 (a1, az,as) with H?:1 qij > X23=1%3 Therefore we must
have that (ga1,q1(a1,a2,a3)) = 1. Since ap < 1/19 by (6.4) and ¢3, <
X202142m1 < x1/4-Tao/8 < min(Ai, A2, As) by and (8.14), we de-

duce that
Va1 (H) < X°© > > 1

q21€[X021,X921+721] (ay,a2,a3)€H’
431 192(a1,a2,a3)

< X_021+EA1A2A3.
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We now consider Vi;(H). As with Va1(H), we can’t have ¢i;|q1 (a1, az, as)

by size considerations and . Therefore if ¢3;|q(a1, az, as) then q1;](q1 (a1, az, as), g2(a1, a2, a3)),
and so Lemma shows that P((a2 — czas)az) = 0 (mod ¢i1;). Again,

we have that ¢i1; < min(A1, A2, A3). Thus we have

Vii(H) < X° Z Z Z 1

q1i€[X01i,x%1i%714] (a2,a3)€[A2,A2(1+n01)] X [A3,A3(1+n1)] a1 €[A1,A1 (1+m1)]
P((az—cga3)az)=0 (mod qi;) q1ilq1(a1,a2,a3)

<K X791i+€A1A2A3,

Finally, we are left to bound V'(#). Each v counted in V'(H) may fac-
tored as v = vivevs, with

v
v = | | D, Vg 1= | | D, V3 1= .
V1UV2

) plv , plv/v1
p”lq1(a1,a2,a3) p“lg2(a1,a2,a3)

Since v was squarefree, we see that vi,vs,vs are pairwise coprime and
squarefree.

By Lemmaagain, P((az — czaz)az) =0 (mod vs). In V'(H), v is
coprime with all the ¢;;, and so for any a1, a2,a3 € H

7(11((1;’ az, ) < X1reomSiai 05 A, (8.19)

Hj:l qij

vy < 'h(aléiw < x(+e0)/2=021, (8.20)
21

’vas <

Thus we have

10« (w)

Vi) < Y Y > > 3 1.

, s,d;Z w<Z10 vy Vo3> 20 az€[Az, Az (1+n1)] a1€[A1,A1(14n1)]
p(d)p“(s)=1 HZ(U”JIUQU:S):IP ‘743E[A3£3964“711>]d ’U%’Ug‘q](al,ag,ag)
((az—c3za3)az)=0 (mod v3) v2v3)42(a1,a2,a3)

Let dy € Zlaz2, as] denote the discriminant of ¢, (viewing g1 as a polyno-
mial in a1), and ds € Z[az, a3] denote the discriminant of g2. By Lemma
we see that the inner sum restricts a; to one of O(6*(¥1v293)) residue
classes modulo viv3vs/(v1,d1(az,a3))(ve,d2(asz,as)). Thus

3 1 « g@(v1v2vs) (771141(1)17dl(amas))(vzydz(am%)) n 1)_

2,,2
v2v2u;
a1 €[A1,A1(1471)] 12

vivzlqy(a1,a2,a3)
v3v3lg2(a1,az,a3)

(8.21)

Let I; = {(1,3),(1,4),(2,3), (2,4)} be the set of the indexes (¢, j) such
that (r;,7;) is involved in the factorisation of gi. We note that

di(az,as) =[] (aa(ri+r; —re — 7o) +as(r? +rirj + 17 — 1 — 1 — rere))

(1,9),(k,EN
(4,3)#(k,1)

do(ag,a3) = —(aa(ri + 12 — 13 — ra) + az(ri + rire + 15 — 15 — r3ra —13))°.
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We remark that the coefficient in a%2 in di is non zero because we

can’t have r; +r; —ri, —r = 0 for two different (7, 5), (k,£) € I1. The case
{i,7} N {k, £} # 0 is clear, the other case was noticed in Remark (ii) after
the proof of Lemma [5.15)

For d2, it may be the case that r1 + r2 — r3 — r4 = 0. However in
this case we can’t also have r% + rirs + r% — r% —7r3ry — ri = 0 since this
would imply that r1 + r2 = r3 + r4 and r172 = r3rs which is not possible
when the roots of P are distinct. Thus either the coefficient of a2 in ds is
non-zero or the coefficient of a3 is non-zero.

To estimate the sum over v1, v2, v3, az, as of the terms with di (a2, as), d2(az2, as)
in (8:21), we write w; = (v, di(az,as)) for i = 1,2 and next forget the
coprimality between v;/w; and d;(a2, a3)/w;. This sum is thus bounded
by

g (vivavs)
> o 2o wiw2 > L
VIV5V3
v1v2'u32Z5 wl}vl a2€[[‘22;i2((1+711))]
14ag—30_, 04 wz v az€[A3z,A3(14+n1
vivg<X 0T =177 dy(az,a3)=0 (mod wi)
U§U3§X(l+ao)/2*921 da(az,a3)=0 (mod wa)

12 (v1vavs)=1 P((az—cgag)az)=0 (mod v3)

If the coefficient in a% in d2(a2,as) is non zero, then the inner sum over
az, as is

A
< n1A3(1 R e )12“(w1w2”3),
wi1wW2V3
otherwise the condition wsz|d2(az2,as) is equivalent to wz|dpas for some
dp € Z depending only of P (we recall that ws is square free) and thus

the inner sum over az, as is bounded by

2
< (1+771A3> (1+771A2)12w(v1v2v3) < 12w(w1w2v3) (1+771A3 +771A2+771A2A3).

w2 wi1v3 wa wi1v3  Wi1wW2V3

Finally we obtain that

V'(H) < Z*(log Z)"° 3 g (v1v2vs) [n%AQAS
u1UQU3zz5
v%v3§X1+aniz?:l 015
u§v3§X(1+°‘0)/2*921
w2 (vivavz)=1

12w(w1w2vs)nlAlw11U2 mAs  niA2As
Ay T2 22
+ Z: viv3vd (771 s wiv3 + W1wavs3
wi vy
wa |va

- A1AxA3 3(14ao) /4=, : 0;;/2
773 (1oe Z) 003 Ay Ao Ax + 73 x30+e0)/4=3 G jyere 9i5/2
< (log Z) " myA1A2A3 + —min(Al,Ag,Ag) c

By (8.14) and we see that X 21 T0)/4=Zisere 0ii/2 < min(A;, Az, Az) X .
Putting everything together then gives the result. O

Lemma 8.6 (Removing (az2,a3)/30 = 1). Let Sos(H) be as given in
Lemmal83 Then we have

77§A1A2A3)

Sos (7‘[) = So@(H) =+ O( 7
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where

Sos(H) ==Y p(d)u(s253)0(u)p(t) > > L.

t< 750 "E[Xsij Xsij+7'ij] (a1,a2,a3)EH’
20 qij ) 6
usZ v (i,5)€lc [15=1 q1jlq1(a1,a2,a3)
s;ggz 921=1 (mod Dg,) 92192 (a1,a2,a3)
(£,30)=1 [d,s253,ullq(a1,a2,a3)
’ dlg3(a1,a2,a3)
[t,s2]]|az
[t,s3]lag

ag,a3=30 (mod 900)
a1=1 (mod 30)
Proof. Since we have az, a3 = 30 (mod 900), we can detect (a2, a3)|30 us-
ing Mobius inversion 1(a4, a4)130 = 2 ¢|(as,as) 4(t) and separately consider
(£,30)=1
the contribution Sps(#H) from terms with ¢ < 7% and the contribution
Us(H) from terms with ¢ > Z°°. Since there are O(1) choices of the g;;

given a choice of a1, az, as, we see that

Us(H) < > > S o

t>250 <720 (ay,a2,a3)EH’
d,s2s3<Z  t|(az,a3)

N A PA1A24
< 7% > mAl(mTQJrl) (%Jrl) < 77117223
Z50 <t<min(Ag,A3)

This gives the result. O

8.4 Application of Theorem (4.1

Lemma 8.7 (Application of Theorem [{.1)). Let Sos(H) be as in Lemma
8.6l Then we have
Soe(H) > Ny AL As As.

Proof of Lemma[8.7 assuming Theorem[/.1} Recalling the definition of Sos
from Lemma @, we remark that the different conditions modulo 30 on

a1, az,as imply that (g(a1,az2,as3),30) = 1 and thus we may impose that
(ds2sstu, 30) = 1. Splitting (a1, az, as) into residue classes (mod [t,u, d, s2, s3]),
we see that

Sos(H) = > p(d)u(s2ss)l(u)ult) > Sor(wo, [d, 52, 53, , u]),

tSZ50 upg€S(d,s2,s3,t,u)

u< 720

d<Zz
s053<7
(dsgsstu,30)=1
(8.22)
where
So7(llo, m) = E E 17
QijE[Xeij ,Xef?jJr”j] (a1,a2,a3)EH’
v (i,5)€lc l_[f:1 q1jlq1(a1,a2,a3)

g21=1 (mod Dg,) 92192 (a1,a2,a3)

(a1,a2,a3)=ug (mod m)
az,a3=30 (mod 900), a;=1 (mod 30)

5(d, sz, 5a,t,u) = { (w1, uz, us) (mod [d, sess,t,u]) : [d, sass, ullq(us, ua, us),

dlgs(ut, uz,u3), [s2,t]|uz, [s3, t]|u3}«
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We now apply Theorem on incomplete norms with K = Q(r1 + r3),

vi =1, 15 =711 413, v3 = r7 + 72 + 173 and vy such that vy is in the

ring of integers of K and (v1,v2,v3,v4) is a Q-basis of K. By Theorem

(taking Xi= Ay, =5, =3, 0; = 011225, 0 = (01; + 714) 127
log X ! log X

ogd’ T — (021 + T21)@), we have that

log Ay

7':021

$A1AXA
Sor(u,m) = (14 (1)) gp 2 T8T0S T tom (171 /61).
P et

Here we have used the fact that (4.3) and (4.4) hold by (8.14))
holds by , holds by (6.2]), holds by (6.5), (4.9) holds
by , holds by (6.7) and (4.11) holds by (6.8) and and
by noticing that - < lcf’ggj{l < 1+0/2. Substituting this into our

expression (8.22)) for Sps, we find that

P ALAA Lim
506(H>=<1+o<1>>?%% [T tog(1+7/05) S 1513%
Pila) et <z

. Similarly

(8.23)
where

L(m) = Z N(d):u(8233)/~‘(t)£(u)|s(da 527537t7u)|'
d<z

s983<Z
u< 220

(dsgs3tu,30)=1
t<Z50

[d,s2s3,t,ul=m

We wish to remove the upper bound constraints on d, sz, s3, u,t, m so we

can understand Y., L(m)/m?® via an Euler product. Let

L(m)= Y [pdu(s)u®(u)] Y [S(d,s2, 53,1 u),

[d,s,t,u]=m 5283=s
(dsgsztu,30)=1

L= Y @) S 18, 52,55t
[d,s,t,u]=m Sp83=s
(dsgsatu,30)=1

which are multiplicative functions of m. We note that L* (m) > max(|L(m)|, | L(m)|)
for all m and that L(m) = L(m) for m < Z. From the support of u,
we have L*(p*) = 0 for k > 3. We easily check that L*(p) < 2°p and
L*(p*) < 3p® for p > qo since |[£(p)| < 2/(p — 2) in this range. We deduce
that L*(m)/m® < 7(m)®/m?. We note that L(p*) = 0 for k > 2 and

2 < p < qo, and that L(p*) = 0 for any k > 1 when p = 2,3,5. We find

> A= 3 ER (Y )

m<Z72 m<Z m>Z
i 5
XA (X )
m m>

|

—~
Ju—
_|_

=
S
_
—~
[
_|_
s | B
S
_
_|_

Q
VN
3

2=
V)
¥./
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From our bounds on L* we see that [ ., (1 + L(p)/p®) > 1 and the
product over p < go converges. We wish to show that the product con-
verges to a strictly positive constant, and so need to check that 1+E(p) /p®
doesn’t vanish for some small prime p with 7 < p < go. If p|[d, s2, s3] then
for uw = 1 or p, we have

|8(d7 52,83, U, 1)| = |8(d7 52, 83, u,p)\.

Since £(p) + £(1) = 0 when 7 < p < qo, we deduce
Z Z M(d)M(SQSS)N(t)K(uNS(d:51752»t7u)| =0.
[d,s2,s3]=p [d,s2,53,t,u]=p
The value L(p) is then

L(p) =1 —p — [{(u1, uz,us) (mod p) : plg(u, uz, us)}|-
Then ~
1+ L(p)/p* = (0* — 6p" = p+1)/p" >0,
when p > 7. Thus Y, ., L(m)/m® > 1, and so substituting this into
(8-23) and using the fact 7;/60;; > 1 we obtain the result. O

8.5 Proof of Proposition

Proof of Proposition assuming Theorem [{.]] By Lemmas[8.1]
[B4] B5] [B-6] and [B-7] in turn, we see that
A0A1A2A3771

1
i XHZ;; Np(Ao, A1, A, As) (21/2)'

(Note that in this application of Lemma - we are assuming Theorem
@ and that we have 120y + 22a0 < 1 required for Lemma since we
are taking 6y sufficiently small and assuming that ao satisfies (6.4)).) We
note that

Z 1401411421437741l _ 1401411421437741l _ 14014114214377411

NP(A07A17A27A3) Np (Ao, A1, Az, A3)

HESR HCR HCR

H bad

If H is bad, then max(Al,Ag,A3)417%/10 > q1(Ai1, Az, A3) or there exists
i € {0,1,2,3} such that |A;| < n max(|Ao|,|A1|,|Az|,|As]). The first
inequality implies that there exists (i, ) € Ic such that

Li,j (1417 AQ, A3) ‘A1+(TZ+T‘])A2+(T1 +T1TJ+T] )A3| < 171/40 max(Al, AQ, A3)

Thus, by partial summation

AoAlAgAg’lﬁl 1
2 Mo (Ao, Ar A, Ag) 2 2 2 At
ﬁ%;ﬁ PLAO, 441, 42, 443 (i,5)€lc , A=2¢ . (ap,a1,a2,a3)ER
x5 cacx R0 Ly j(a1,az,a5)<ny 04

max(ap,a1,a2,a3) <A

3
1
SOONEEDD 2w
=0 A=2¢ (ap,a1,a2,a3)ER

1_Tag 1tag a;<m
X 8 AKX 1 max(ag,a1,a2,a3)<A

<<771/4010gX
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Similarly, we find by partial summation

Ag Ay As Aznt 1
SO = (o) Y
sicr Np(Ao, A1, Az, As) (a0,a1.a3.a5)er NP (a0, a1, a2, a3)
> log X.
Putting everything together now gives Proposition (3.2 O

Thus we are left to establish Theorem F.1]

9 Incomplete norm forms

In this section we perform our initial reductions to reduce the proof of
Theorem[4-1]to that of establishing Proposition[J.13|and Proposition[9.14]
We roughly follow the argument of [I4] in this section, but require a
number of small technical modifications.

Let K be a quartic number field, Ok its integer ring, Clk its class
group. Let v1,v0,v3,v4 € Ok such that v = (v1,v2,v3,14) is a Q-basis
of K. We suppose for convenience that 11 = 1 and K = Q(v2). We then
define Oy = Z[v1, v2,v3,v4] the order generated by v.

Welet N(-) = Ng(-) be the norm on K, and note that this is a different
norm to Np on Q(r1) encountered earlier.

There exists an integral basis of Ox, w = (w1, w2, w3, ws) and some
integers w;j, 1 <4 < j <4, such that

J
vi=> wyw (j=1,2,3,4). (9.1)
i=1
(cf. for example |16l Proposition 2.11]).

9.1 From Ok to O, and vice-versa

We denote by Lwv = (wij)1<ij<4 the matrix of v in w so that for all
1<j<4 v =30, wijw.
By this matrix is upper triangular and the absolute value of its
determinant is
W = \w11w22w33w44| ez (92)

Lemma 9.1. For all o € Ok, there exist a1, a2, as,as € Z, with

1 4
o = W;ail/i

Conversely, there exists a subset Vo C {0,...,W — 1}4 such that for all
a € Z* we have

4
%Zaiwe(%(ﬁﬂuevo:azu(mod w).

=1
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Proof. Let a € Ok. ;l’here exist (211,a27a3,a4) € Z* and (a},dh,a},al) €
Q* such that o = Sy aiwi = Y, aivs. With our previous notation,

ay al
!

[£5] -1 | a2
/ = (va)

ag as

a) n

The matrix (Lwv) " is of type 71 (wi;)1<:j<4 Where the coefficients wy;
are integers. This implies the first part of the lemma.

The second part of the lemma is also a direct consequence of the change
of basis formula. With our previous notation we have

4 4 4
E a;V; = E ( E wijaj)wi.
j=1

i=1  j=1

Then for any a = (a1, az,as,as) € Z*, % Z?:I a;v; € Ok if and only if
for all 1 <i <4, we have

4
ZWijaj =0 (mod W).

j=1

The set Vy is the the subset of {0, ..., W —1}* formed by all the solutions
of these congruences. O

Lemma 9.2. Let a be a principal ideal. Then there is a generator a of a
such that
0% < N(a)'/*

for all embeddings o : K — C. Furthermore there exists W > 0 depending

only on v such that
4
1
o = W ; a;V;

for some integers a; < N(a)*/4.
Proof. The first part is a particular case of [I4, Lemma 4.3]. The last
part follows also from this lemma combined with Lemma [9.1] O

Lemma 9.3. Let C be an hypercube of side length §o B which contains a
point by € Z* such that ||bo|| < B. We suppose that bg = (W' "7 (bo)ivs)
is an integral ideal whose norm satisfies N(bo) = Bg > B*. Let q such
that Wlq and 10gW < §oB.

Then there exists a set W(bo) of W* elements By € O with 8y =
WS (b)ivi and with b € C, such that for allb € C, b = by (mod q)
if and only if B = % 2?21 biv; € Ok and there exists , € W(bo) with
B = Bo (mod q).
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Proof. This is variant of an argument used in the proof of [14] Lemma
9.4].

Let Bo := Z?zl(bo)iyi. For all v = (v1,...,v4) €{0,..., W — 1},
there exists u = u(bg,v) € Z* such that by + ¢(v + Wu) € C since
qW < 00 B, the side length of C. We will prove that the set

4
W = {/86 = % Zb;yl with bl = b0+q(V+WU(b0,V)),V S {0, ey W*l}‘l}

i=1

satisfies the conclusion of the lemma.
First we suppose that b = bg (mod ¢). This implies that there exist
four integers mai, ma, ms3, ma such that b; = (bo); + gm,. We get

4 4 4
1 1 q
B:= W Zgl b;v; = W i§:1((bo)i + miq)vi = Bo + W }Zl miv;.

Since W g, this implies that 8 € Ok . If we choose 8y = fo+% Z?:l vivi+
with 0 < wi,...,v4 < W such that v; = m; (mod W) then we would have
B8=0+ % E?Zl(mi —v; + Wu;)y;, and thus 8 = ) (mod q).

Now we prove the reciprocal assertion. We suppose that there exists
Bo € W such that 8 = By (mod g). Then B = By + ¢y for some v €
Ok. There exists gi1,92,93,94 € Z such that v = %Ele givi. For
each i = 1,2,3,4, we have % = (b°>i+q<v€‘,+w"i+gi). This implies that
b = by (mod gq). O

For any ideal 0 of Ok, we define the function g, by

() = [{a € [1, N@)]? : 0|(a111 + azve + asws)}|
A N(@)? '
This function satisfies the following properties.

Lemma 9.4. 1. For all degree one prime ideals p with (N(p), W) =1,
we have ov(p) = 1.

2. We have 5
Hx S [1,p2]3 :p2|N(in1/i)H < pt.
i=1
3. For any ideal ¢ such that N(¢) is a power of p, we have

QV(Q) i
N <72

unless ¢ is a degree 1 prime ideal above p.
4. For any ideals a,b, oy (ab) = ov(a)ov(b) if (N(a), N(b)) = 1.
5. For k > 3, we have

3
Hx S [l,pk]3 :pﬂN(me)H < kpnk/‘l.
i=1
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Proof. The first four assertions are essentially given by [14, Lemma 7.7],
except that they work with a basis 11, 12, v3, v4 in place of 1,6, 62, 6% which
has a negligible effect on the proof. Indeed, by the Q-vector space
spanned by v1, 12, v3 is the same as the one spanned by w1, w2, ws, and the
change-of-basis matrix between the basis v1,v2, 3,14 and w1, w2, ws, wa
has determinant W. Thus when (N (9), W) =1 we have

[{a € [1, N(0)]” : d|(a1w1 + asws + asws)}|

ov(0) = N(D)2 ’

and so it is sufficient to prove these four statements with the basis w in
place of v. The proof is then the same as in [14].

We are left to establish assertion 5. Since N(v1) # 0, for any choice
of T2, T3, guy,zs (1) := N(x1v1 + 2212 + 2313) is a non-zero polynomial of
degree 4 in x1. Thus, given x2, x3, if N(z1v1 + 2212 +23v3) = 0 (mod pk)7
we see that ||z1 — all, < p~*/* for one of the 4 roots o of guy 25 OVer Q.
Thus there are O(p**/*) choices of 1 € [1,p"] for each choice of 2, x3.
This gives the result. O

Let vk be the residue in s = 1 of (x and we define S to be the Euler

produc
&= 1;[ (1 - QNng (1 - ﬁ) ‘ (9.4)

Lemma 9.5. There exists a constant ¢ > 0 such that for any ideal J of
Ok, m €N, R > 2 we have

Z p(?\?fg)(b) log NI(%D) _ % H (179v(‘43))—1+0 (24w((m)3) exp(fcx/@)).

o v P
(N (®),m)=1

Proof. The proof is exactly the same as in |14}, Lemma 8.5]. |14} Lemma
8.5] states the result with N(J)°™) in place of 2**(”), but following the
proof we see that the error term can be taken as exp(—cv/log ) [ [y, (1—

W)_l, which is clearly sufficient for our slightly stronger bound. [J
Lemma 9.6. For any 2 < R < x we have

Z 12 (0) Z 0v(29) < (logz)®.

N(23)
N(®)<R N@®<e

Proof. By Rankin’s trick, we have

2 Qv(aj) Qv(mk)
> wE > Ny < I (1+23 N(gpk))'

N(0)<R N(@)<z N(P)<w k>1

By Lemma [0-4] if %8 is a degree 1 prime ideal above p then the term in
parentheses is 14 2/p + O(1/p?), and if B is of degree more than 1 above
p then this is 1 4+ O(1/p?). The result now follows from the Prime Ideal
Theorem. O

5This definition of & is slightly different as the one given in [I4]. In the present paper &
doesn’t depend on some modulus ¢* or m.
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9.2 Multiplication in O,

Definition. For any vectors d,e € Z* \ {0}, we define d o e as be the
vector b € Q* such that

4 4 4
E bz Vi = E dil/i X E €;lV;
=1 =1 =1

For 1 <i <4 we denote by (d ¢ e); the coordinate b;.

This operation is helpful to detect the elements of O, with a fourth
coordinate equal to zero. The following lemma turns the problem of de-
tecting this zero coordinate into a question about lattices.

Lemma 9.7. For any d € Z* \ {0} let Aq be the subset of Z* defined by
Ag = {e c Z4 : (dOe)4 = 0}

Then Aq is a lattice of rank 3 and det (Aa) < ||d||/D,where D is the
GCD of the components of d.

Proof. The argument is essentially a special case of [I4, Lemma 7.2] . We
will expose it in a more pedestrian way. First we suppose that D = 1. For
all 1 <14,7 <4 there exist rational numbers A; j x, 1 < k <4 such that

4
ViV; = E Aijkyk-
k=1

For all d, e € Z*,

4

Z(doe Z ( Z )xukdlej)wg

i=1 k=1 14,j=1

Identifying the fourth coordinate, we deduce for all d € Z* \ {0},

Aa = {e ez*: ; (i)\ijéldi)ej = 0}.

The terms 2?21 Aijad;, for j = 1,2,3,4 correspond to the coefficients
of the fourth row of the matrix in basis v of the multiplication by d =
div1 + dava + dsvs + davs. Since d # 0, this matrix is invertible and at
least one of these coefficients is non zero. This shows that Agq has rank
3. By [1], the determinant of A4 is equal to the determinant of the dual
lattice that is for us the lattice spanned by the vector

Zz 1 >\l14d
247 A124d7,
T(d) := =1 . 9.5
( ) 2;4':1 )\i34di ( )
2?21 Aisad;
Since the components of this vector have size O(maxi<;<4 |di|), det (Aq) <

|d||. This ends the proof in the case D = 1. In the case D > 1, we observe
that Aq = A a, and we can apply the previous case.
D

O
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Lemma 9.8. For any m € N and X > 3, we have

3
Z T(wai) < X?’(logX)Om(l).

max(|z1|,|z2],|z3]) KX i=1

Proof. The proof is the same as that of [I4, Lemma 4.2 which concerns
the case v; = #°~'. The only place where this change could have an
importance is for the bound of the sums with any 9 such that N(?) <

Xl/n
> 1.

max(|z1],|@2|,|z3]) KX
A(TF_q wivi)
Since the v; are linear combinations of some 67, j = 0,1, 2, 3 for # such that
K = Q(0), the condition d|(3°%_, z;v;) can be split in the x; into arith-
metic progression (mod N(?)), and thus the argument of |[14] combined
with Lemma [9.4] apply also in our case. O

Lemma 9.9. Letd € Z*\ {0} N[-D, D]* and Aq as in Lemma Let
z1(d) denote a shortest non-zero vector in Aa. Then we have ||z1(d)|| <
D3 and

{d € [1,D)* : |au(@)] < Z}] < D™D 72,

Furthermore we have

1

e <2

ldll<D

Proof. The proof is exactly the same as the proof of [I4, Lemma 7.3]
except that we have a slightly different definition for ¢, and so require
Lemmas [0.7 and [9.8] instead of [14, Lemma 4.2] and [I4} Lemma 7.2]. O

Lemma 9.10. Let d be an ideal of O with (N(d),q) = 1. Let R C
[-X, X]? as in the Proposition below. Then we have

{a € Z°nNR : D|(Zaiw), a=ap (mod q)}| = %

i=1

+O(N(d)'X?).

Proof. The proof is identical as the proof of [I4, Lemma 7.4] with v in
place of (1,...,6™ ). In fact, the arguments of [14] give a slightly stronger
error term of O(X 2oy (N(6))(gN(8)) ™2 + ov(N(6))). O

9.3 Sums of Type I

We now state a similar result to [14] Proposition 7.5]

Proposition 9.11. Let R C [-X, X]? be a region such that any line
parallel to the coordinate azes intersects R in O(1) intervals. For any
gwen ug € Z> and g < VX we define

3
F:{Zaiyi:a€Z3ﬂR, a=ug (mod q)}

=1
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Let T'y = {k € ' : 0|(k)}. Then we have

v(0) vol (R
S -2 (3)V (R)| « X2gi+eh) pi/3to) | patte) (g g)
¢*N(0)
N(2)€[D,2D]
(N(2).q)=1

Proof. We follow the proof of [14] Proposition 7.5], but now we work with
a general order Oy in place of Z[#]. This involves minor modifications at
the beginning of the argument; the last steps require no modification. For
brevity we emphasise just the key points requiring modification and only
sketch the rest of the argument.

We split the summation on the ideals 0 according to their class in
Clk. Let C be a given class and consider the contribution of all the ? € C.
Since the 9 in the summation in are coprime with ¢, we can fix
a representative integral ideal ¢ € C such that (N(c),q) = 1 and with
N(c) = ¢°D. The ideal 9¢~'(N(c)) is a principal ideal of Ox. By Lemma
we can find a generator of the form § = 3 Zle d;v; where the d;
are integers such that |d;| < Dl/"q"(l). Then 6§, := m Zle div; is a
generator of the principal fractional ideal d¢~!. In [14] it is proved that
loo(dc)] > DY4q°M for all embeddings oo.

Let « € T, so (o) = a’d for some integral ideal a’. Since (o) = a’cdc
and (a) and ¢! = (8.) are principal, a’c is principal too, so a’c = (8) for
some generator 8 € Ok. By Lemma we can take § = % Ele biv;
where b = (by, ba, b3, bs) € Z* satisfies (b (mod W)) € Vy. Then (o) =
(8)(8:). Let d = (d1,da,d3,ds). We have W2N(c)B36: = S r_, (d o b)xvy.

3. _ZW2N (Zz,],kbd)uk

The coefficient of v; are integers if and only b1, b2, bs, bs satisfy some con-
gruences modulo W2N(c). We also need to impose that c|[(8). This
is also equivalent to some congruences conditions modulo W?2N(c) for
by, b2, b3, bs. Let g1 = [q, W2N(c)] and Vi C {0...,q1 — 1}* the set of r
classes satisfying all these conditions and furthermore such that

W2N(c)

-1

(d ©b)s =0 (mod ¢1) and

(u0)i (mod ¢q) for 1 < i < 3.

Thus, for ? € C, we are interested in

Dol = > Z 1.

boeVy be
b=bg (mod q1)
§.BeT

The rest of the proof follows [14]. Let A4 be the lattice introduced in
Lemma We write b = b + qlb(Q) where b is some vector of Aq
such that b = by (mod ¢1) (when such b(") exists) and b® € A,,

|1"0| _ Z// Z 1,

boeVy b@eny
b=bg (mod q1)
ScB1+q18.B2€l
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where Z” indicates that the by are as above but furthermore such that
there exists a vector b() in the lattice Ay and 3; = W Z?zl blwyi for
j = 1,2. The argument now follows the proof of [14, Proposition 7.5]
precisely, except that we apply Lemmas [9.8] [0-10] for the basis v in place

of [I4, Lemmas 7.3 and 7.4]. O

9.4 [Initial steps in the Type II sum

We first note that Theorem is trivial if m > (log X)¥, so we may
assume that
m < (logz)X. (9.7)

Ifa€ Ag...q (uo,m, p) then there exists d € N such that N(ai1v1 +az2vs +
aszvs) = d]];_, ¢i- The conditions on g¢; imply that (m,q1 -- - q¢) = 1 but in
general, it is not clear that (d,m) = 1. This may gives some complications
in the application of Proposition Let us write mo = (d, m*) and
recall the notation X = [[7_, [X;, X;(1 +n1)[ from (£I). In almost cases,
mo is small. Let

Do := (log X)*¥. (9.8)
The contribution of the a € X, such that a = up (mod m) and mo > Do,
is less than

5 3 4w(mo)

> > tem [[Xe X0 T
mo|m acXx i=1 mg|m™>
mo>Do a=ug (mod m) mo>Dg

N(Z?:l aiui)EO (mod mg)

4w(mo)

?7? H?:1 Xi Z

<
m?2+y/Dy oo V1Mo
mo|m
mo>Dg
77:1S H?:l X

< ]
Dy?

We now suppose that mo < Dy. Let

M(mo) = {vo € [1,mmo]® : vo = uo (mod m),

Then for every a € A(uog, m) such that mg = (N (a1v1+azv2+asvs), m™),
there exists exactly one vo € M(mo) such that a = vo (mod mmy).
Putting this together with deduce that

37173
ni [Ty Xi
Agy g, (10, m, p) = Z Z |Aq1“‘qz(v0:m0m:p)|+0( - Dl/é )

mo|m®> voEM(mo) 0

mo<Dg
(9.11)
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Any a € A(vo, mmy) is such that the associated ideal (3°7_, a;v;) may

be factored as (37, aivi) = MoJ with N(Mo) = mo and (N(J),m) = 1.

This property will simplify some GCD considerations in the next sections.
Let

m’ :=moem < (logz)** (9.12)

denote this extended modulus (where we obtained the size bound from

and (53).

9.5 Switching to ideals with norms in small boxes
We introduce the sets of principal ideals of Ok (recalling X from (4.1))

j—{(iaiui):an}. (9.13)

For any a € A there is exactly one (a1, az2,a3) € X such that a = (a1v1 +
asvs + azvs). We justify this in a similar way as in [I4, Proof of Lemma
5.2 assuming Proposition 5.1 pp. 13-14].

If a = Z?zl a;v; and f = 3. | biv; with a,b € X are such that
() = (B) then Ba~" is a unit of Ok. But |o(a)| < X for all embedding o
and since oo = N(a) [[, .14 o(a)™! we have |aiv1 + asve +azvs| > ni/loX

by (4.4) and then

=1+00"").

8 —«
@

If o # B then Sa~! can’t be a unit because the length between two units
is > 1 and we have a contradiction.
Next we consider the sets

3
A(vo,m’,p) = {(Zaiyi) € A:a=vo (mod m') and p|f(a1,a2,a3)}
=1
and for any ideal 0,
XD(V07m11p) = {ll € Z(me/fp) : O‘Cl}
Let N§ = min(a)ej N(a). Let 2 and n3 defined by
1 10000¢2
72 (lOg X)K ) 3 72 ( )
By the definition of X, N(aiv1 + asve + az) € [Ng, N§(1 + O(m))]

for all (a1v1 + agv2 + a3) € A. We can choose O 7];1771) reals Xy with

X§ € [N, N3 (1+0O(m))] so that the sets

_ 3 B 3

.A(Xo, Vo, m/,p) = {( Z az‘Vi) € .A(V()7 m/,p) R N( Z ail/i) S [Xé, X§+?73X61[}7
i=1 i=1

form a partition of Z(vo, m’,p). Next we introduce the sets

3 3
Ay (Xo,vo,m’,p) = {(Zail/i) € .Z(Xo,vo,m',p) :D\(Zaiw)}.
i—1

1=1
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By , there exists ¢ > 0 such that XZi=10i+min(0....00) - xd+e
and by the intervals [Xei,X'g;] do not overlap. Thus each a € A
such that N(a) = 0 (mod qi - - - q¢) with X% < ¢ < X%, is divisible by
exactly one prime ideal 9; with N () € [X%, X%] (for all 1 <i < /).

We are now ready to settle the connection between the set A, (vo, m’, p)
in Theorem [£I] and the sets of ideals just defined above. For any primes
qi,...,qe with ¢; € [Xgi,Xeg]7 we have

‘Atn‘“% (v07ml7p)| = Z Z |A‘131""J3z (X(),Vo,ml,p)|. (915)
Xo N(Bi)=a:

Any ideal (a1v1 + a2v2 + asvs) counted in (9.15) may be factored as

L
(a1l/1 + asvs + a3l/3) = mojH‘Di, (9.16)

i=1

where each 9; is a prime ideal with norm in [X%, X 91‘] and J is an ideal
with

£ ’ £
N(J) €Ty := [XSIX* P XG(L A ) X
mo mo
say.

‘We choose now O(773_1 log X) reals I € Zp such that Zy is covered by
the union of the intervals [I,1(1 + n3)[. Let Zo denote the set of these
reals 1.

Since we have (N(3°0_, a;;)/mo, m) = 1 when a = vo (mod m'), we
have (m’, N(3) TT._, N(B.)) = 1.

For brevity we will write A(vo,m’, p) in place of A(Xo, vo, m’, p) when
the context will be clear.

To have a precise control of the size of the norms of some ideals, we
cover each interval [6;,6]] by O(ny?) distinct intervals of size O(n3) so
that,

} = [I, L], (9.17)

L
[116:, 61 = LiesR), (9.18)

i=1

where E is some subset of N* of size O(n; 2°) and each R(l) is of type
‘

R() = [1;_,[ti, t;) with |t; — t;| < 73 (except that in the intervals with
t; = 0; we take the whole segment [t;,0;]), (cf [14] section 8 p.45]).

We write R(1) = R1(l) X R2(1) with R2(1) representing the first ¢’
coordinates and R1(1) the final £ — ¢’ coordinates.

For a polytope R C R® (for some s), we define

1, a=p1---ps with N(p;) = X% and (e1,...,e5) € R,
1z(a) = .
0, otherwise.
Thus we need to study the quantity
T(RQ1)) = Z Z Z 1r(a), (9-19)
XT<p< X7 JELMoTacA(vg,m’,p)

with
Z:={3:N@3)e€[l,I+nI],(N3),m)=1} (9.20)
for each of the O(ny %) choices of 1 € E.
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9.6 Approximation weights

We recall that n3 = 7710000Z . A key idea of [I4] is to approximate the

indicator 1z, by a weight 1=, which will be easier to control. For S C R*,
with s € N, we consider the function

dey ---des
) (9.21)
/[81 vvvvv es)ES 1/2 I—L e

7 1ei€lt

logt log(t+ 771/2 )]
log X’ log X '

In this previous definition we have Zle e; € I, if and only if X Tizrei ¢
[t,t(1+ /73)]. This function is so that cs(N(a)) corresponds to the prob-
ability for an ideal of norm close to N(a) to have a prime factorisation
compatible with S (cf. [14] section 8]). We recall below some properties
of this function that we will frequently use later on.

where [; := [

Lemma 9.12. o IfS =TI;_,[us, ui] is an hyperrectangle with min u; >
g0 >0 and s > 1, then

cs(t+8) — cs(t) <<§

o IfS=TI;_,[us,ui] is an hyperrectangle with minwu; > eo > 0 then
(1) <eo 1=
c —.
N 0 log X

Proof. The first part is a particular case of [14, Lemma 8.3 (iii)]. The
proof of the second point is a direct computation analogous to [14] :

< 1 // / des}H
V3 efgel-[g’;’fﬁ} es€li—¥5T

_15 —

The integral over e is O(y/n3(log X)™') and the contribution of the other
integrals is O(1). O

Let €go > 0 and
Ri= X0, (9.22)
The approximate weights of 1z, are defined by

1R, (b) i=cr,y (N()) Y N, (9.23)

2[b

where
N i (@) log wgy, N() <R,
0, otherwise.

Remark. Our weights are somewhat simpler than the one introduced in
[14)], because we don’t need to take care of the perturbations caused by
a possible exceptional character x*. (Ultimately we will only require es-
timates with moduli up to a fized power of log X, whereas in [1])] larger
moduli needed to be considered due to losses occurring in high dimensions.)
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‘We now write
T(R) = Tsieve (R) + 11 (R)7

where
Tsieve(R) = Z Z Z 1z, (Cl)iR2 (b)7 (9'24)
Py,P. Jez abeA(vo,m’
pzzie([mlod %f) €L MyTabeA(vg,m/,p)
T1(R) = Z Z Z 1r, (a)(1r,(b) — iR2(h)),
Py,P, JezT abeA(vo.m!
pE;ie([mt)d 2gf) =7 MoTaveAlvo,m’e)
(9.25)
and ,
P =X", Pi=X". (9.26)

For brevity again we will write Tsieve (R) and T1(R) in place of Tsieve (R, Vo)
and T1(R,vo) when vq is clear from the context. We see that Theorem
follows immediately from the following two propositions.

Proposition 9.13 (Estimate for Tsieve). If we have
el

€00 <29j—1—127'/,

j=1
then
Tuicoe(R) = M(R) + Er(R),
where

g(m') log(P2/P1)
m'3  @(Df)

M(R) = (2+ O(n3/*))ns| A(Xo)|er (X5 /mI)

N V()
g(m)—ml(l/) (- %)

ST STIB(R)] < 0?0 og X) M T X

R Xo 1€7y i=1

Proposition 9.14 (Bound for T1(R)). Let R = R1 X Rz and T1(R) be
as above. If we have

/ . 4720’17...7202/ 01+--~+0[/*1
' < min( 100 ’ 100 ):
then for any K > 0 we have
HilXi
T (R =
1(R) <x (log X)&

We remark that we are assuming the general setup in Propositions
and in particular, the constants 61,0}, ...,0.,0; determining R
are assumed to satisfy -.

We will establish Proposition [0.13in Section [I0]and the harder Propo-
sition in Section The presence of the sum over primes p € [P, P2]
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introduces few additional complications to Tsieve and Proposition [9.13]
but quite significant additional technical details to 77 and Proposition
[0T4] Assuming these propositions for now, we can establish Theorem [4.]]
by putting all our manipulations together.

Proof of Theorem assuming Propositions and[9.14} We recall from
E11) that

3 3
T / n i1 Xi
Agy---q, (0, m, p) = § § | Agy g0 (Vo, m 7p)|+0< - gl/; )

mo|m> voeEM(mo) 0
mo< Do
(9.27)
We focus on the A terms. We use the notation Zo introduced just after
and for any given real I € Ty, T is the associated set of ideals

defined just after (9.19). We recall from (9.15]), (9.17) and (9.19) that
Aavar (Vo' =30 >0 A, (Xo, vo,m' )|

Xo N(PBi)=a;
=22 > ) 1
Xo 1ezo N(Bi)=a: Jez

MoI [Tizy Bi€A(vo,m’,p)

=22 > >3 1k, (a) 3 1r, (B).

Xo I1€7, R1,R2 JEZ a I )
[1{=110:,0/]=UR1 xR 3MoabeA(vy,m’ p)

By assumption of Theorem we have 7 < (Ef/:l 6; — 1)/100, and
so choosing €go sufficiently small means that the hypothesis of Proposition
9.13| is satisfied. Thus, summing over p € [P1, P»] (which is [ X7, X" ] be

9.26)) and applying Propositions and (with a suitably large
constant K) gives

> Mualvom =33 X (Tue(®) +Ti(R))

PE[P1,P2] Xo rezo R=R1XR2
1621 104,0}]=UR1 X R2

3
Hi:l X'L )
(logX)Kfo(l) ’

log(P2/Pr) g(m')
#(Dy)  m’3

= (2+0(m3/*)ns T +O( (9.28)

where

Tyi=Y > S A ler (X3 /i),

Xo rezy , R=7,31><R2
[T;=110:,0;]1=UR1XR2

Here we used that there are at most O(n, >) subsets R, O(n; 'n1) reals Xo
and O(n; ! log X) reals I to bound the contribution from Ty by Proposition
9. 14

We now concentrate on 73. Since the subsets R form a partition of
T :=[1'_,[6:,0}], we find

> er(Xg/mI) = e (Xo /ml),
R=R1XR2
[16-1104,0}]=UR1 xRy
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SO

Z|A (Xo)| Y er(Xg/mI).

IeZy
By Lemma applied to ¢ we have for all [ € To
1 10H3) e (X8 Imw
er (X mn) = o [ M gy 4 o),
I

Expanding the definition (9.21) of ¢+ and swapping the order of summa-
tion and integration, we find

/1(1+713) CT(Xg/mU) "
I

- v
Iely
. dv de;
- // > / CIT
071 1€Zo e[l I(14n3)] =1
1<z<£ v€|: Xé Xé(1+m)i|
mIlf_, X% mIlf_, X%

// /X§(1+\/ﬁ)/(mnf=1 X€1) dv) li[ de;
- 1/2 X4/ T, X<6) v/t e

=1
€[0,,0}]
l<z<l

logl—i—\/» Hl ( )

1/2

We note that this is independent of Xy, so we find
log(1 + 0! . _
T3 = 3/2‘F Hl (E) > MA(Xo)| + 0 (log X Y- |A(Xo)) )
) Xo P

_+0o(ym) 1 i\ 7
= Elog (67) IA(X)). (9.29)
Putting together (9.27)), (9.28) and (9.29)) we find

Z Z Agy...qp (00, m, p)

pE[P1,Pz]  91:-
aielx, X"L]

l

g’”lf[ s(P)dcor Yy A

mo|m> voeM(mo)

mo<Dg
+o(n;/2f[1xi) +o(’ﬁgé—/;&), (9.30)

Finally it remains to estimate the inner double sum. The summand is
independent of vo, so recalling from (9.12)) that m’ = mom we are left to

estimate
3 |(/:7417230 H( Qv ) (9.31)

mo<Dg PBl(m) k=2
mo|m>
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By (9.10), ,
[IM(mo)| < mgm,

and thus for any given m the sum over mgo converges. We may therefore
extend it to all mg > 1 cost of an admissible error term. Next we note
that the sets of the a € [1, X]® with a = uy (mod m) can be partitioned
into sets of the a € [1, X]* such that a = vy (mod mmy), with mo < X?
and vo € M(uop), and so

Z ‘M(m0)|:(1+O(DO—1/4)) Z ‘M(m0)|

3 3
mo<Dy (mmy) e (mmy)
mo|m mg|m™>
_ (1+0(D
- X3+O X2 Z Z Z 1
mo< X2 voEM(mo) ae[1,Xx]°
mo|m> a=vg (mod mg)
_ 1+ 0Dy ) .
X3+ O(X2) )
ac[1,x])3

a=ug (mod m)

(1+0( 5 ).

Substituting this into 1’ and recalling from , ) that Do =
(log X)* | 13 < (log X) 73X and |A(X)| = n} X1X2X3 + O(ngXngXg)
gives Theorem [£1] O

10 Proposition 9.13; The term Ty;.,.(R)

In this part we obtain an analogue of [I14, Lemma 8.6] by expanding the
sieve terms and applying Proposition [0.11]
If a and b are some ideals satisfying 1z, (a) = 1gr,(b) = 1 then a

and b factor into prime ideals as a = Hf:e’-u PBi, b = Hf/:l B; with
N(P:) € [X', X% (1 + O(n3 log X))] for 1 < i < £. In particular,

N(b) € [BY, Bi(1+ O(y log X))] (10.1)
where ,
¥

Bf := XZi=1ti, (10.2)

Moreover, from the definition (9.21) of cr,, we see that 1z, (b) is also
supported on N(b) € [Bf, B (1 + O(n3 log X))].

Lemma 10.1. Let Bf > X'™R and R = R1 x Ra. Then we have
Tsieve(R) = M (R) + E, (R)
where M1(R) is given by
TCTED DD > 3 D SRS
pE[P1,P3] JET a N(®)<R
p=1 (mod Dy) N(d),m)=1

Xg e /
X CRy (W) [ A3 (vo(y), m’, p)l,
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and E1(R) satisfies

3
S S IBR)] < 0y 0 og X) M T X

R Xo Ied, i=1

Proof. We substitute our definition (9.23) of 1, into our expression
19.24) for Tsieve, and write u = MpTab. This gives

Taieve(R) = S D 1r@ D X D ery (N(u/adMy)).

pE[P1,P2] JEL a N(®)<R ueA(vg,m’,p)
p=1 (mod Dy) MoTad|u

(10.3)

Ifue .Z(vo,m’,p) then N(u) € [X§, Xo(1 + n3)]. By Lemma , this
implies cr, (N (1/adMo)) = cr, (X5 /moN(aJd)) + O(nz). Thus we write

Tsieve (R) = M, (R) + O(El (R)), (104)

where Mi(R) is as given in the lemma and

Ex(R)=ns > Y > 1ri(a) D [ollAsalvo,m,p)l.

pE[P1,P2] JEL a N(@)<R
p=1 (mod Dy)

(10.5)

We concentrate on E1(R). For any (3°_, zi1;) € A, the number of primes
p € [P1, P2] such that p|f(x1,x2,x3) is finite. This allows us to remove
the summation over p and replace |Ayqo (vo, m’,p)| with |Ases(vo, m’,1)]
in E1(R) at the cost of a factor O(1).

We then apply Proposition [9.11{to estimate | Asqom, (vo, m’, 1)], recall-
ing that N(JadMo) < X*R/BT and m’ < (log X)°"). This gives

Ei(R)<ns > > 1r,(a) Y. g A0 ¥)low (a03)

N (@30 (m')?
JET «a N(®)<R
(N(2),m")=1

(10.6)
P S (6 () )
N(@)<R By By
(N (2),m)=1

Crudely, if Bf > X'T°R, we see the second term in (10.6) contributes to

(10.6)
XR'  (XR'1/3 _
< X3FeW + (5 < X374, (10.7)
B+ (%) )
By an Euler product upper bound and Lemmal[0.6] we see that
A(Xo, X)|ov (a7
SETme T wHRem

1€y JEL a N(@)<R
(N(0),m")=1

v (adJ)|

< (log X)|A(Xo, vo, m’)| N(aJ)

N(3),N(a),N(d)<X

< (log X)?| A(Xo,vo,m)|. (10.9)
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Thus, substituting (10.7) and (10.9) into (10.6) we find for Bf > X'*°R

Z E1(R) < n3(log X)°|A(Xo, vo,m)| + X*7/°.

1€y

Summing this over all O(ny 2‘Z) hyperrectangles R and all relevant Xy, and
recalling (9.14) that ns is much smaller than 7 we find

DD Y Ei(R) < ns(log X) ZZM (Xo,vo,m')| + X37</°.

R Xo Iei, R X,

< 773772_2£(10gX)4\Z(V07m/)| + X

< n'?n ‘“(ng)“HX + X3S, (10.10)

i=1

This gives the result. O

Thus we have to evaluate M1(R).

Lemma 10.2. Let Bf > X' RP3? and let M1(R) be as given by Lemma
[[0dl Then we have

M (R) = (2-+ O/ sl A(Xo) e (X3 fm1) S OBUL/ L)
©(Dy)

Proof. First we want to apply Propositionto estimate |./4Taag (vo,m’,p)|.
To do this we split according to residue classes (mod p). For any
(y1,y2,y3) such that f(y1,y2,y3) = 0 (mod p) let Gip(y) be a solution
of the two equations 19(y) =y (mod p) and tio(y) = vo (mod m’). Thus

| Awos (vo,m’, p)| = > A3 (o (y), pm’, 1)

y1,¥2,y3 (mod p)
f(y1,y2,93)=0 (mod p)

We recall that p < P> and N(Jad) < XR/Bi. Therefore, by Proposition
9.11] we can replace | Aqos (o (y), pm’, 1)| with py (ad3)|A(Xo, x)|/p°>m'3 N (ad3)
in M;(R) at the cost of a term bounded by

XR\1/3 XR
24o0(1) ( A1V o(1) At 4
> > (X (B;l) P X B;lPQ)'

p<P2  yi1,y2,y3 (mod p)
f(y1,y2,¥3)=0 (mod p)

This is O(X>~</*) provided Bf > X'*<RP}2.

Since the function g, is multiplicative, (a,0J) = 1, and a is a product
of degree one prime ideals of large enough norm, by Lemma[0.4] we have
ov(a0J) /N (adT) = ov(03)/(N(9F)N(a)). Thus

Mi(R) = Ma(R) 4+ O(X>~/%), (10.11)
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where

My(R) = |,Z(XO,X)\( S )(Z 703 ) (10.12)

p€E[Py,P2) Jjez
p=1 (mod Dy)

21R1 Ry Xoé\(;(r;(;N(aﬁ)))j (10.13)
- ov(07)

(N(2),m")=1

1
np 1= I;I{yhyz,ys (mod p) : f(y1,y2,93) =0 (mod p)}|. (10.15)

First we simplify Z;(J). Since this is a sum of a smooth function over
products of £ prime ideals in a bounded region, this can be estimated
using the Prime Ideal Theorem. Following the arguments of |14, Section
8, proof of Lemma 8.6] we find that

Z1(3) = cryxro (Xo /moN(3)) + O(ns).

We recall that Z = {J : (N(J),m) = 1, N(J) € [I,I +n3l]} and R =
cR1 X R2. Thus, by Lemma [9.12] we have

Z1(3) = er(Xg /mol) + O(n3). (10.16)

Now we consider Z2(J). By Lemma [9.5 we find that

Z>(3) = % + 0(16“ ™ exp(—cy/log R)), (10.17)
where
m)) = _QV(“B) -1
9((m)) .—wlj)(l No)
~ ) (P
h(‘j) = e\ e+1 :
- o) m( )~ Vo)

Putting together (10.16) and (10.17)), we see that

> Z1(3)2:(3) = 9((m'))Ser (X3 /mo) ST h@) + OGED.  (10.18)

m/3
ez 7K Jez

Since h(3J) is multiplicative, the sum can be calculated by a contour com-
putation

(14 ms) — 1) h(3)
Zh 2777,/ ; 53 ;N(J)Sds

JeT 100

_ Resszo([s((l + 23)5 —1) ; ]\’]‘g))) + O(exp(—cy/log R)).

(10.19)
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We see that the residue is given by

¢ log(1+ 1) [T (14 A6B) + 508 +..) (1 - et )

P N(%)
_ p(P) \ ! p(B)  p(P) 1
= 7 log(1 + o) 1;[<1 (1= N(ap)) (;(N(&BE) - N(qseﬂ)))) (- N(qs))
_ P(B) \ ! 1 P(R) P(R)
—7K10g(1+773)1;[( *W) (1W>I;I<(1W)+N(q3)>
— o8l +m) (10.20)
s '

Putting together and ((10.20) we see that

> 21(3)22(3) = g((m/))n3$§X§/m°I) +OmI). (10.21)

Finally, we recall the definition (10.15)) of n,. Since f is the product of
two linear factors when p = 1 (mod Dy), we have n, = 2+ O(1/p) for all
pE [Pl,PQ]. Thus

S o 2+ 0(77;2)1?;5(132/131) (10.22)

PE([P1,P2]
p=1 (mod Dy)

Putting together (10.11)), (10.12)), (10.21}) and (10.22)) now gives the result.
O

We are now in a position to establish Proposition [0.13]
Proof of Proposition[9.13 We see that putting together Lemma and
gives the desired conclusion provided Bf > X'T°RP}?. Recalling
from (9.22), (0-26) and (T0.2) that R = X0, P, = X', B} = XXi=1ti >

’
XXi=1% we sece that this condition is satisfied provided

l/
29i>1+€00+127'/

i=1

and e is taken sufficiently small. This gives the result. O

11 Proposition 9.14: The term 77(R)

In this section we use the dispersion method to bound 77 (R) and establish
Proposition Let us recall the expression of T (R)

nR= > > > 1R, (0)(1ry (b) = 1r,y (b))

pE[P1,P2]  J€L9ny3abe A(vo,m’,p)
p=1 (mod Dy)
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To simplify some notation we will write
3(6) = 1, (b) — 1, (b). (11.1)

We first split the sum over b into ideal classes C € Clix. Let ¢ € C
with (N(c),m’) = 1 and N(c) < m°M < (log X)°® and let ¢ =
(N(c)/c). Since the ideals in the set A are principal, the ideals 9tJac
and bc’ are principal. Therefore they are respectively of the form (), (8)
with MeJc|(a), ¢'|(B) with Wa = a1 + asve + asvs + aava, WS =
bivy + bavo + b3vs + b31/4, where ai,az,as, bl, bz, b3, by € Z and with a, b
lying in the fundamental domain D. We will write a = (a1, a2, as, as),
b = (b1,b2,bs3,bs). In order to handle the modulo m condition between
b and Ja we split the sums according to some congruence classes on «, 3
modulo m’. Together this gives

Tl(R) = Z Z TC(R7 a07b0)7
CeCly ag,bg (mod m’)
N(c)(agobg)i=(vo); (mod m'), for i=1,2,3,4
(11.2)
with (ag)s = 0 since (aob)s = 0 and ¢ € C is a well chosen representative,
and ¢ as above

- a) .
PRt~ YT am (i)
pE[P1,P2] JE€T a=ay (mod m') 0
p=1 (mod Dy) b=bg (mod m’)
Mo Tc|(a),c'|(B)
(aB)/(N(e))EA(p)

with now A(p) = A(X,0,1,p).
We recall that our previous conditions (10.1)), (10.2) imply that N (B) €
[B*, B*(1 4+ O(n3 log X))], where
B =BiN()"* € [B1, Bi(log X)°]
The support of 1z, implies that
N(a) € [A*, A*(1 + 73 log X))
where (recalling that N(J) € [I,I(1+ ns)] from (9.20))
A = X T N (Omol < XZ =41 [(log X)*X | (11.3)

We note that A*B* <« X*(log X)®*. We will use the notation of [14, p.
80 and 71]:

Ry = {x ER*:a € [Xi, Xs(1+m))i=1,2,3, x4 =0,
3
N> wn) € [X5, Xs (1 +m)]}, (11.4)
=1

R, by 1= {a €R*: ||a|| € [4,24],a0 by € Rx,, achs € RXO}.

Let F be a fundamental domain such that if 1%, ((«)/9MTc) =1 and
a € F then a; < A for all ¢ = 1,2,3,4 and similarly, b; < B for all
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1 <4 <4 whenever 8 € F and §((8)/c) # 0. By slight abuse of notation,
we will also regard F as a subset of R* so that a € F corresponds to
o€ F.

We will concentrate on ideals (8) with not too many divisors. For this
we introduce a slight variant of g

e {1R2<b/c'> “lra(o/) ) <ot and (B, o
0 otherwise,
na := (log X )~ 51 (11.6)

for a suitably large fixed constant K;. Following [I4], section 11| except
that we apply Lemma we prove that we can replace g by gn with a
error term less than O(n4X§(log X)°™W). This error is sufficiently small
for Proposition [0.14 when K is chosen large enough in term of K.

Thus now we have to concentrate on sums

TC(R, a07b0) _ Z Z Z 1]:(3)1721 (%)gb.

pE[P1,P2] JEL a=ag (mod m’)
p=1 (mod Dy) b=bg (mod m’)
MoTe|(a),c'|(B)

3(aB)/(N(e))€A(p)
aObERXU

(11.7)

11.1 Cosmetic reductions
For T' > 0, we denote by Cr the subset of R* defined by

Cr={ae F:N(a) e [T* 27"},
so that a € C4 and b € Cg. By Weber’s Theorem [19], we have
Cr| = AxT* + O(T?),

for some Ak depending only on K (Ax = vk /hk, but we do not need
this). We note that from the support of 1z, and 1z, and 1g, we my
restrict to a € C4 and b € Cp.

It will make some later technicalities simpler if we introduce the re-
striction p f N(b) to the terms in T1. By Proposition and the divisor
bound, we can do this at the cost of an error term of size

< > > > X <« X (XPP +X*BY P+ B'PY).
pE[P1,P2] beCp bue.A(0,1,p)
N (b)=0 (mod p)

This is acceptably small provided

X3/4—e
B<™ . (11.8)
3/2
2

We recall that f € Z[X1, X2, X3] is quadratic and homogeneous and Dy
is the associated modulus introduced in the hypothesis of Theorem
so that when p = 1 (mod Dy), the function f (mod p) factors as the
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product of two linear factors. Thus the condition p|f(a ¢ b) is equivalent
to p|v,- (aob) or p|w, - (aob) for two non-zero vectors v,, w, € Z*. There
are O(p®) choices of a,, b, (mod p) such that (a,ob,)s = v, - (apob,) =
wp - (ap © bp) whenever p is sufficiently large in terms of f. Therefore,
as above, provided holds, the contribution of the a, b such that
p|vp - (a©b) and p|w, - (a© b) is bounded by

xoMm Z Z Z Z 1< X3ept,

PE[P1,P2]  a,,bpe{l,...,p}* bezZ*nCp uc.A(0,1,p)
(apobp)4=0 (mod p) b=b, (mod p) blu
p|vp-(apoby) u=(apobyp) (mod p)

plwp-(apobp)

Putting this together, we see that it suffices for us to estimate for each
C € Clk with a representative ¢ € C' and each ag, bg (mod m') the sums

nR= 3 X X > tni ()

pE[P1,P2] JET  pezinecp acznCy
p=1 (mod Dy) b=bg (mod m’) (acb)ERXx,
ptN(b) p|vp-(acb)
a=ag (mod m')
MoTc|a

(11.9)

11.2 Dispersion method

We swap the order of summation, and apply Cauchy-Schwarz. The ideals
J and a/J are coprime since N(J) < X% for all 1 < i < ¢ In the
application of Cauchy-Schwarz we can group these ideals together. We
recall that the set Rx, is defined in (I1.4). This gives

3 < At > ( > > gb)Q.

aczinc, PE[P1,Ps] bezncp
a=ap (mod m’/) P=1 (mod Dy)  acbeRx,
plvp-(acb)
b=bg (mod m’)
PN (b)
Thus we see that
TS < Ay (11.10)

where, with the notation (11.4)

Ty = Z Z gb19by Z 1.

P1,p2€[P1,P2] b1,boeZ*NCp aczZ*ncy
p1=p2=1 (mod Dy) bi;=bs=bg (mod m’) a€Rp, by
P1IN (b1), p2tN(b2) P1|vp, (aob1)

P2 |Vp2 -(aobz)

Thus we wish to show that T} is small compared with A%BS,

11.3 Collinear by, by

We separate the situation when b; and bs are collinear (in which case
we have A(bi,b2) = 0 where A(x,y) is the L? norm of the six 2 x 2
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subdeterminants of the 2 x 4 matrix with columns x and y). Thus we
have
Ty =Ts + Ts, (11.11)
where T5 is those terms with A(bi, bs) = 0 and T is those terms with
/\(bl7 bz) 3& 0.
We first concentrate on T5.

Lemma 11.1.
Ts < X°WA®B3.

Proof. Let ¢ be the shortest non-zero vector with integer components
which is collinear with by (this is by divided by the ged of its components).
Then we see that by = A\jc for some A € Z, and since by is collinear with
b1, we also have that be = Aac for some Ay € Z. Thus we see that

Ts<n® >, Y. > oL

cez? M, 2<B/llcll acz*nc 4 P1,p2€[P1,P2]
|lell<B (ave)4=0 P1|f(A1a0c)
p2|f(Aza0c)

We see that the inner sum is O(1) since P; > B¢ and f(Maoc) < BOW.,
We then split the size of ||c|| into dyadic ranges, giving

_ B?
Ts <<7742(10gX) sup —- Z Z 1.
c<B C 4 4
cez* aezinc,
[le[[<XC (acc)4=0

We now let z = (a©c). By the divisor bound, given z there are O(7x(3))
choices of a, c. Thus we see that
2

_ B
Ts < ny°(log X) sup —=

3 E Ti (2101 + 22v2 + 23V3)
c<B C

21,22,23KAC
< *A’B’. 0

Thus we are left to bound Tg.

11.4 Lattice counts

We now concentrate on the inner sum. Let Ay, b, and Ap, by,p,,p, denote
the lattices

Aby by = {x €Z": (x0b1)s = (x0ba)s =0},
Aby,bop1,ps = {X € Aby by 1 P1]|Vpy - (X0 b1), Pa|vp, - (x 0 b2)}.

Thus the inner sum in Tg is

> 1.

a€CANAL) by ,py,py
aERbl by

If b1, by are not collinear, then Ay, b, is a lattice of rank 2, and so it
has a Minkowski-reduced basis {z1,z2} ([I4, Lemma 4.1] for example).
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Without loss of generality we may assume that ||z1]] < ||z2]|. Thus we
have that

1= > 1,

a€CANAp; by,py,p5 Rby,b A1, 2€Z
1,b2,p1,p2 1,b2 >\lzl+)\222,€CAﬂRb1,b2
A1c1+A2¢2=0 (mod p1)
A1c3+A2c4=0 (mod p2)

for some constants ci, c2, c3, ca depending only on by, bs, p1 and p2. The
condition A\1z1 + A2z2 € Ca N R, b, forces (A1, A2) to lie in a region
Ry by C R?. Since [|A1z1 + Aaza|| < [A1]]|z1]| + |A2|[|z2]| (by [14, Lemma
4.1]) and C4 only contains vectors of norm O(A), we see that lying in
Rby by forces i < A/||z1]| and A2 < A/||z2||, so Ry, b, has volume
O(A%/|z1 | |l22)).

By Davenport’s Theorem on counting lattice points ([14, Lemma 7.1]
for example), we have that

Z L vol (Rb, by) +O( A )

z
<)‘1*)‘2>€R{31,b2 fblvb21plvp2 ” 1”

Ar1c1+A2¢2=0 (mod p1)
A1ez+A2c4=0 (mod p2)

where fo, bo,p1.pa = [Abi,bs © Aby,by,pi,pe) 18 the index of the lattices,
given explicitly in terms of ci1, c2, c3, ca, p1, p2 by

1, c¢1 =c2 =0 (mod p1) and ¢z = ¢4 =0 (mod p2),

P2, ¢1 = c2 =0 (mod p1) and c3, ca not both 0 (mod p2),
fo1,b2,p1,00 = § D1, ¢s = ca =0 (mod p2) and c1, ¢c2 not both 0 (mod p1),

p1, p1 = p2 and cics = cacs (mod p1) and c¢1, ¢z not all 0 (mod p1),

pip2,  otherwise.

We split Tt into the contribution from the main term vol (R, by)/fb1,b2.p1,p2
and the error term O(A/||z1||). This gives

Te =Ts + O(T7), (11.12)
where
—2
ny A
T7 :=
7 Z Z ER
p1,p2€[P1,P2] b1,by€Z*NCp
p1=p2=1 (mod Df)bl ba=bg (mod m’)
P1fN (b1), p2tN (b2)
A(b1,b2)#0
L 9b1 gby vol (R;al,brz)
n= Y s )
p1,p2€[P1,P2] by,by€Z*NCp 1,b2:P1:P2

p1=p2=1 (mod D¢) b, =by=bj (mod m’)
p1{N(b1), p2tN(b2)
A(b1,bg)7#0

We first show that the contribution 7% from the error term is small.

Lemma 11.2.
Ty < X°“YABTP;.
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Proof. We note that z; € Z* with ||z1]]? < ||z1]| - ||z2|| < det (A, by) <
B?. Thus ||z1]] < B. Thus we can rearrange the summation to give

et Y o<arr Y (Y )
|| Tl 4

z
by,bo€Z4NCp ” 1 ‘ncg
llz1]|<B (boz1)4=0

The condition (boz1)4 = 0 forces b to lie in a rank 3 lattice of determinant
< ||z1]|. Thus the inner sum is O(B%/||z1|| + B?). Thus we obtain the
bound

—2 2 B6 B4 7Tp2 —3
T <o AP 3 (e * ) < A5 P
ezt ! !
llz1l<B
This gives the result. O

Thus we are left to show that Tg is small compared with A%BS.

11.5 Further lattice estimates

We recall that Ri)l,bz is the region A\i, A2 € R? such that A\1z1 + Xozs €
CANRb, b,. We see that this has volume vol (R, 1,)/ det (Ab, b, ), where
det (Ab, ,b,) is the determinant of the lattice (that is, the 2-dimensional
area of parallelogram generated by z1,z2) and Rﬁhbz is the 2-dimensional
region formed by intersecting C4 with the z1,z2 plane. We thus have

Ty — Z Z gby gby VOl (Rgl,bz)

fo1,bs,p1,p2 det (Aby by)

p1,p2€[P1,P2] b1,by€Z%NCp
p1=p2=1 (mod Dy) b, =by=b; (mod m’)
A(b1,b2)#0

p1{N(b1), p2fN(b2)

We first establish a few simple estimates.

Lemma 11.3.

vol (R¢ AP
3 % < vol (R y) + O<IITQH>'

p1,p2€[P1,P2] byi,b2,p1,p2 L
p1=p2=1 (mod Df)

Proof. We have that

2 > 1= ) > 1

P1,p2€[P1,P2] aczZ*nCy acz*nCc,  P1,p2€[P1,P2]
p1=p2=1 (mod Df) aeRblbe aERbLbz p1=p2=1 (mod Df)
p1|vp, -acby p1|vp, -aocby
p2\v,,2 -aobs P2|Vp2 -adbg
< E 1
aczinCy
a€Rp, by

A
< vol (R, b,) + o(m).
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On the other hand, we know that

vol (Rb, b, ) A
2 Yo=Y (o)
P1,P2€[P1,P2] aczZ*nCy P1,p2€[P1,P2]
p1=p2=1 (mod Df) BERbl,b2 p1=p2=1 (mod Df)
p1|vp, -acby
p2|vp2-a<>b2

Putting these together gives the result. O

Lemma 11.4. Let

B2
Cordier by = #{b1 €Z'NCs : A(bi,ba) ~ . b1 =1 (mod d)}‘

Then we have

B B \3
#CC,d;Cl,C2 < (1 + E) (1 + @) .
Proof. The condition A(b1,b2) ~ B?/C forces by to lie in a cylinder C
with axis of length O(B) proportional to b, and with radius O(B/C).
We then see that we can cover this cylinder with

<(+ )0+ )

different hypercubes B of side length d. Finally, there is at most one choice
of by in a hypercube B of side length d which satisfies b1 = ¢1 (mod d),
which gives the result. O

For any c1, ca € Z*, the notation ¢; o ¢y indicates that the two vectors
are proportional.

Lemma 11.5. If ¢1 ¢ ¢c2 (mod p) then

1 B° 17/3
Y L B s
det (A 8
by byeZinCp ( bl,b2) p
A(b1,b2)7#0
primitive
bi=c; (mod p)
ba=cy (mod p)

Proof. We recall that Ap, b, is the lattice in Z* of x with (xobi1)s = (x0
b2)s = 0. By [I4, Lemma 10.1], this has determinant A(b1,b2)/Dpb, b,,
where A(b1,b2) is the L? norm of the six 2 x 2 subdeterminants of the
matrix with columns by, bz, and Dy, b, is the greatest common divisor of
these six subdeterminants. Note that this implies b1 « bz (mod Dy, b, ),
so since b1, bs are primitive we must have Dy, b, < B when A(b1, b2) #
0.

We consider separately those b1, bs with A(b1,b2) < B, those with
B < A(b1,ba) < B3 and those by, by with

Dy, b, = d, A(b1,b2) ~ B*/C

for each 1 <d < B and 1 < C < B*/? with C running through powers of
2.
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If A(b1,b2) < B then by lies within O(1) of the line proportional to
b2, and so there are O(B) choices of by. Since det (Ab,,b,) > 1, these
terms contribute a total (ignoring the congruence conditions (mod p) for
an upper bound)

< Y. O(B)< B
[Ib2ll<B

If A(b1, b2) € [B, B4/3] then we separately consider those with A(b1, ba) ~
B?/C for C € [B?*/®, B] running through powers of 2, and again drop the
congruence constraints. By Lemma there are
B\3 _B*
B1+3) <&@
<B(1+5) <
choices of by given ba. If A(by,b2) ~ B?/C then det (Ap,.b,) > B/C
(since Dp,b, < B). Thus these terms contribute

C B* 17/3
< X Bos <B
C=2i¢[B2/3,B]bycZ*nCp

Thus we are left to consider the terms with A(by,be) ~ B?/C for
some C' < B?/3. The condition Dy, b, = d forces by « by (mod d), and
so by = Abz (mod d) for some X € {1,...,d}. Since ¢1 ¥ c2 (mod p),
we see p t d. Thus b1 = co(A) (mod dp), where co(A) = Abz (mod d)
and co()\) = c¢1 (mod p). By Lemma the number of choices of by is
therefore

4

< > #Cc,pdco<x)b2<<d(1+ d)(1+i) <<B+m.

1<A<d Cd

If Db, b, = d and A(b1, b2) ~ B?/C then det (A, b,) > B> ( ) Thus
we find that the contribution from terms with A(b1,b2) > B BY

ac B*
2 det ( Ab1b2 <2 X mooX (B+C3d3p4

bi,boezZ*NCy 1<d<B Cc=2i <« B2/3 boeZ*nCp
A(by1,b2)>B ba=c2 (mod p)

bi=c; (mod p)

bsa=cs (mod p)

primitive
BG
< = 1+ BY7/3,
Thus we have a suitable bound in each case, giving the result. O

Lemma 11.6. Letcy,cy € Z* be non-zero (mod p) with ¢1 x c2 (mod p).
Then we have

1 B° 17/3
— < = 4+ B'3,
Z det (Aby,b,) D7

b1, bacZ*nCp
A(b1,b2)#0
primitive
bi=c; (mod p)
ba=cs (mod p)
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Proof. This is similar to the proof of Lemma [11.5] Since the estimates
in the proof of Lemma when A(b1,bz) <« B*? didn’t depend on
whether p|Dp, b, or not, an identical argument shows that the contribu-
tion of by, bs with A(b1,b2) < B*/3 contributes O(B”/S). Therefore we
just need to consider the contribution when A(by,bs) > B*/3.

We split the summation according to A(b1, b2) ~ B2/C and Dy, b, =
d. Since ¢; x c2 (mod p), we have c; = Aocz (mod p) for some Ag. Since
b1 = c¢1 (mod p) and bz = comod p we then see that p|d. The condition
Dy, b, = d forces b1 = Aba (mod d) for some A, with A = Ao (mod p).
Thus, by Lemma the number of choices of b1, bs with A(b1,b2) ~
B?/C and Db, b, = d is

B*\ d B B
< E E #Ce\,d by by K (1 + 7) = (1 + E) (1 + od
boeZ4nCy 1<A<d p/p
ba=cy (mod p) A=Xo0 (mod p)
8
5
< sesp B

When A(b1, bg) ~ B?/C and Dy, b, = d we have det (Ap, b,) > B?/(Cd).
Thus the total contribution from terms with A(by,bg) > B*/3 is

cd; B® 5 B® | i3
>y ﬁ(p7503d3+3)<<F+B .
dﬁlf C=2i<B2/3

P

This gives the result. O

We are now able to make progress on our aim of bounding T%.
Lemma 11.7. Let Ts be as given by (11.12)). Then we have

Ts < 77414236 + 774_12142 sup (|T11\ + |T12\),
C1,C2

where the supremum is over all hypercubes C1,Ca C Cp of side length n3B
and

Jb; gby
Ty = > > . (1113
Jb1,b2,p,p det (Aby b,) ( )

PE[P1,P2]  byez*nCy,byeZ*NCy
p=1 (mod Df)blzbgzbo (mod m”)

A(b1,b2)#0
ptN(b1)N(b2)
1 gb, 9by Db, b
Tis := — JRL727 72102 (11,14
Z P1p2 Z A(b1,b2) ( )
p1,p2€[P1,P2] b1€Z*NCy,baeZ*NCo
p1=p2=1 (mod Dy) b;=by=by (mod m')
A(b1,b2)#0

P1fN(b1), p2tN(b2)

Proof. Let ns := n3. We wish to replace ’Rghm with a quantity which
doesn’t depend on bi, by by splitting Cg into 0(775_477%) smaller hyper-
cubes of side length 75 B. We see that vol (Ry, 1,) depends continuously
on the components of by and b, and that vol (Ry, 1,,) is always of size

O(AQ). Moreover, if we restrict b1, bs to hypercubes of side length 75 B

7
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then vol (Ry,, b,) varies by O(n5A?) as by, by vary within these hyper-
cubes. Thus we see that

Ty = Z Z gby gb, vol (Rgl,bz)

fbl ,b2,p1,p2 det (Abl ,b2 )

p1,p2€[P1,P2] by,by€Z*NCp
p1=p2=1 (mod Df)blEbQEbo (mod m/)
P11N(b1), p2fN(b2)

A(b1,b2)#0
< Ty + 15 "A% sup |Thol, (11.15)
C1,C2
where
vol (Ry. b,)
Ty :— -2 1,bo ,
’ 151 Z Z fb11b27plvp2 det (Ablvb2)
p1,p2€[P1,P2] by,by€Z*NCp

p1=p2=1 (mod Df) b, =by=b; (mod m’)
1N (b1), p2tN(b2)
A(b1,b2)#0

Tvo = Ti0(C1,C2) == Z Z 9b19by

P1,p2€[P1,P2]  biez*nCi,baeZ*nCy Fo1,02.p1.p2 A0t (Aby.b)
p1=p2=1 (mod Dy) b, =by=b, (mod m')
A(b1,b2)#0
p1tN(b1), p2tN(b2)

By the above lemmas, we have that
Ty < 17;217514236 < 77414236,

on recalling that 75 = n3. Thus we are left to bound Tio. We separate
the terms when the two primes in the outer sum are the same. Thus

Tio = Th1 + T2, (11.16)

where Th11 denotes the terms with p1 = p2 and Ti2 those terms with
p1 # pa.

Th1 clearly is equal to the expression given in the lemma, but (recalling
that det (A, b,) = A(b1,b2)/Db, b,) we need to show that fu, by,pi,ps =
p1p2 in T2 to obtain the desired expression. We first note that since p1 1
N(by) the multiplication-by-b; matrix My, is invertible (mod p1). This
means that for every x (mod p1) there is a unique a (mod p1 ) such that x =
aoby (mod p1) , and so vp, - (aobi) = 0 (mod p1) is therefore a non-trivial
constraint on the components of a (mod pi1). Similarly since p2 t N(bz),
we see p2|vp, - (a ¢ bz) is a non-trivial constraints on the components of
a (mod p2). From this it follows that we have that fu, by,p;,p. = P1P2,
and so T2 is given by the expression in the lemma. O

First we concentrate on Ti1.

11.6 The case p; = po

In this section we wish to bound the sum T7; from (11.13]). We first see
by Lemma the contribution of terms with by o by (mod p) to T1; is

_o(B° 17/3 Bn;? —2 6 H17/3
< > > N (F-‘FB )<<7P1 +n, 2PIBY/3,

PE[Py,P2] cyoxez (mod p)
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Thus we have
BG -2
T =T+ O( == +m *PEBY7?), (11.17)
1

where T4, counts those terms in Th; with by ¢¢ b2 (mod p), or equivalently
with p{ Dp, b, -

When bi bz (mod p), we see that the constraints (a ¢ bi)s =
0 (mod p) and (a¢ bz)s = 0 (mod p) are two linearly independent linear
constraints on a (mod p). In particular, the index fb, ,by,p.p = [Aby,bs :
Ab, by ,p,p) simplifies to give

1 _ #{a (mod p): (acobi)a=(aobz)a=v-(aobi)=v:(acby) =0 (mod p)}
Jbibapp p?

We separate the above count according to the rank of the multiplication-
by-a matrix M, (mod p). Thus

4

1 1 =
_—= E — S (b1, b2), 11.18
fo1,b2.p.p i—o p? ( ! 2) ( )

where §i(b1,b2) counts those a (mod p) such that M, has rank i and

satisfies (aob1)s = (aob2)a=v-(aobi) =v-(aobz) =0 (mod p).
First we consider Sj.

Lemma 11.8.

1 ~
Z 754(01,02) <<]96~

c1,c2 (mod p)

Proof. In this case M, has rank 4, and so is invertible (mod p). Given
any choice of ¢; (mod p) with p ¥ N(c1), we see that aoc1 = Mc,a
where the multiplication-by-c1 matrix M, has determinant N(c1), and
so is invertible (mod p). Therefore, given any choice of x (mod p),
there is a unique choice of a (mod p) with p ¥ N(a) such that a¢ci =
x (mod p). Similarly, since we only consider a with M, is invertible, given
any choice of y (mod p) there is then a unique choice of c2 (mod p) such
that aoca =y (mod p). Since there are O(p*) choices of x,y (mod p)
with x4 = ys =0 and v-x = v-y = 0 (mod p), there are therefore O(p*)
choices of a,c2 (mod p) such that p f N(a) and (acci1)s = (a0 ca)s =
v-(aoci) =v-(aocz) =0 (mod p). Thus we have that

1 ~
Z 754(01,02) <<p6,
c1,c2 (mod p)

as required. O

Now we consider S2 and S3.

Lemma 11.9.

Z i2 (§2(Clvc2) + S3(c1, Cz)) < p°.

c1,c2 (mod p)
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Proof. Since M, is not invertible (mod p) and has determinant N(a),
we see that p|N(a) and so p|N(aoc1) = N(a)N(c1). Since f(z1,z2,x3)
is an irreducible polynomial which splits into two linear factors over a
quadratic extension, and N(zi1v1 + z2v2 + x3v3) is a quartic irreducible
polynomial which has no linear factors over any quadratic extension, these
polynomials have no common polynomial factors over a mutual split-
ting field, and so define an algebraic variety of codimension 2. Thus (by
Hilbert’s Theorem 90 and the Lang-Weil bound) there are O(p) choices
of (z1, 2, z3) (mod p) such that f(x1,22,23) = N(z101 + 2212 + x313) =
0 (mod p). Thus there are O(p?) choices of x,y with p|N(x), N(y) and
za=ys=v-x=v- -y =0 (mod p). Given c¢; with p{ N(c1) and x and
y as above, here is a unique a (mod p) such that a¢ci; = x (mod p), and
there are O(p?) choices of co such that aoca =y (mod p) provided Ma
has rank 2 or 3. Putting this together gives the result. O

Lemma 11.10.
So(Cl,Cz) < 1.

Proof. The only a such that M, has rank 0 is the vector 0 (mod p). O

Finally, we need to consider the situation where M, has rank 1, which
is slightly more complicated.

Lemma 11.11. 1
Z 751(01,02) < p6.

c1,c2 (mod p)

Proof. If My has rank 1, then there are p® choices of b (mod p) such that
Mab = 0 (mod p). On the other hand, let a = (a1v1 + azv2 + asvs + aqva)
and b = (biv1 + bava + bavs + bava). If Mab = 0 (mod p), then the ideal
ab is a multiple of (p), and so b is a multiple of (p)/ gcd(a, (p)). Therefore
for there to be p* choices of b (mod p), a must be a multiple of (p)/p for
some degree one prime ideal p above p. Since there are O(1) degree one
prime ideals p above p and there are O(p) different multiples of (p)/p we
see that there are O(p) possible vectors a such that M, has rank 1.

Since the rank is unchanged by replacing a with Aa for any non-zero
scalar A, we see all such a are scalar multiples of one of O(1) choices of
vector a(®).

Call such a vector a'® ‘normal’ if the constraints (al® ¢ ¢2)y = v -
(@ ocy) = 0 (mod p) are non-trivial on ¢ (mod p), and call al® ‘excep-
tional’ if the constraints are trivial on co (mod p). We see that if a(® is
normal, then there are O(p®) choices of c2 (mod p) and so O(p*) choices
of (c2,a) (mod p) with a a multiple of a®.

( )We now prove that when p is large enough, there are no exceptional
a9,

If (a® o c)s = 0 (mod p) Ve, then this equation holds in particular
for all ¢ in {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}. Writing al® =
(a§°>, ago), ago), aff))) and v;v; = Zizl AijkVi, We get

4
ZAiﬂaEO) =0 (mod p) j=1,234.
i=1
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This implies that p|det (Aija)1<ij<a which is not possible for p large
enough if this determinant is non zero.

But this determinant can’t be zero, otherwise, there would be p1, p2, 3, ta
such that

A114 A124 A134 A144
A214 A224 A234 A244

=0

e BV + e A324 + s A334 + A344 ’
Ad14 Ad24 A434 A444

and then the matrix of the multiplication by piv1 + pove + psvs + pava
wouldn’t be invertible. Thus ¢, = 0 for all p € [Py, Ps].
Thus, we have that

1 1
pigsl (01702) = 5 Z 1(3(0)<>cl)4Ev~(a(O)<>c1)EO (mod p) + O(ﬁ)

a(9) normal (8(0)002)4Ev~(a(0)0c2)50 (mod p)

However, we have

1 5
Z n Z 1(a(0)0c1)4zv-(a(0)<>c1)20 (mod p) <p.

c1,c2 (mod p) p a(0) normal (3(0)002)4EV-(6(0)002)EO (mod p)
This gives the result. O

We’re now in a position to simplify our sum.

Lemma 11.12. Let

gb, gb
T, = 19bs :
H Z Z Jb1,b2,p,p det (Aby b,)

PE[P1,P2]  biez*nCi,baeZ*nCy

p=1 (mod Df) b;=bs=bg (mod m)
A(b1,b2)#0

ptN(b1)N(b2)Dp, b,

Then we have -
7, « 2B xewpipis,
P
Proof. Firstly, by splitting b1, bz into residue classes (mod p), we have
that

T/ _ 9b1 9by )
1 Z Z Z fblva«PJ’ det (Ab17b2)

PE[Py,P2] c1,c2 (mod p) b1 €2*NCy,boeZ*NCy
p=1 (mod Dy) c1gtcy b;=by=bg (mod m)
N(e1)N(e2)#0 (mod p) A(b1,bg)#0

bi=c; (mod p)
ba=cs (mod p)

Using our expression ((11.18)), we see that this is given by

> 2

4
pE[P1,P2] c1,c2 (mod p) J=0

Sj(e1, c2) Z gb, gbsy
2 det (A ’
P b1€Z*NC1,ba€Z4NCs (A b2)
) c1kcy b1=by=bg (mod m)
N(c1)N(e2)#0 (mod p) A(b1,b2)#0
bi=c; (mod p)
ba=cs (mod p)



Using Lemma [11.11]| we get

T(c1,c2) |9, gbs |
T 2\51.©2) _1gb1gby|
n< ) > = > det (Ap. vl

pE(P1,P2] c1,c2 (mod p) b €Z*NCy,boeZ*NCy
p=1 (mod Dy) cigkcy (mod p) bi1=bo=bg (mod m)
N(c1)N(e2)#0 (mod p) A(b1,b2)#0

bi=c; (mod p)
bs=cy (mod p)

(11.19)
where
T(c1,c2) :i= go(Cl,CQ) + Ei(c1,c2) + 572(017 c2) + 53(01, c2) + §4(Cl7 c2).

By Lemma [IT.5] we have that

—2 N6
Z |9, gbs | < n, B _’_174—2317/3
det (Ap, b 8 ’
b1 €Z*NCy,boeZ*NCo ( b 2) p
b1 =ba=bg (mod m)
A(b1,b2)7#0
bi=c; (mod p)
ba=cy (mod p)

Lemmas [T1.10} [TT.11] [TT.9] [IT.8] show that

T(ci,c
P
p

c1,c2 (mod p)

Thus we see that the term Ty, (11.19) is

2 6 B° 17/3 77_236 2 »17/3 7
<m® > (G +BT) <« M2 2B TR
D Py
PE[P1,P2]
p=1 (mod Dy)

This ends the proof of Lemma [TT.12} O

Putting everything in this section together, we are left to show that
T2 is small compared with BS.

11.7 The case p; # po

In this section we bound the sum 732 given by (11.14)).
Lemma 11.13. We have

Xo(l)BG

5 +Xo(1)P27317/37

T12 < ISSep| +

where, Ssep 1S given by

= 9o19b Dby by
S Yy mmbe

b1 €Z4NC1 ba €Z4NCo

80



Proof. We wish to reintroduce terms with p1 { N(b1) and p2 1 N(b2) so
that the inner sum is independent of pi,p2. There are O(p}) choices of
c1 (mod p1) such that pi|N(c1). Thus, by Lemma [I1.5] we see that the
terms with p1|N(b1) contribute a total

§ : 1 § : ‘gblgb2|Dblvb2
1P2 A(b1,bo
P1,p2€[P1,P2] PLp b1€Z*NC1,baeZ*NCo (b1, bz)
p1=p2=1 (mod Dy) b1=bs=bg (mod m)
A(b1,b2)#0
p1|N(b1)

1 |gb19bs | Dby b
<< 1 2 1,02
X o X > )
p1,p2€[P1,P2] c1,c2 (mod p1) by ez*NCy,byeZ*NCy
p1=p2=1 (mod Dy) p1|N(c1) A(b1,b2)#0

bi=c; (mod p1)
ba=cy (mod p2))

ni 7(B° 17/:
< N > pl(—8+B /3)
P1,p2€[P1,Ps2] pipz P1
p1=p2=1 (mod Dy)
—2 6
B _
< MT + 1y 2P27317/3.
1

Similarly, we see that terms pa|N(bz) contribute a total O(B®/P; +
P]B'Y"/3). Thus we find that

1 b1 by Dby b
T”:( > )( > g;\g(bQ bl)z)
pipaclPy, ) PP? b1 €Z4NCy ba€Z4NCy 102
p1=p2=1 (mod Dy) bi1=by=bg (mod m)

A(by,b3)7#0

—2 6
+ 0(% + i Pi BT,
1

Noting that the sum over p1,p2 is O(1), this gives the result. O

Thus it remains to bound Ssep.

11.8 Reduction to small residue classes and small
boxes

We first show that the contribution to Ssep from terms with Dy, b, >
(log B)®2 or A(b1,bs2) < B%/(log B)*? is negligible if K> is large com-
pared with Kj.

Lemma 11.14. Let K5 > 0 We have

3 |gb1 gb. | 1, *B°
det (Ab; ,by) (log X )K=~

b1 €Z*NCy, by €Z*NCy
A(b1,b2)>0
max(B2/A(b1,b2), D, by )>(log B)K2

Proof. This is similar to the proof of Lemma [IT.5] Indeed, the argument
in the proof of Lemma [11.5] shows that the contribution from terms with
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A(b1,bs) < BY3 is 0(774_231'7/3)7 and the contribution from terms with
A(b1,bg) ~ B2/C (for C =27 « B¥?) and Dy, p, = d is

—2 dC B4 4
<G (B+ Gg) B
Thus we see that the total contribution is
6 —2 16
—217/3 =2 3, B n, B
< 2B, Z 3 dC(B +ng3) < lwpm
C—=2i < B2/3 d<B
max(d,C)>(log B)¥2
O

Thus we just need to consider Dy, b, < (logz)®2 and A(b,b2) >
B?/(log z)*2.
Lemma 11.15. Imagine that for every cube C C [1, B]*, every and any
¢ (mod d) we have

Z gb <K 7]200084.
bez*ne
b=c (mod d)

Then we have
Ssep <LK 772036

Proof. Let ng = n3°. By Lemma the contribution to Ssep from
terms with A(b1,b2) < 16B? or from Dy, b, > 15+ is O(n3°B®). Thus
we may focus on the remaining terms.

Since A(b1,bz) is continuous in by, by we see that if a pair of cubes
C1{,Ch of side length nZ B contains a point with A(by,b2) > 1sB2, then in
fact for all b} € Ci and bz € C3 we have A(b}, by) = A(b1,b2)(14+O0(n6)).
Thus we may replace A(bi, bs) with

AC1,C) = sup  A(x,y)
xeCy,y€eC)

at the cost of an error term of size nen; 2B® < n3°B®. Putting this
together, we have

> d sup > b1 s

<ng! 1:C2 b1 €2%nCy, ba€z*NC)
Dy, by=d

-9
n
Ssep < 1" B° + #
d

Now we wish to simplify the condition Dy, b, = d to a congruence con-
dition, which will finally allow us to separate the variables bi,b2. By
Moebius inversion we have

1Db1,b2:d = Z wu(e)

e|Dp, by /d
—20
= > (&) Ln, by (mod de) + O LDy, o 20520
eS'r]gzo
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By Lemma the contribution of the second term to Ss.p is O(n3°B®).
Thus we see that

—31

Seep < "B+ 16— sup |, (11.20)
BY ele
decn 2!

where

Stepi= < > gb1> < > 9b2>-

b,A1,X2 (mod de) bieztncy, boezincs,
bi=X1b (mod de) ba=X2b (mod de)
bi=bg (mod m) ba=bg (mod m)

By assumption of the lemma, we have that

Z gby < 77200034.

b1 €z4ncy,
bi=X\1b (mod de)
bi=bg (mod m)

Substituting this in then gives |Ssep| < 730 BS + 13010 B% <« 73 BS.
O

Thus we see that it is sufficient to obtain a suitable bound for g, on
average over hypercubes in residue classes.

11.9 Localised bound and Proof of Proposition
9.14

To finish our proof we need to show that we have a suitable estimate for
gb ~ 1z (b) — 1z (b) over b restricted to small boxes and arithmetic pro-
gressions. We don’t require estimates arithmetic progressions to moduli
larger than (log X)O(l), and there are no issues caused by a possible Siegel
Zero.

Proposition 11.16. For every K > 0 and every polytope R under con-
stderation, we have

~ B*
3 (1R(b) - 1R(b)) €K (o B
bez*nc
b=c (mod d)

Proof. This is the equivalent of [I4, Proposition 9.7], and the proof works
in exactly the same manner for our situation. Therefore we only highlight
a couple of main details.

First we estimate the contribution from 1z (b). Since b is in a small
cube, no two elements can generate the same ideal, and so we can write
the sum as a sum of principal ideals. We can use Hecke Grossencharacters
to detect the congruence conditions and the restriction of b to the cube
C. The Prime Number Theorem for Grossencharacters then allows one to
suitably estimate the resulting sums over 1z (b), giving an explicit main
term and an error term which is Ox (B*/(log B)*). This is essentially the
same argument as [I4, Lemmas 9.1-9.4].
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The contribution from IR(b) can be estimated by swapping the order
of summation in the sieve sum and using the fact that b € Z N C are
equidistributed in suitable aritmetic progressions as in [14] Lemmas 9.5
and 9.6]. This gives a main term and a error term Ox (B*/(log B)¥).

The main term contributions from 1% (b) and 1x(b) are the same
apart from opposite signs and so cancel, giving the result. O

We note that the number of elements of Cg with 7(d) > n; ' is

< 772000 Z T(b)GOOO < ngOOOB4(10gX)O<1)~
beCp

Therefore, provided the consant K7 defining 74 is chosen sufficiently large,
we may replace gp with 1z (b/c') — 1z (b/c') at the cost of an acceptable
error term whenever ¢’|b. We note that ¢’|b is determined by a congru-
ence condition on b (mod N(c')), and recall than N(¢') < (log X)°™).
Therefore Proposition [11.16]implies that the hypothesis of Lemma [11.15)
is satisfied. Finally, we are able to complete our proof of Proposition [0.14]

Proof of Proposition[J.17. We recall that |A(Xo)| =< n$X§. Putting to-
gether the equations (11.2)), (11.7) and the argument of Section [11.1] we
find that provided B < X3/4_E/1:’23/2 (from (|11.8))) we have

n(R)= Y > T3(R) + O(X3t¢/Py),
CeClg ag,bg (mod m’)
N(¢)(apobo)i=(vo)i (mod m’)

where T is given by (11.9).

Putting together (rll.l() , (11.11)), (11.12)) and Lemmas|11.1)/11.2} [11.7]
[IT12] I1.13] [I1.1I5] and Proposition [[1.16] then gives

T3(R)* < xo() g4 (A3B3 4 ABTP? + A2BY/3p] 4 A;Bfi)
+ At (774A236 + %A%, ,73036)_
Since Hf:l X; >x= A3B3(log X)X, this gives the result provided
A<B* BRf<AT B'<B'

and the constant K; defining 74 is taken sufficiently large in terms of K.
(Here we used that the second inequality implies ) After taking
€ suitably small, we see that the first condition is implied by the first
inequality of (4.10), whereas the final two inequalities are implied by the

assumption 7/ < min(4 — 20 — -+ — 260,,,61 + --- + 6 — 1)/100. This
gives Proposition O

This completes the proof of Proposition [0.14] and hence Theorem [£]]
and Theorem [[.1]
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