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On the largest prime factor of quartic polynomial values: the cyclic and dihedral cases

Let P (X) ∈ Z[X] be an irreducible, monic, quartic polynomial with cyclic or dihedral Galois group. We prove that there exists a constant cP > 0 such that for a positive proportion of integers n, P (n) has a prime factor ≥ n 1+c P .

Introduction

Let P (X) ∈ Z[X] be an irreducible degree polynomial with d ≥ 2. Assuming that there is no local obstruction, it is widely believed [START_REF] Schinzel | Sur certaines hypothèses concernant les nombres premiers[END_REF] that P should take on infinitely many prime values, but unfortunately this conjecture remains completely open for all non-linear polynomials P .

As an approximation to this problem, one can look for integers n for which P (n) has a large prime factor. For general polynomials P , the best known bound is due to Tenenbaum [START_REF] Tenenbaum | Sur une question d'Erdős et Schinzel[END_REF], who shows that there are infinitely many integers n such that P (n) has a prime factor of size at least n exp((log n) α ) for any α < 2 -log 4. When the degree of P is 5 or more, this is the best known result, but for some low degree polynomials, one can produce bounds which are much stronger.

Hooley [9] proved the first result of this kind, showing that the largest prime factor P + (n 2 + 1) of n 2 + 1 satisfies P + (n 2 + 1) > n 11/10 infinitely often. The exponent 11/10 has been improved by Deshouillers and Iwaniec [START_REF] Deshouillers | On the greatest prime factor of n 2 + 1[END_REF], next by La Bretèche and Drappeau [START_REF] De La Bretèche | Niveau de répartition des polynômes quadratiques et crible majorant pour les entiers friables[END_REF] and the current record due to Merikoski [START_REF] Merikoski | On the largest prime factor of n 2 + 1[END_REF] is that P + (n 2 + 1) > n 1.279 infinitely often. Heath-Brown [START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF] showed that P + (n 3 +2) > n 1+10 -303 infinitely often. Irving [START_REF] Irving | The largest prime factor of x 3 +2[END_REF] proved fifteen years later that exponent 1 + 10 -303 can be replaced by 1 + 10 -52 . It seems plausible that the underlying methods could be adapted to more general degree 2 or degree 3 polynomials.

For degree 4 polynomials, results can currently only be obtained when the Galois group G of P (X) takes a simple form. When P (X) = X 4 -X 2 + 1, the twelfth cyclotomic polynomial, Dartyge [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF] proved that there are infinitely many n such that P + (n 4 -n 2 +1) > n 1+10 -26531 . La Bretèche [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] generalised this result to quartic irreducible even monic polynomials with Galois group isomorphic to the Klein group V := Z/2Z × Z/2Z. For such polynomials P , he proved that there exists cP > 0 such that P + (P (n)) > n 1+c P for a positive proportion of integers n. It seems plausible that the methods of [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] and [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF] may be adapted for some more general quartic polynomials, but the condition that the Galois group is V is crucial to the method.

In this work we obtain results for irreducible quartic polynomials with Galois group isomorphic to the cyclic group C4 := Z/4Z or the dihedral group D4 = Z/2Z ⋉ Z/4Z. Our method doesn't work for polynomials with Galois group A4 or S4 which are the most frequent Galois groups for quartic irreducible polynomials. However, the fifth cyclotomic polynomial Φ5(X) = X 4 + X 3 + X 2 + X + 1, X 4 -5X 2 + 5, X 4 + 13X + 39 are examples of polynomials with cyclic Galois group and X 4 +2, X 4 +3X +3, X 4 -5X 2 + 3 are polynomials with Galois group D4. (cf. [START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF] for other examples of quartic polynomials with dihedral or cyclic Galois group).

Theorem 1.1. Let P (X) be a monic quartic irreducible polynomial with Galois group C4 or D4. Then there exists a constant cP > 0 such that for x > x0(P ), we have |{x < n ≤ 2x : P + (P (n)) ≥ x 1+c P }| ≫ x.

The key new technical innovation behind our proof of Theorem 1.1 is to incorporate 'Type II' or 'bilinear' information into the method of detecting large prime factors; previous approaches had relied solely on 'Type I' information. This Type II information allows us to handle polynomials with Galois groups C4 or D4 which were out of reach of the Type I approach. In principle one could hope to handle the remaining possibilities A4 or S4 to cover all Galois groups by a similar procedure, but we do not know how to handle the relevant Type II estimates in this case, and so our paper is limited to C4 and D4. Following the approaches of Heath-Brown [START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF], Dartyge [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF] and La Bretèche [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF], the key to obtaining estimates like Theorem 1.1 is showing that a certain multivariate polynomial q associated to P (X) has a convenient prime factorisation for a positive proportion of its values.

For quartic P (X), this associated polynomial q = q(a1, a2, a3) is a ternary sextic form. If P has a Galois group V , then q(a1, a2, a3) = q1(a1, a2, a3)q2(a1, a2, a3)q3(a1, a2, a3) is a product of 3 ternary quadratic forms, and the methods of [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF] and [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] could then produce many suitable prime factorisations by showing equidistribution of q1 and q2 in suitable arithmetic progressions 1 . (This is why we refer to their methods as 'Type I' methods.) When P has a larger Galois group, then the form q(a1, a2, a3) is the product of a quartic and a quadratic (if G = C4 or D4) or is an irreducible sextic (if G = A4 or S4). Unfortunately one cannot obtain a suitable factorisation by just considering analogous equidistribution in arithmetic progressions in these cases, since one would need to work with moduli which are too large for equidistribution to occur.

We find that if G = C4 or D4, the ternary quartic factor of q has the additional algebraic structure of being an 'incomplete norm form'.

Maynard [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] produced various Type II estimates which were used to count prime values of incomplete norm forms. By adapting the ideas underlying these estimates to our situation we are able to show that q has a convenient prime factorisation for a positive proportion of its values. This part corresponds to Theorem 4.1 announced in Section 4.

Combining this result with the previous machinery (suitably generalised to our situation) then yields Theorem 1.1.

Outline of the proof of Theorem 1.1

The proof of Theorem 1.1 takes three key steps. Step 1 is an argument due to Heath-Brown [START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF] (see also [START_REF] Erdős | On the greatest prime factor of x k=1 f (k)[END_REF]), which reduces the problem to showing the existence of many integers where P (n) has an unusually large friable part (i.e. a part without large prime factor).

Step 2 follows and generalises [START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF][START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF][START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] and shows that by using the q-analogue of Van der Corput's method, it suffices to show that a certain ternary form q(a1, a2, a3) associated to P takes many values with a suitable prime factorisation. This step makes use of the fact that P is a quartic polynomial. The key new ingredient in our work is Step 3, where we establish that q(a1, a2, a3) takes on many values with the suitable prime factorisation when P has Galois group C4 or D4. For this final step we incorporate ideas of Maynard [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] on prime values of incomplete norm forms.

Step 1: Reduction to many integers with large friable part.

Let r1 ∈ Q be a root of P (n), K = Q(r1) and NP = N K/Q the associated norm. Then we see that NP (n -r1) = P (n), and so we are interested in counting integers n such that the ideal (n -r1) has a prime ideal factor of large norm. In particular, Since P (n) ≍ n 4 , the first sum is (4 + o(1))x log x. Swapping the order of summation and applying the Prime Ideal Theorem shows that the second sum is (1 + o(1))x log x. Let A be the set of integers n with p|(n-r 1 ),N P (p)≤2x log NP (p) ≥ (1 + δ0) log x. We split the third sum according to whether n ∈ A or not. Therefore the above expression is If n ∈ A then since prime ideals with NP (p) ≤ 2x contribute at least (1 + δ0) log x to p|(n-r 1 ) log NP (p) = (4 + o(1)) log x, the contribution from prime ideals with NP (p) > 2x must be ≤ (3 -δ0 -o(1)) log x. If n / ∈ A then we note from size considerations there can be at most 3 prime ideals with NP (p) ≥ 2x dividing (n -r1), and so the inner sum over p is at most 3(1 + η) log x. Substituting these bounds into the above, we find In particular, if #A ≫ x then choosing η = δ0#A/(4x) shows that the left hand side is ≫ x log x. Thus it suffices to show # n ∈ [x, 2x] :

p e |(n-r 1 ) N P (p)≤x NP (p) ≥ x 1+δ 0 ≫ x.
Step 2: Reduction to values of a polynomial with convenient factorisation.

By concentrating on multiples of friable principle ideals J = (a0 + a1r1 + a2r 2 1 + a3r 3 1 ) of norm ≍ x 1+δ 0 , where r1 is a root of P , we find it suffices to show there is some dense set A ⊂ Z 4 ∩ [1, x (1+δ 0 ) /4 ] such that (a 0 ,a 1 ,a 2 ,a 3 )∈A n∈[x,2x] (a 0 +a 1 r 1 +a 2 r 2 1 +a 3 r 3 1 )|(n-r 1 )

1 ≫ x.

The condition (a0+a1r1+a2r 2 1 +a3r 3 1 )|(n-r1) is equivalent to a congruence condition n ≡ ka (mod NP (a0 +a1r1 +a2r 2 1 +a3r 3 1 )), and so by completion of sums and swapping the order of summation, it suffices to obtain a power-saving in the exponential sums (for small integers h ̸ = 0 and with the standard notation e(t) = exp(2iπt)) a 0 ,a 1 ,a 2 ,a 3 ∈A e hka 0 ,a 1 ,a 2 ,a 3 NP (a0 + a1r1 + a2r 2 1 + a3r 3 1 )

. This is complicated by the fact that the variables a0, a1, a2, a3 appear in both the numerator and denominator. However, for quartic P we find that there are polynomials B14(a0, a1, a2, a3), B13(a0, a1, a2, a3) and q(a1, a2, a3) with no common factor such that e hka 0 ,a 1 ,a 2 ,a 3 NP (a0 + a1r1 + a2r2 + a3r3) ≈ e hB13(a0, a1, a2, a3)B14(a0, a1, a2, a3) q(a1, a2, a3) ,

and now the denominator is independent of a0. We wish to obtain a power-saving estimate for the sum over a0, but this is complicated by the fact that the modulus of the expression q(a1, a2, a3) ≍ x 6(1+δ 0 )/4 is much larger than the length x (1+δ 0 )/4 of summation of a0. To estimate such short exponential sums, we can use the q-analogue of Van der Corput's method provided the modulus q(a1, a2, a3) consists only of small prime factors.

Thus our task has reduced to showing that for a positive proportion of integers a1, a2, a3 ∈ [1, x (1+δ 0 )/4 ] we can ensure that the polynomial q(a1, a2, a3) has a convenient prime factorisation. Specifically, we will require that q(a1, a2, a3

) = d0d1 • • • dr (1.1)
where d0 < x 2-ε , max(d1, . . . , dr) ≤ x 1-ε , min(d0, . . . , dr) ≥ x ε for some fixed ε > 0.

Step 3: Counting factorisations of incomplete norm forms So far we have followed a similar approach to the works [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF][START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF]. If the Galois group of P is the Klein group, then it turns out that the polynomial q(a1, a2, a3) is the product of three quadratic polynomials. By considering the distribution in suitable residue classes one can then guarantee that each quadratic has a suitable factor, and so q(a1, a2, a3) then has a suitable prime factorisation.

When the Galois group of P is C4 or D4, it turns out that q(a1, a2, a3) = q1(a1, a2, a3)q2(a1, a2, a3) is the product of a quartic polynomial and a quadratic polynomial. Unfortunately the fact that one factor is quartic means that one cannot guarantee a suitable prime factorisation by looking at variables in residue classes to reasonably small moduli. The difficulty here is that q1(a1, a2, a3) ≈ (maxi ai) 4 , so the size of the values considered are very large compared to the size of the variables ai. Indeed, it is not known that an arbitrary ternary quartic form q1 takes infinitely many values compatible with the factorisation (1.1).

Fortunately in our problem the form q1 is not arbitrary, and in fact we can show that q1 corresponds to an incomplete norm form of a number field. More precisely, we prove that there exist a number field K of degree 4 over Q depending only on P and some elements ν1, ν2, ν3 ∈ K such that q1(a1, a2, a3) = N K/Q ( 3 i=1 aiνi). Maynard [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] gave asymptotic formulae for the number of primes represented by incomplete norm forms; that is primes p such that p = N (a1 + a2ω + • • • + a n-k ω n-k-1 ) where a1, . . . , a n-k are integers, ω is a root of monic and irreducible polynomial f ∈ Z[X] of degree n ≥ 4k and N is a norm of the corresponding number field. For k = 1 and n = 4 this result counts values quartic norms in 3 variables with a particular type of prime factorisation. We adapt the methods of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] to our situation to count representations of the type (1.1). Unfortunately we require various additional technical conditions (such as a localized version of Maynard's estimates where the variables lie in suitable arithmetic progressions), which means that large parts of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] have to be generalised to our specific situation. Once suitable technical estimates have been obtained, we find (1.1) is satisfied for a positive proportion of a1, a2, a3, as required.
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Initial steps

Following the argument of Heath-Brown sketched as 'step 1' in our outline, we have the following result. Lemma 3.1. Let P ∈ Z[X] be an irreducible quartic and monic polynomial of degree 4 with root r1, and let

E(δ) := {X < n ≤ 2X : p e |(n-r 1 ) N P (p)≤x NP (p) ≥ X 1+δ }. (3.1)
If δ0, δ1 > 0 are such that for all X large enough in terms of δ0, δ1, P we have |E(δ0)| > δ1X, then we have for sufficiently large X

|{n ∈]X, 2X] :

P + (P (n)) ≫ X 1+ δ 0 δ 1 3 }| ≥ (δ1δ 2 0 + o(1))X.
Proof. This is essentially [8, Lemma 2], (or [1, Lemme 4.1]) after noting that p|P (n),p≤z log p ≥ p|(n-r 1 ),N P (p)≤z log NP (p).

Thus it suffices to show that |E(δ0)| ≫ X for some small absolute constant δ0 > 0. To do this we will choose a set of ideals J (the explicit, technical choice is made in Section 6) such that

p e |J N P (p)≤X NP (p) ≥ X 1+δ 0 ∀J ∈ J . (3.2) 
Let J2 := {J ∈ J : P -(NP (J)) ≥ X θ 0 } for some small absolute constant θ0 > 0. Then we see that for any n ∈ [X, 2X] there are at most 2 4θ -1 0 ideals J ∈ J2 with J|(n -r1), since (n -r1) can have at most 4θ -1 prime ideal factors with norm bigger than X θ 0 . We then see that

|E(δ0)| ≥ |{X < n ≤ 2X : ∃ J ∈ J2 such that J|(n -r1)}| ≥ J∈J 2 |E J | sup X≤n≤2X |{J ∈ J2 : J|(n -r)}| ≫ J∈J P -(N P (J))≥X θ 0 |E J |, where E J := {X < n ≤ 2X : J|(n -r1)}. Every ideal J has at most α -1 0 representations as J = KL for K a prime ideal with NP (K) ∈ [X 4α 0 , X 5α 0 ]. Thus we see that |E(δ0)| ≫ K∈K P -(N P (L))≥X θ 0 KL∈J |EKL|,
where

K := K prime ideal, NP (K) ∈ [X 4α 0 , X 5α 0 ] . (3.3) 
We apply a linear sieve of level X 3θ 0 to bound the condition P -(NP (L)) ≥ X θ 0 from below, giving

|E(δ0)| ≫ K∈K KL∈J d|N P (L) λ - d |EKL|
where λ - d are the usual Rosser-Iwaniec lower bound linear sieve weights ( [START_REF] Iwaniec | Rosser's sieve[END_REF] and [11]) supported on d < X 3θ 0 with p|d ⇒ p ≤ X θ 0 . We see that if X is large enough E J has density ρP (NP (J))/NP (J), where

ϱP (I) := card{0 ≤ n < NP (I) : n ≡ r1 (mod I)}. (3.4)
With this in mind, we define the error R J in the approximation by

R J := |E J | -X ϱP (NP (J)) NP (J) . (3.5) Thus |E1| ≫ XS0 + S1,
where

S0 := K∈K KL∈J (K) d|N P (L) λ - d ϱP (KL) NP (KL) , S1 := K∈K KL∈J (K) d|N P (L) λ - d RKL. (3.6) 
To obtain Theorem 1.1 we see it suffices to prove the following two key propositions.

Proposition 3.2 (Estimate for S0). Let θ0 be sufficiently small, and J be the set of ideals described in Section 6. Then we have

S0 ≫ 1.
Proposition 3.3 (Estimate for S1). Let θ0 be sufficiently small, and J be the set of ideals described in Section 6. Then we have

S1 = o(X).
Together these propositions rely heavily on our key technical result, Theorem 4.1. Section 7 is devoted to establishing Proposition 3.3, which uses the fact that J is a set of ideals with small prime factors to bound the relevant exponential sums. Section 8 is devoted to establishing Proposition 3.2 assuming Theorem 4.1. The rest of the paper is then devoted to establishing Theorem 4.1, which asserts that J is a set of nonzero density.

Localised divisors of values of incomplete norm forms

As described in the outline, the key to the proof of Theorem 1.1 is to show that for a positive proportion of a1, a2, a3 (in a box like [A, 2A] 3 ) an auxiliary polynomial q(a1, a2, a3) = q1(a1, a2, a3)q2(a1, a2, a3) takes values where P + (q2(a1, a2, a3)) < A 2-ϵ and P + (q1(a1, a2, a3)) < A 1-ϵ . The term q2 will be a quadratic form, and so P + (q2(a1, a2, a3)) < A 2-ϵ if p|q2(a1, a2, a3) for some p ∈ [A 2ϵ , A 3ϵ ], which occurs if a1, a2, a3 lie in suitable residue classes (mod p). Thus it suffices to show that there are the expected number of (a1, a2, a3) such that P + (q1(a1, a2, a3)) < A 1-ϵ and (a1, a2, a3) lies in a suitable residue class modulo p on average over p ∈ [A 2ϵ , A 3ϵ ]. Since q1 will be an incomplete norm form for a quartic extension, we see that we are therefore counting friable values of an incomplete norm form (with some additional congruence constraints). The aim of this section is to introduce the notation to state Theorem 4.1, and then to explain how this technical statement relates to our specific problem by giving a suitable asymptotic for such friable values of auxiliary forms.

Let K be a quartic extension of Q with a Z-basis {ν1, ν2, ν3, ν4} for OK such that ν1 = 1 and K = Q(ν2). Given a large value X, we wish to count the number of (a1, a2, a3) in a small box such that N K/Q (a1ν1+a2ν2+a3ν3) has only small prime factors, and such that an auxiliary quadratic form f (a1, a2, a3) is a multiple of some fairly small p ∈ [X τ , X τ ′ ]. With this in mind, we consider the box X given by

X := 3 i=1 [Xi, Xi(1 + η1)[, (4.1) 
where η1 ∈ R and X1, X2, X3 ∈ Z are parameters satisfying η1 := (log X) -100 , (4.2)

X1, X2, X3 ∈ [η1X, X], (4.3) 
N K/Q (X1ν1 + X2ν2 + X3ν3) ≥ η 1/10 1 max i (X 4 i ). (4.4) 
We are then interested in the sets

A := {(a1, a2, a3) ∈ Z 3 ∩ X }, A(u0, m, p) := {(a1, a2, a3) ∈ A : a ≡ u0 (mod m), p|f (a1, a2, a3)}, A d (u0, m, p) := {(a1, a2, a3) ∈ A(u0, m, p) : d|N K/Q (a1ν1 + a2ν2 + a3ν3)}. (4.5) 
Since we wish to count points when N K/Q (a1ν1 + a2ν2 + a3ν3) has small prime factors, we will count how often d|N K/Q (a1ν1 + a2ν2 + a3ν3) for an integer d of the form d = q1 • • • q ℓ where each qi is a prime localised to lie in an interval [X θ j , X θ ′ j ] for some fixed constants θi, θ ′ i . We will require θj, θ ′ j satisfy the following conditions.

• (Non-trivial intervals counting primes which are not too large)

δ < θi < θ ′ i < 1 -δ ∀ 1 ≤ i ≤ ℓ. (4.6) 
• (q1j are distinct primes)

[θi, θ ′ i ] ∩ [θj, θ ′ j ] = ∅ ∀ 1 ≤ i < j ≤ ℓ. (4.7) • ( ℓ j=1 q1j is not too large to divide N ) ℓ i=1 θ ′ i < 4 -δ. (4.8) 
• (Impossible for q 2 1j to divide N (a1ν1

+ a2ν2 + a3ν3)) θj + ℓ i=1 θi > 4 + δ ∀ 1 ≤ j ≤ ℓ. (4.9) 
• (The product of the first q1i is of controlled size) There exists

ℓ ′ ∈ [1, ℓ -1] such that 1 + δ < ℓ ′ i=1 θi < ℓ ′ i=1 θ ′ i < 2 -δ. (4.10)
The conditions (4.6)-(4.9) are minor constraints to avoid some technical issues and to ensure that we expect that d|N K/Q (a1ν1 + a2ν2 + a3ν3) can actually occur; these constraints could be significantly weakened at the cost of some effort. The condition (4.10) is a technical condition which is vital for our method.

To avoid some further technical issues we will focus on the case when the quadratic form f is irreducible but not geometrically irreducible, and so the condition f (a1, a2, a3) becomes a product of two linear factors over Fp after restricting p to an arithmetic progression. Again, this setup could be relaxed at the cost of additional technical effort, but is the situation that arises when dealing with Theorem 1.1. It would be also interesting to have a more general result for incomplete norm forms and ternary forms f .

Finally we are in a position to state our counting result. 

f (X1, X2, X3) = L1(X1, X2, X3)L2(X1, X2, X3) over a suitable extension of Q. Let D f ∈ N such that if p ≡ 1 (mod D f ) then the Fp-reduction of the two linear forms L1(X1, X2, X3), L2(X1, X2, X3) are in Fp[X1, X2, X3].
Let K be a quartic extension of Q with {ν1, ν2, ν3, ν4} being a Z-basis for OK such that ν1 = 1 and

K = Q(ν2). Let X1, X2, X3 satisfy (4.3) and (4.4). Let ℓ, ℓ ′ ∈ N such that 1 ≤ ℓ ′ < ℓ and θ1, θ ′ 1 , . . . , θ ℓ , θ ′ ℓ be reals satisfying (4.6)-(4.10). Let 0 < τ < τ ′ satisfy τ ′ < min 4 -2θ ′ 1 -. . . -2θ ′ ℓ ′ 100 , θ1 + • • • + θ ℓ ′ -1 100 . ( 4 

.11)

Let A d (u,m, p) be as given by (4.5).

Then for any choice of u0 (mod m) and K > 0, we have

p∈[X τ ,X τ ′ ] p≡1 (mod D f ) q 1 ,...,q ℓ prime q j ∈[X θ j ,X θ ′ j ] ∀1≤j≤ℓ |Aq 1 •••q ℓ (u0, m, p)| = η 3 1 X1X2X3 2 log( τ ′ τ ) m 3 φ(D f ) ℓ i=1 log θ ′ i θi + O X1X2X3 (log X) K .
The implied constant depends on f, K, A, δ and the νi, θi, θ ′ i only. At first sight Theorem 4.1 looks like a Type I estimate since we are counting a1, a2, a3 such that N K/Q (a1ν1 + a2ν2 + a3ν3) is a multiple of q1 . . . q ℓ . However, since there are typically no values of a1, a2, a3 such that this occurs (it is only a thin set of qj's when there is a solution), we instead are required to view this as a Type II estimate counting

N K/Q (a1ν1 + a2ν2 + a3ν3) = m1m2 where m1 = q1 • • • q ℓ ′ is a product of ℓ ′ primes of constrained size and m2 = q ℓ ′ +1 • • • q ℓ r
is the product of ℓ -ℓ ′ primes and some other integer r.

Application to Theorem 1.1

If P is an irreducible monic quartic polynomial, then (generalising previous works) there is an auxilliary sextic form q(a1, a2, a3) such that provided q takes suitably friable values a positive proportion of the time, then we can use exponential sum methods to establish Theorem 1.1. If P has Galois group C4 or D4, then it turns out that the roots r1, r2, r3, r4 of P can be ordered such that r1r2 + r3r4 ∈ Z (c.f. Lemma 5.9), and that q factorises as q1q2 for a quartic form q1 and a quadratic form q2 (c.f. Lemma 5.10) which split completely in the splitting field of P .

Moreover, we find that for the quartic extension

K := Q(r1 + r3) of Q, the form q1 satisfies q1(a1, a2, a3) = ±N K/Q (a1 + a2(r1 + r3) + a3(r 2 1 + r1r3 + r 2 3 )),
and so takes the shape of an incomplete norm form (c.f. Proposition 5.11). The quadratic q2 takes the form

q2(a1, a2, a3) = [a1 + (r1 + r2)a2 + (r 2 1 + r1r2 + r 2 2 )a3] × [a1 + (r3 + r4)a2 + (r 2 3 + r3r4 + r 2 4 )a3].
(4.12)

Since the two polynomials P1(X) := (X -

(r1 + r2))(X -(r3 + r4)) and P2(X) := (X -(r 2 1 + r1r2 + r 2 2 ))(X -(r 2 3 + r3r4 + r 2 4 )) are in Z[X] 2 , r1 + r2 and r 2 1 + r1r2 + r 2 2
are of degree at most 2 over Q. Let ∆1 and ∆2 be the discriminant of these two polynomials and

Dq 2 := [8, ∆1, ∆2] if ∆1∆2 ̸ = 0, [8, ∆1 + ∆2] otherwise. (4. 13 
)
Since P is irreducible of degree 4, we don't have ∆1 = ∆2 = 0.3 If p ≡ 1 (mod Dq 2 ) and ∆1∆2 ̸ = 0, then (∆1/p) = (∆2/p) = 1 where (n/p) is the Legendre symbol. Thus the polynomials P1 and P2 modulo p factor into products of two degree one polynomials. The linear factors of q2 in (4.12) have their coefficients in Fp. We also verify that it is still the case when p ≡ 1 (mod Dq 2 ) and ∆1∆2 = 0.

Then N K/Q (4 i=1 aiνi) is a quartic form in the integer variables a1, a2, a3, a4, and we have for all a1, a2, a3, a4 ∈ Z

N K/Q 4 i=1 aiνi = 4 i=1 4 j=1 ajσi(νj) ,
where σ1, σ2, σ3, σ4 are the different embeddings of K/Q.

Given an irreducible quartic polynomial P ∈ Z[X] with Galois group C4 or D4 it is the case (see Lemma 5.9) that the distinct roots r1, r2, r3, r4 of P can be ordered such that r1r2 + r3r4 ∈ Q. We are interested in the auxiliary polynomial q2 (see (5.25)), given by To ensure that q1(a1, a2, a3) = N K/Q (a1ν1 + a2ν2 + a3ν3) is composed only of suitably small prime factors, we will look for a1, a2, a3 such that q11q12q13q14 . . . q 1ℓ |N K/Q (a1ν1 + a2ν2 + a3ν3) for some suitable primes q11, q12, q13, q14, . . . , q 1ℓ < X 1-δ with ℓ j=1 q1j > X 3+δ . In the application to Theorem 1.1, we will only need the case ℓ = 6, but the proof in this particular case is exactly the same as in the general case.

Algebraic properties of auxilliary polynomials

Ideals

Let r1 be a root of P . We define for any ideal I of Z[r1] the function

ϱP (I) = card{0 ≤ n < NP (I) : n ≡ r1 (mod I)},
where NP = N Q(r 1 )/Q is the norm on Q(r1). If I is principal, I = (α), we will write simply ϱP (α) in place of ϱP ((α)).

Lemma 5.1. Let I be an ideal of O Q(r 1 ) such that (NP (I), Disc (P )) = 1. If the equation n ≡ r1 (mod I) has a solution with n ∈ Z then I is a product of prime ideals whose norm is a prime number. Furthermore I can't be divisible by two different prime ideals with the same norm. Conversely, if I satisfies these different conditions then this congruence admits some solutions and ϱP (I) = 1. Finally if I is an ideal such that ϱP (I) = 1 then for m ∈ Z, I|m ⇔ NP (I)|m.

Proof. This is [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF]Lemma 3.1]. The particular case P = Φ12 is handled in [4, Lemma 3.1].

The roots of P modulo m

In this part only we suppose that P

(X) = X n +cn-1X n-1 +• • •+c0 ∈ Z[X]
is monic, irreducible of degree n. In our problem, the degree of P is 4 but the argument of this part is valid for all irreducible and monic polynomials and might be used in other contexts. Throughout the rest of the paper we fix a root r1 of P .

For α ∈ Z[r1], we write α = a0+a1r1+a2r

2 1 +a3r 3 1 +• • •+an-1r n-1 1
. Let mα : Q(r1) → Q(r1) be the multiplication-by-α map: mα(x) = αx. Let Mα be the matrix of mα with respect to the basis {1, r1, r 2 1 , r 3 1 , . . . , r n-1

1 } and NP (α) = N Q(r 1 )/Q (α) its determinant. For P (X) = X 4 + 2 the corresponding matrix is     a0 -2a3 -2a2 -2a1 a1 a0 -2a3 -2a2 a2 a1 a0 -2a3 a3 a2 a1 a0     .
More generally since

r n 1 = -c0 -c1r1 -• • • -cn-1r n-1 1 , we have Mα =      a0 -c0an-1 * • • • * a1 a0 -c1an-1 * • • • * . . . . . . . . . . . . . . . an-1 an-2 -cn-1an-1 * • • • *      . ( 5.1) 
In this section we prove results analogous to [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF]Lemma 4.1] or [1, Lemma 3.2]. As in these two papers, we let Bij = Bij(α) be the cofactor formed by taking the determinant of the (n -1) × (n -1) matrix formed by removing line i and column j from Mα and multiply it by (-1) i+j . If

α = a0 + a1r1 + • • • + an-1r n-1 1
then Bij is a polynomial in the ai. By an abuse of notation we will sometimes use Bij to refer to this polynomial, and sometimes the value attained at a particular point (a0, a1, . . . , an-1). The intended usage should be clear from the context.

Lemma 5.2. Let α = a0 + a1r1 + • • • + an-1r n-1 1
, with a0, . . . , an-1 ∈ Z be such that (NP (α), B1nDisc(P )) = 1. Then there exists an integer kα, with 0 ≤ kα < NP (α) such that we have

n -r1 ≡ 0 (mod (α)) ⇔ n ≡ kα (mod NP (α)).
This integer kα satisfies the congruence kα ≡ B2nB1n (mod NP (α)).

Furthermore, if J is an ideal of Z[r1] containing a principal ideal (α) with α as above then there exists a unique k J with 0 ≤ k J < NP (J) and

n -r1 ∈ J ⇔ n ≡ k J (mod NP (J)).
Proof. The starting point is the following trivial observation: αr j 1 ∈ (α) for all j = 0, 1, 2, 3, . . . , n -1. Let (mi,j) 1≤i,j≤n be the coefficients of Mα. We obtain the equations m1,j + m2,jr1

+ • • • + mn,jr n-1 1 = 0 (mod (α)), ∀ 1 ≤ j ≤ n.
This system can be represented as . . .

     m2,1 m3,1 . . . mn
r n-1 1      =      -m1,1 -m1,2 . . . -m1,n      (mod (α)) (5.2)
If we remove the i-th line in this system and apply Cramer's rule, we find 

r1 det              m2,1 m3 
             = det              -m1,1 m3 
            
(mod (α)).

(5.

3) The transpose of the matrix on the left is the submatrix of Mα obtained by removing the first line and the i th column. The matrix on the right is the submatrix of Mα obtained by removing the second line and the i th column and by multiplying all elements of the first column by -1.

We recall that the Bij, 1 ≤ i, j ≤ n, are the cofactors of Mα, so that With this notation, (5.3) becomes

M -1 α = 1 NP (α)      B11 B21 . . .
(-1) i+1 B1ir1 ≡ -(-1) i+2 B2i (mod (α)).
In particular, this gives B1ir1 ≡ B2i (mod (α)).

(5.5) By Lemma 5.1 (and the assumption (N (α), Disc (P )) = 1), if an integer is congruent to 0 (mod (α)) then it is divisible by NP (α). Therefore considering i = n now gives the claim of the first part of Lemma 5.2.

For the second part when J|(α), thus it suffices to take kJ ∈ [0, NP (J)] such that kJ ≡ kα (mod NP (J)). The claim now follows from (5.5).

We end this subsection by observing some connection between the cofactors B1i and B2j with 1 ≤ i, j ≤ n. Since (mα) -1 = m α -1 , we have

α -1 = 1 NP (α) (B11 + B12r1 + • • • + B1nr n-1 1 ),
and the columns of M -1 α satisfy the same relations (5.1) as the one in Mα. By the relations (5.1) for M α -1 , we see that

       B21 B22 . . . B 2(n-1) B2n        =        -c0B1n B11 -c1B1n . . . B 1(n-2) -cn-2B1n B 1(n-1) -cn-1B1n        . (5.6)
In particular the last line implies that B2n = B 1(n-1) -cn-1B1n.

(5.7)

For n = 4, and c3 = 0, we recover the formula B14r1 ≡ B24 = B13 (mod (α)), proved in [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] and in [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF].

Elimination of a 0

The aim of this subsection is to approximate the fraction k J /NP (α) by a fraction whose denominator depends only on a1, a2, a3. Now and for the rest of this paper we restrict our attention to P having degree 4. In this subsection we prove the analogue of [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF]Lemma 3.3], or [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF]Lemma 6.2].

A natural way to proceed is to work with some resultants of the different forms defined previously.

Lemma 5.3. There is a homogeneous polynomial q3 = q3(a1, a2, a3) in a1, a2, a3 such that B24B13 -B14B23 = q3NP (α).

(5.8)

Proof. We note that the argument giving (5.5) holds for any α ̸ = 0. Applying this with i = 3, 4, n = 4 we find r1B13B24 ≡ r1B14B23 (mod NP (α)).

Since this holds for all a0, a1, a2, a3, we deduce that there exists a form q3 = q3(a0, a1, a2, a3) such that whenever (NP (α), Disc (P )) = 1 we have4 

B24B13 -B14B23 = q3NP (α).

(5.9)

Since both sides are polynomials, this must actually hold for all α (including (NP (α), Disc (P )) ̸ = 1.) Therefore we just need to show that q3 actually doesn't depend on a0. NP (α) has degree 4 in a0 while the polynomials Bij, i ̸ = j are of degree 2 in a0, and so by equating the coefficients of a 4 0 we see that q3 must not depend on a0.

Remark. One can explicitly compute q3 in terms of the coefficients ci of P ; it is given by q3(a1, a2, a3) = a 2 2 -a1a3 -c3a2a3 + c2a 2 3 .

(5.10)

When c3 = 0 this coincides with the form -q4 given in [1, equation (2.7)].

Remark. Lemma 5.3 makes important use of the fact that P is a quartic polynomial. For polynomials P of degree d > 4 the form q3 would have degree d -4 in a0, and so would be no longer independent of a0.

Following the notation of [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] and [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], we write Resultant(P1, P2; x) for the resultant of the polynomials P1, P2 with respect to the variable x. We will be interested by the two following resultants R := R(a1, a2, a3) = Resultant(B14, NP (α); a0) R0 := R0(a1, a2, a3) = Resultant(B13, B14; a0)

(5.11)

Lemma 5.4. With the previous notation we have

q 2 3 R = R 2 0 .
Proof. The proof of Lemma 5.4 is the same as that of [1, Lemma 2.1]. Since B14 is of degree 2 in a0, we have

q 2 3 R = Resultant(B14, q3NP (α); a0) = Resultant(B14, B24B13-B14B23; a0).
But B24 = B13 -c3B14 and B13 is also of degree 2 in a0. We deduce that

q 2 3 R = Resultant(B14, B 2 13 ; a0) = R 2 0 .
This ends the proof of Lemma 5.4.

We see that the polynomial q3 divides R0, and so we can write R0 = qq3 (5.12)

for some homogeneous polynomial q = q(a1, a2, a3). Moreover, since R0 is the resultant of B13 and B14, there are two polynomials U and V ∈ Z[a0, a1, a2, a3] such that

U B13 + V B14 = qq3.
(5.13)

We are now ready to state the main result of this section. It is analogous to [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF]Lemma 6.2] or [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF]Lemma 3.3].

Lemma 5.5. Suppose a0, a1, a2, a3 are such that (B14(a0, a1, a2, a3), q(a1, a2, a3)) = 1. Then (NP (α), B14(a0, a1, a2, a3)) = 1 and for h ∈ Z we have e -hkα NP (α) = e -hU (a0, a1, a2, a3)B14(a0, a1, a2, a3) q(a1, a2, a3) +hR(a0, a1, a2, a3) ,

where U = U (a0, a1, a2, a3) is defined by (5.13) and R is given by

R(a0, a1, a2, a3) = U qB14 - B24 NP (α)B14
.

Proof. To simplify notation, for the proof let q, q3, U, B14, B14, B23, B24, NP (α) denote the values of the polynomials evaluated at a0, a1, a2, a3. Since q divides the resultant R defined in (5.11), if q is coprime with B14, we have (NP (α), B14) = 1. By Lemma 5.2, e kα NP (α) = e B24B14 NP (α) .

We use the Bézout relation

ū v + v u ≡ 1 uv (mod 1) for (u, v) = 1, (5.14) 
and the fact that (NP (α), B14) = 1. This yields the formula

e kα NP (α) = e - B24NP (α) B14 + B24 B14NP (α)
.

(5.15)

Combining (5.7), (5.8) and (5.13), we obtain

U NP (α)q3 = U [B13(B13 -c3B14) -B14B23] = U (B 2 13 -B14(B23 + c3B13)) = B13(q3q -V B14) -U B14(B23 + c3B13)).
This rearranges to give

(U NP (α) -qB13)q3 = B14(-V B13 -U (B23 + c3B13)).
Since q3 and B14 are coprime, we deduce that U NP (α) -qB13 ≡ 0 (mod B14).

(

Since B24 ≡ B13 (mod B14), we obtain

B24NP (α) ≡ B13NP (α) (mod B14) ≡ U q (mod B14).
We insert this in (5.15) and apply (5.14) one more time. This gives the desired result.

5.4 Explicit computations of B 13 , B 14 , U, V .

We have used SAGE to explicitly compute the polynomials q, B13, B14, U and V . The cofactors B13 and B14 are of degree 2 in a0

B13 = -a2a 2 0 + a 2 1 + c3a1a2 + (-c 2 3 + c2)a 2 2 + (-2c2)a1a3 + (c 3 3 -c2c3 + c1)a2a3 + (-c2c 2 3 + c 2 2 + c1c3 -c0)a 2 3 a0 + (-c3)a 3 1 + c 2 3 a 2 1 a2 + (-c2c3)a1a 2 2 + (c1c3 -c0)a 3 2 + (-c 3 3 + 2c2c3)a 2 1 a3 + (c2c 2 3 -3c1c3 + 2c0)a1a2a3 + (-c1c 2 3 + 2c0c3)a 2 2 a3 + (-c 2 2 c3 + 2c1c 2 3 -2c0c3)a1a 2 3 + (c1c2c3 -c0c 2 3 -c0c2)a2a 2 3 + (-c 2 1 c3 + c0c2c3 + c0c1)a 3 3 , (5.17) B14 = -a3a 2 0 + 2a1a2 -c3a 2 2 -c3a1a3 + c 2 3 a2a3 + (-c2c3 + 2c1)a 2 3 a0 -a 3 1 + c3a 2 1 a2 -c2a1a 2 2 + c1a 3 2 + (-c 2 3 + 2c2)a 2 1 a3 + (c2c3 -3c1)a1a2a3 + (-c1c3 + c0)a 2 2 a3 + (-c 2 2 + 2c1c3 -c0)a1a 2 3 + (c1c2 -c0c3)a2a 2 3 + (-c 2 1 + c0c2)a 3 3 .
(5.18)

The quantities U and V are of degree 1 in a0. In some step we will need the explicit formula for the coefficient in a0 in U and in

V U =a0 -a 2 1 a 2 3 + 2a1a 2 2 a3 -2c3a1a2a 2 3 + 2c2a1a 3 3 -c3a 3 2 a3+ (2c 2 3 -c2)a 2 2 a 2 3 + (-c 3 3 + c1)a2a 3 3 + (c2c 2 3 -c 2 2 -c1c3 + c0)a 4 3 + 3a 3 1 a2a3 -2c3a 3 1 a 2 3 -4a 2 1 a 3 2 + 4c3a 2 1 a 2 2 a3 + (c 2 3 -6c2)a 2 1 a2a 2 3 + (-c 3 3 + 3c2c3 + 2c1)a 2 1 a 3 3 + 4c3a1a 4 2 + (-9c 2 3 + 3c2)a1a 3 2 a3 + (6c 3 3 + c2c3 -3c1)a1a 2 2 a 2 3 + (-c 4 3 -5c2c 2 3 + 3c 2 2 + 2c1c3 + c0)a1a2a 3 3 + (c2c 3 3 + c1c 2 3 -4c1c2 -c0c3)a1a 4 3 -c 2 3 a + (3c 3 3 -c2c3 -c1)a 4 2 a3 + (-3c 4 3 + 5c1c3 -2c0)a 3 2 a 2 3 + (c 5 3 + 3c2c 3 3 -2c 2 2 c3 -7c1c 2 3 + c1c2 + 4c0c3)a 2 2 a 3 3 + (-2c2c 4 3 + c 2 2 c 2 3 + 3c1c 3 3 + 2c1c2c3 -2c0c 2 3 -c 2 1 -2c0c2)a2a 4 3 + (c 2 2 c 3 3 -c 3 2 c3 -3c1c2c 2 3 + 2c1c 2 2 + c 2 1 c3 + 2c0c2c3 -c0c1)a 5 3 , (5.19) V =a0 a 2 1 a2a3 -2a1a 3 2 + 2c3a1a 2 2 a3 -2c2a1a2a 2 3 + c3a 4 2 + (-2c 2 3 + c2)a 3 2 a3 + (c 3 3 -c1)a 2 2 a 2 3 + (-c2c 2 3 + c 2 2 + c1c3 -c0)a2a 3 3 -a 4 1 a3 + a 3 1 a 2 2 -2c3a 3 1 a2a3 + 4c2a 3 1 a 2 3 + 2c3a 2 1 a 3 2 + (-c 2 3 -4c2)a 2 1 a 2 2 a3 + (-c 3 3 + 5c2c3)a 2 1 a2a 2 3 + (2c2c 2 3 -6c 2 2 -2c1c3 + 2c0)a 2 1 a 3 3 + (-3c 2 3 + c2)a1a 4 2 + (6c 3 3 -c2c3 -c1)a1a 3 2 a3 + (-3c 4 3 -7c2c 2 3 + 5c 2 2 + 6c1c3 -5c0)a1a 2 2 a 2 3 + (7c2c 3 3 -4c 2 2 c3 -5c1c 2 3 + 5c0c3)a1a2a 3 3 + (-4c 2 2 c 2 3 + 4c 3 2 + 4c1c2c3 -4c0c2)a1a 4 3 + (c 3 3 -c2c3 + c1)a 5 2 + (-3c3 4 + 4c2c 2 3 -c 2 2 -3c1c3 + 2c0)a 4 2 a3 + (3c 5 3 -3c2c 3 3 + c1c 2 3 + c1c2 -2c0c3)a 3 2 a 2 3 + (-c 6 3 -2c2c 4 3 + 5c 2 2 c 2 3 + 3c1c 3 3 -2c 3 2 -4c1c2c3 -2c0c 2 3 + 4c0c2)a 2 2 a 3 3 + (2c2c 5 3 -3c 2 2 c 3 3 -2c1c 4 3 + c 3 2 c3 + c1c2c 2 3 + 2c0c 3 3 + c 2 1 c3 -2c0c2c3 -c0c1)a2a 4 3 + (-c 2 2 c 4 3 + 2c 3 2 c 2 3 + 2c1c2c 3 3 -c 4 2 -2c1c 2 2 c3 -c 2 1 c 2 3 -2c0c2c 2 3 + 2c0c 2 2 + 2c0c1c3 -c 2 0 )a . (5.20)
We don't write the expression for q because it would take more than one page and we won't need to know its precise shape during the proof. Let U = a0U1 + U0, V = a0V1 + V0. Then U1 satisfies:

U1 = -a 2 1 a 2 3 + 2a1a 2 2 a3 -2c3a1a2a 2 3 + 2c2a1a 3 3 -c3a 3 2 a3+ (2c 2 3 -c2)a 2 2 a 2 3 + (-c 3 3 + c1)a2a 3 3 + (c2c 2 3 -c 2 2 -c1c3 + c0)a 4 3 = a3 -a 2 1 a3 + 2a1a 2 2 -2c3a1a2a3 + 2c2a1a 2 3 -c3a 3 2 + (2c 2 3 -c2)a 2 2 a3 + (-c 3 3 + c1)a2a 2 3 + (c2c 2 3 -c 2 2 -c1c3 + c0)a 3 3 .
(5.21)

We observe that a2U1 + a3V1 = 0.

(5.22)

Factorisation of q

Lemma 5.6. Let P ∈ Z[X] be an irreducible monic quartic polynomial and r1, r2, r3, r4 its roots. Let R and R0 be the two resultants introduced in (5.11). Let a(r) := a0 + a1r + a2r 2 + a3r 3 . Then there exists tP

∈ Q * such that R(a1, a2, a3) = tP 1≤i<j≤4 (a(ri) -a(rj)) 2 .
Furthermore, the resultant R0 is divisible by

1≤i<j≤4 (a(ri) -a(rj)).
Proof. This is [1, Lemme 7.1] in the special case of quartic polynomials.

Lemma 5.7. The coefficient tP in Lemma 5.6 is given by

tP = 1≤i<j≤4 1 (ri -rj) 2 .
Proof. The proof follows the argument of La Bretèche and Mestre, but for completeness we repeat the main steps.

We note that NP (α) is the determinant of the linear map ga :

Q[X]/P (X) → Q[X]/P (X) given by ga(H(X)) = a(X)H(X)
where a(X) = a0 + a1X + a2X 2 + a3X 3 . Let L1(X), . . . , L4(X) be the Lagrange interpolation polynomials for the roots r1, . . . , r4 of P . Thus Li(x) = j̸ =i (x -rj)/(ri -rj) and in particular Li(rj

) = 1 if i = j, 0 if i ̸ = j. Then for all i = 1, 2, 3, 4, ga(Li(X)) = a(X)Li(X) = 4 j=1 a(rj)Lj(X)Li(X) = a(ri)Li(X), in Q[X]/(P ), since P (X)|Li(X)Lj(X) if i ̸ = j and P (X)|(L 2 i (X)-Li(X)
). Thus the matrix of ga with respect to the basis {L1(X), L2(X), L3(X), L4(X)} is diagonal with coefficients a(r1), a(r2), a(r3), a(r4) on the diagonal.

Let T be the matrix of the polynomials L1(X), L2(X), L3(X), L4(X) with respect to the standard basis {1, X, X 2 , X 3 }. Then the matrix of NP (α)g -1 a with respect to the standard basis is NP (α)M -1 α with M -1 α given by (5.4). Thus have

    B11 B21 B31 B41 B12 B22 B32 B42 B13 B23 B33 B34 B14 B24 B34 B44     = T     j̸ =1 a(rj) 0 0 0 0 j̸ =2 a(rj) 0 0 0 0 j̸ =3 a(rj) 0 0 0 0 j̸ =4 a(rj)     T -1 .
(5.23) The form NP (α) = 4 i=1 a(ri) is quartic and monic in a0. If we write B14 = B14(a0) as an element of Z[a1, a2, a3][a0], the resultant R satisfies

R = 4 i=1 B14(di),
where di = -a1ri -a2r 2 i -a3r 3 i for i = 1, 2, 3, 4 are the roots of y → NP (y + a1r1 + a2r 2 1 + a3r 3 1 ). Let Pi(X) := di + a1X + a2X 2 + a3X 3 . Formula (5.23) with d1 in place of a0, gives

    B11(d1) B21(d1) B31(d1) B41(d1) B12(d1) B22(d1) B32(d1) B42(d1) B13(d1) B23(d1) B33(d1) B34(d1) B14(d1) B24(d1) B34(d1) B44(d1)     = T     ℓ̸ =1 P1(r ℓ ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     T -1 .
We have similar formulas for the polynomials P2, P3, P4. The first column of the matrix of the left corresponds to the coordinates in the standard basis of the image of the constant polynomial 1 by the map NP (α)g -1 α . The decomposition of the polynomial 1 in the Lagrange basis is 1 = L1(X) + L2(X) + L3(X) + L4(X). The first column of the left matrix is then

    B11(d1) B12(d1) B13(d1) B14(d1)     = T     ℓ̸ =1 P1(r ℓ ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         1 1 1 1     = T     4 j=2 P1(rj) 0 0 0     .
In particular we deduce that B14(d1) is the coefficient of X 3 in the poly-

nomial 4 j=2 P1(rj)L1(X). Since L1(X) = 4 j=2 (X -rj)/(r1 -rj), we get B14(d1) = 4 j=2 P1(rj) 4 j=2 (r1 -rj) = - 4 i=2 a(rj) -a(r1) rj -r1 .
In the same way we prove for i = 2, 3, 4 :

B14(di) = j̸ =i Pi(rj) 4 j̸ =i (ri -rj) = - j̸ =i a(rj) -a(ri) rj -ri .
This completes the proof of Lemma 5.7.

Remark. Lemma 5.7 is stated for quartic polynomials but is in fact also valid for irreducible polynomials of degree n ≥ 2. For these polynomials, if the resultant is between NP (α) and the cofactor B1n, then t -1

P = (-1) n 1≤i<j≤n (ri -rj) 2 .
For the resultant between NP (α) and B 1ℓ for some 1 ≤ ℓ ≤ n -1, we may also have for tP an explicit but more complicated formula, involving the coefficients of X ℓ in the Lagrange interpolation polynomials associated with the roots r1, . . . , rn of P (X).

Lemma 5.8. The polynomial q(a1, a2, a3

) ∈ Q[a1, a2, a3] satisfies q = ± 1≤i<j≤4 a(ri) -a(rj) ri -rj ,
where a(r) := a0 + a1r + a2r 2 + a3r 3 .

Proof. This follows immediately from putting together Lemmas 5.6, 5.4 and 5.7.

The factor q 1 as a an incomplete norm form

A key point in the work of [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF] and [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] is that the form q may be factored as a product of 3 quadratic forms whenever P has a suitably small Galois group. In this section, we prove that if G = C4 or D4 then q is a product of two forms q = q1q2, where q1 has degree 4, q2 has degree 2 and q1 is related to a norm form of a certain number field.

Lemma 5.9. Let P (X) ∈ Z[X] be a monic quartic with Galois group C4 or D4. Then there is an ordering of the roots r1, r2, r3, r4 of P such that

r1r2 + r3r4 ∈ Z.
Proof. We recall the notation P

(X) = X 4 + c3X 3 + c2X 2 + c1X + c0. The cubic resolvent of P is R3(X) = (X -(r1r2 + r3r4))(X -(r1r3 + r2r4))(X -(r1r4 + r2r3)) = X 3 -c2X 2 + (c3c1 -4c0)X -(c 2 3 c0 + c 2 1 -4c2c0), which clearly lies in Z[X]
. By Gauss' lemma, any rational root of R(x) must then lie in Z. We therefore see that the claim of the lemma is equivalent to R3(X) having a root in Q when P (X) has Galois group G = C4 or D4. This fact (often stated in the form that the splitting field of R3(X) is a degree 2 extension) is a standard fact about cubic resolvants; see for example the web page of K. Conrad [START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF] or the book of Jensen, Ledet and Yui [START_REF] Jensen | Generic Polynomials: Constructive Aspects of the Inverse Galois Problem[END_REF] for some nice expositions on the Galois group of quartic polynomials.

Remark. The resolvent R3(X) has a unique rational root when the Galois group is C4 or D4. When the Galois group is the Klein group, all roots of R3(X) are in Q and when the Galois group is alternating or symmetric (A4 or S4), no root of R3(X) is rational (cf. [START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF] or [START_REF] Jensen | Generic Polynomials: Constructive Aspects of the Inverse Galois Problem[END_REF]).

Lemma 5.10. Let P (X) have Galois group C4 or D4. Then the form q ∈ Q[a1, a2, a3] has the factorisation

q = ±q1q2
where q1 ∈ Q[a1, a2, a3] has degree 4 and q2 ∈ Q[a1, a2, a3] has degree 2. These are explicitly given by

q1 = (a(r1) -a(r3))(a(r1) -a(r4))(a(r2) -a(r3))(a(r2) -a(r4)) (r1 -r3)(r1 -r4)(r2 -r3)(r2 -r4) , (5.24) and q2 = (a(r1) -a(r2))(a(r3) -a(r4)) (r1 -r2)(r3 -r4) , (5.25) 
where a(X) = a0 + a1X + a2X 2 + a3X 3 and r1, r2, r3, r4 are the roots of P (X), ordered such that r1r2 + r3r4 ∈ Q.

Proof. We recall from Lemma 5.8 that the explicit formulae (5.24) and (5.25) give a factorisation q = ±q1q2 over Q. Thus we wish to show that in fact q1, q2 ∈ Q[a1, a2, a3], so that this is also a factorisation over Q. A direct computation gives for all 1 ≤ i < j ≤ 4:

a(ri) -a(rj) ri -rj = a1 + a2(ri + rj) + a3(r 2 i + rirj + r 2 j ).
(5.26)

If G = C4 then G = ⟨σ⟩ for some 4-cycle σ. Then we can label the roots such that σ is the permutation σ = (r1r3r2r4). With this choice of root ordering, we have σ(r1r2 + r3r4) = r1r2 + r3r4. Since σ(q1) = q1 and σ(q2) = q2, we have that r1r2 + r3r4, q1 and q2 are fixed by all of G = {Id, σ, σ 2 , σ 3 }, and so r1r2

+ r3r4 ∈ Q and q1, q2 ∈ Q[a1, a2, a3],
giving the result in this case.

If G = D4, then G = ⟨σ, τ ⟩ where τ is a transposition and σ a 4cycle. We can label the roots such that τ = (r3r4). This implies that σ(r3) ̸ = r4, since otherwise we could suppose that σ = (r3r4r1r2) and G would contains the following subset of 9 permutations : {Id, τ, σ, σ 2 , σ 3 , στ, (στ ) 2 , τ σ, (τ σ) 2 } = {Id, (r3r4), (r1r2r3r4), (r1r3)(r2r4), (r1r4r3r2), (r1r2r3), (r1r3r2), (r1r2r4), (r1r4r2)}, which is not possible since |G| = 8. We prove in the same way that σ(r4) ̸ = r3. We can thus label the roots of P so that σ(r3) = r2. This implies that σ(r4) = r1, σ(r2) = r4 and σ(r1) = r3, that is σ = (r1r3r2r4). Again we observe that r1r2 + r3r4 ∈ Q since it is fixed by σ and τ .

Since τ (q1) = q1 = σ(q1) and τ (q2) = q2 = σ(q2) we also observe that q1, q2 ∈ Q[a1, a2, a3] in this case. This completes the proof.

The main result of this section is the following proposition.

Proposition 5.11. Let P (X) ∈ Z[X] be irreducible, monic, quartic with Galois group C4 or D4. Let r1, r2, r3, r4 be the roots of P ordered such that r1r2 + r3r4 ∈ Q and let K := Q(r1 + r3). Then the form q1 defined in (5.24) satisfies

q1(a1, a2, a3) = ±N K/Q (a1 + a2(r1 + r3) + a3(r 2 1 + r1r3 + r 2 3 )).
Proof. We consider the cases when G = C4 and G = D4 separately. Case 1: G = C4. Let G = ⟨σ⟩ with σ = (r1r3r2r4) and r1r2 + r3r4 ∈ Q.

We see that

q1 = 3 i=0 σ i a(r1) -a(r3) r1 -r3 = N Q(r 1 )/Q (a1+a2(r1+r3)+a3(r 2 1 +r1r3+r 2 3 )).
To finish the proof, it remains to prove that Q(r1 + r3) = Q(r1) is the splitting field of P . Since it is obviously contained in the splitting field, we just need to verify the field is not fixed by σ 2 . But c3 = -(r1

+ r2 + r3 + r4) = -(r1 + r3) -σ 2 (r1 + r3) so if Q(r1 + r3) is fixed by σ 2 then Q(r1 + r3) = Q. But in this case r1 + r3 = σ(r1 + r3) = r3 + r2
, so the roots would not be distinct, which contradicts our assumption. Thus

Q(r1 + r3) = Q(r1) as desired.
Case 2: G = D4. Let G = ⟨σ, τ ⟩ with σ as above and τ = (r3r4). We work with the permutation στ = (r1r3)(r2r4). Let L be the splitting field of P (X) and K0 = {x ∈ L : στ (x) = x}. Then L/K0 is a Galois extension of degree 2 and [K0 : Q] = 4. We observe that r1 + r3, a(r 1 )-a(r 3 ) r 1 -r 3 ∈ K0. Now, by looking the orbit of {1, 3} under the subgroup of S4 generated by {(1324), (34)}, we see that

N L/Q a(r1) -a(r3) r1 -r3 = q 2 1
and

N L/K 0 a(r1) -a(r3) r1 -r3 = a(r1) -a(r3) r1 -r3 2 , since a(r 1 )-a(r 3 ) r 1 -r 3 ∈ K0.
By the transitive property of the norms,

N L/Q a(r1) -a(r3) r1 -r3 = N K 0 /Q N L/K 0 a(r1) -a(r3) r1 -r3 = N K 0 /Q a(r1) -a(r3) r1 -r3 2 .
We deduce that q1

= ±N K 0 /Q a(r 1 )-a(r 3 ) r 1 -r 3 .
As in the case (i), to finish the proof it remains to check that Q(r1 + r3) = K0. We have already seen that Q(r1 + r3) ⊂ K0, and so it suffices to show [Q(r1 + r3) : Q] = 4. This follows from an identical argument to that of case 1 because the intermediate extension between K0 and Q is the subfield of K0 fixed by σ 2 = (r1r2)(r3r4).

We will apply Theorem 4.1 with

K = Q(r1 + r3) and ν1 = 1, ν2 = r1 + r3, ν3 = r 2 1 + r 2 3 + r1r3.
In the next lemma, we verify that these 3 vectors ν1, ν2, ν3 are linearly independent over Q (even though the situation would be simpler if there was a linear dependence). Lemma 5.12. With the previous notation, 1, r1 + r3, r 2 1 + r 2 3 + r1r3 are linearly independent over Q.

Proof. In the proof of Proposition 5.11, we have seen that r1 + r3 ̸ ∈ Q, and so certainly 1 and r1 + r3 are linearly independent. Suppose that there exists u, v ∈ Q such that r 2 1 + r 2 3 + r1r3 = u + v(r1 + r3). If we apply σ 2 = (r1r2)(r3r3) to this expression, we find r 2 2 +r 2 4 +r2r4 = u+v(r2 +r4). Summing this two equations gives

4 i=1 r 2 i + r1r3 + r2r4 = 2u + v(r1 + r2 + r3 + r4).
This contradicts the fact that r1r3+r2r4

̸ ∈ Q (since i ri, i r 2 i ∈ Q).

5.7

On the solutions of some congruence equations with B 14 and q

In this section we compute the number of solutions of various equations involving the factors q1, q2 and the cofactors B13, B14. These preliminary lemmas will be applied in several places in the proof of Theorem 1.1. Some parts of this section are similar to [1, Lemma 3.9] or [4, Section 13], but both of these previous approaches relied on the condition G = (Z/2Z) 2 which we do not assume, and so we require a slightly different approach.

Let δP be the discriminant of the splitting field of P .

Lemma 5.13. Suppose that (p, a3δP Disc P ) = 1 and a2 ∈ Z. Let Qp(a2, a3) denote the number of integers a1 with 0 ≤ a1 < p such that q1(a1, a2, a3) ≡ q2(a1, a2, a3) ≡ 0 (mod p).

(5.27)

Then

Qp(a2, a3) = 1, if P ((a2 -c3a3)a3) ≡ 0 (mod p); 0, otherwise.

Proof. Let L be the splitting field of P and OL its ring of integers. Since (p, δP ) = 1, p is not ramified in OL and so its decomposition into prime ideals is pOL = s i=1 Pi with NL(Pi) = p t for some integers s, t with st = [L : Q]. Formulas (5.24), (5.25), (5.26) give us the factorisation of the polynomials q1 and q2 over OL. The condition q1(a1, a2, a3) ≡ q2(a1, a2, a3) ≡ 0 (mod p) is equivalent to one of the factors of q1 and one of the factors of q2 vanishing (mod Pm) for each 1 ≤ m ≤ s.

First we suppose that (5.27) has a solution. Thus for all 1 ≤ m ≤ s, there exists (i, j) ∈ {(1, 3), [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], [START_REF] De La Bretèche | Niveau de répartition des polynômes quadratiques et crible majorant pour les entiers friables[END_REF][START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF]

, (2, 4)} and (k, ℓ) ∈ {(1, 2), (3, 4)} such that a1 + a2(ri + rj) + a3(r 2 i + rirj + r 2 j ) ≡ 0 (mod Pm), a1 + a2(r k + r ℓ ) + a3(r 2 k + r k r ℓ + r 2 ℓ ) ≡ 0 (mod Pm).
Eliminating a1, we find

a2(ri + rj -r k -r ℓ ) ≡ a3(r 2 k + r k r ℓ + r 2 ℓ -r 2 i -rirj -r 2 j ) (mod Pm).
For notational simplicity we concentrate on the case i = k = 1, j = 3, ℓ = 2; the other cases are entirely analogous (noting that {i, j} ∩ {k, ℓ} ̸ = ∅).

We obtain

(r3 -r2)a2 ≡ a3(r2 -r3)(r1 + r2 + r3) (mod Pm).
Since p ∤ Disc (P ) and (r3-r2)| Disc (P ), we see that r3-r2 ̸ ≡ 0 (mod Pm), and so (recalling c3 = -r1 -r2 -r3 -r4 ∈ Z) we have a2 ≡ a3(c3 + r4) (mod Pm). This implies that r4 ≡ (a2 -a3c3)a3 (mod Pm) and so P ((a2 -a3c3)a3) ≡ 0 (mod Pm).

Since this argument is valid for all m, we find that P ((a2 -a3c3)a3) ≡ 0 (mod p). Thus if P ((a2 -c3a3)a3) ̸ ≡ 0 (mod p) then Qp(a2, a3) = 0. Now we suppose that P ((a2 -c3a3)a3) ≡ 0 (mod p). Then there exists j ∈ {1, 2, 3, 4} such that rj ≡ (a2 -a3c3)a3 (mod p). We may suppose that j = 4; the other cases are analogous. We see that this implies that a2 ≡ a3(-r1 -r2 -r3) (mod p) and that r4 ∈ Z + pOL. Moreover, we check that

a2(r1 + r3) + a3(r 2 1 + r1r3 + r 2 3 ) = a3(-c2 -c3r4 -r 2 4 ) (mod p), a2(r1 + r2) + a3(r 2 1 + r1r2 + r 2 2 ) = a2(r1 + r3) + a3(r 2 1 + r1r3 + r 2 3 ) (mod p).
Thus the system (5.27) admits the solution a1 = -(a2(r1

+ r3) + a3(r 2 1 + r1r3 + r 2 3 )) (mod p), noting this is in Z + pOL. Thus Qp(a2, a3) ≥ 1.
Moreover, there are no other solutions modulo p, because the previous computations showed that for any {i, j, k, ℓ} = {1, 2, 3, 4}, if we have

a1 + a2(ri + rj) + a3(r 2 i + rirj + r 2 j ) = 0 (mod Pm), a1 + a2(ri + r k ) + a3(r 2 i + rir k + r 2 k ) = 0 (mod Pm),
then we must have (a2-c3a3)a3 = r ℓ (mod Pm). But the roots r1, r2, r3, r4 are distinct modulo p when (p, Disc P ) = 1, and so we must have ℓ = 4.

Thus the only solution is a1 ≡ -a2(ri + rj) -a3(r 2 i + rirj + r 2 j ) (mod p) (noting that these are the same for all choices of {i, j, k} = {1, 2, 3}). Thus Qp(a2, a3) = 1 when P ((a2 -c3a3)a3) ≡ 0 (mod p).

Recall that B14, B13 are cubic forms in a0, a1, a2, a3 given explicitly by (5.17) and (5.18). For later estimates, we need to understand the number of solutions in a0 of the equations B14 ≡ 0 (mod p) or B13 ≡ 0 (mod p). Since B14 has degree 2 in a0, we can get an explicit formula for its roots in Fp with the discriminant. Lemma 5.14. Let ∆14 ∈ Z[a1, a2, a3] be the discriminant of B14 viewed as a polynomial in a0. Then

∆14 = -q3h, (5.28) 
where h is given by

h(a1, a2, a3) = -4a 2 1 + 4c3a1a2 + (-3c 2 3 + 4c2)a1a3 -c3a 2 2 + (c 3 3 -4c1)a2a3 + (-c2c 2 3 + 4c1c3 -4c0)a 2 3 = (r1 + r2 -r3 -r4) 2 q3(a1, a2, a3) -q2(a1, a2, a3).
We remind the reader that q3 is the form defined in (5.10) and q2 is the form given by (4.12).

Proof. This follows from explicit computation using the formula for the discriminant of a quadratic.

We recall that we have ordered the roots of P , r1, r2, r3, r4 so that r1r2 + r3r4 ∈ Q. Lemma 5.15. Let t1 := r1r2 + r3r4 and t2 := (r1 + r2)(r3 + r4). Then t1, t2 ∈ Z.

Proof. First we note that t2 is fixed by the permutations (r1r3r2r4) and (r3r4), so t2 ∈ Q. Let R(X) be a cubic resolvent associated to P , given by (see [START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF])

R(X) :=(X -(r1 + r2)(r3 + r4))(X -(r1 + r3)(r2 + r4))(X -(r1 + r4)(r2 + r3)) = X 3 -2c2X 2 + (c 2 2 + c3c1 -4c0)X + (c 2 3 c0 + c 2 1 -c3c2c1).
Then we see that R(X) ∈ Z[X] and it is a well-known fact that when P has Galois group C4 or D4, R(X) has a unique root over Q, which must be t2. Since R(X) is monic we see that t2 ∈ Z. Since t1 + t2 = c2 ∈ Z we see that t1 ∈ Z.

Remark. (i) If t2 = 0, that is (r1 + r2)(r3 + r4) = 0, then we have in fact r1 + r2 = r3 + r4 = 0 since σ(r1 + r2) = r3 + r4. This implies that c3 = 0 = c1. This situation is analogous to [1, Lemma 3.9] (or also [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF]Lemmas 13.2 and 13.3] for the polynomial X 4 -X 2 + 1.) (ii) We have t1 ̸ = 0, since otherwise we would have r1-r2 = ±(r3-r4). If we compose with the embedding τ = (r3r4), we find r1 -r2 = r3 -r4 = 0 which is not possible. Lemma 5.16. Let a1, a2, a3 ∈ Z be such that (q(a1, a2, a3), q3(a1, a2, a3)) = 1 and q(a1, a2, a3) is squarefree. Let t2 = (r1 + r2)(r3 + r4) ∈ Z.

Let p be a prime with p|q(a1, a2, a3) and p ∤ a2a3δP Disc P .

(i). If p|q1(a1, a2, a3) or p ∤ c 2 3 -4t2, then |{0 ≤ a0 < p : B14(a0, a1, a2, a3) ≡ 0 (mod p)}| = 2.

(ii). If p|q2(a1, a2, a3) and p|c 2 3 -4t2 then |{0 ≤ a0 < p : B14(a0, a1, a2, a3) ≡ 0 (mod p)}| = 1.

(iii). We have |{0 ≤ a0 < p : B13(a0, a1, a2, a3) ≡ B14(a0, a1, a2, a3) ≡ 0 (mod p))}| = 1.

Proof. We recall from (5.11) and (5.12) that q|R0, the resultant of B13 and B14 viewed as polynomials in a0. Therefore since p|q(a1, a2, a3), we have that p|R0(a1, a2, a3), and so the two quadratic polynomials in a0, B13 and B14 have a common root in some finite extension of Fp.

If this common root is not in Fp then its conjugate is also a common root of B13 and B14, and so we would have R0(a1, a2, a3) = q(a1, a2, a3)q3(a1, a2, a3) ≡ 0 (mod p 2 ). But this is impossible since we assume that q(a1, a2, a3) is squarefree and coprime to q3(a1, a2, a3) with p|q(a1, a2, a3). Therefore the common root must lie in Fp. This proves assertion (iii).

Since the common root of B13 and B14 is in Fp and B14 is quadratic, both the roots of B14 (seen as a polynomial in a0) are in Fp. Thus the number of 0 ≤ a0 < p with B14 ≡ 0 (mod p) is 1 when p|∆14 and 2 otherwise.

If p|q2, by Lemma 5.14, p|∆14 if and only if p|(r1 + r2 -r3 -r4) 2 . This gives the assertion (i) and (ii) in the case p|q2 because (r1 +r2 -r3 -r4) 2 = c 2 3 -4t2.

We now consider the case p|q1. Let L be the splitting field of P , OL its integer ring and pOL = s m=1 Pm, the decomposition of p in OL. Then for all m there exists (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)} such that a1 ≡ -a2(ri + rj) -a3(r 2 i + rirj + r 2 j ) (mod Pm). We may suppose that i = 1 and j = 3, the other cases being similar. Substituting -a2(r1 + r3) -a3(r 2 1 + r1r3 + r 2 3 ) for a1 in the expression for h in Lemma 5.14, gives h(a1, a2, a3) ≡ -(a3(r1

+ r2 + r3) + a2)(a3(r1 + r3 + r4) + a2) × (r1 -r2 + r3 -r4) 2 (mod Pm).
(5.29)

We have that a3(r1 + r2 + r3) + a2 ̸ ≡ 0 (mod Pm). If this were not the case we would have a3(-c3 -r4) + a2 ≡ 0 (mod Pm), and then P ((a2 -a3c3)a3) = 0 (mod p). By Lemma 5.13 we would have p|(q1, q2) which is not possible when q is squarefree. Similarly a3(r1 +r3 +r4)+a2 ̸ ≡ 0 (mod Pm). Thus ∆14 ≡ 0 (mod Pm) if and only if r1 -r2 + r3 -r4 ≡ 0 (mod Pm) for all m. But this is equivalent to r1 -r2 + r3 -r4 ≡ 0 (mod p), and so γ(r1 -r2 + r3 -r3) ≡ 0 (mod p) for all embeddings γ. Applying this with γ = ι, τ we see that p|∆14 if and only if r1 ≡ r2 (mod p), which is impossible since p ∤ Disc (P ). Thus when p|q1 we have p ∤ ∆14, and so B14 has two roots (mod p).

Lemma 5.17. Let a0, a1, a2, a3, p ∈ Z be such that (q(a1, a2, a3), q3(a1, a2, a3)) = 1, q(a1, a2, a3) is squarefree and p|(q(a1, a2, a3), B14(a0, a1, a2, a3)). Then we have p|NP (α) ⇔ p|B13(a0, a1, a2, a3).

where α = a0 + a1r1 + a2r 2 1 + a3r 3 1 .

Proof. This is a variant of [4, Lemma 13.3] (or [1, Section 6.1]). By (5.6) and (5.8), we have

(B13 -c3B14)B13 -B14(B12 -c2B14) = q3NP (α).
The Lemma follows from this formula since (p, q3(a1, a2, a3)) = 1.

6 The set of ideals J

In this section we define a set J of principle ideals which correspond to the forms q1 and q2 having a convenient prime factorisation. This will have a slightly technical definition to ensure that it is compatible with later arguments. It is known (see [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 4.2]) that there is a fundamental domain DP of the units action group such that if α = a0 +a1r1 +a2r 2 1 +a3r 3 1 ∈ DP , then max(|a0|, |a1|, |a2|, |a3|) ≪ NP (α) 1/4 and so |σ(α)| ≪ NP (α) 1/4 for all embeddings σ. We recall that the forms q1(a1, a2, a3) and q2(a1, a2, a3) are defined by (5.24) and (5.25), the polynomials P1(X) := (X -(r1 + r2))(X -(r3 +r4)) and P2(X) := (X -(r 2 1 +r1r2 +r 2 2 ))(X -(r 2 3 +r3r4 +r 2 4 )) with discriminants ∆1 and ∆2 respectively, Dq 2 from (4.13), and δP is the discriminant of the splitting field of P . With this notation we introduce a constant q0 depending only on the polynomial

P q0 = 512(1 + c 2 3 + |c2| + |t1| + |t2|)δP Disc P, (6.1) 
where t1 and t2 are the integers defined in Lemma 5.15. The set J will depend on various auxiliary absolute constants α0, θ11, . . . , θ16, θ21, τ11, . . . , τ16, τ21 ∈ (0, 1).

These constants will be required to satisfy various inequalities, specifically

[θij, θij + τij] ∩ [θ i ′ j ′ , θ i ′ j ′ + τ i ′ j ′ ] = ∅ for (i, j) ̸ = (i ′ , j ′ ), (6.2) 
0 < θ1j < θ1j + τ1j < 7/32 for all 1 ≤ j ≤ 6, (6.3)

α0 < 1 2 15 , (6.4) 6 j=1 
(θ1j + τ1j) < 1 + α0/2, (6.5)

θ11, θ12, θ13, θ14, θ15, θ16, θ21 > 1 + α0 -

6 j=1 θ1j, (6.6 
)

1 + α0 4 < θ11 + θ12 + θ13 < 2 + α0 4 -τ11 -τ12 -τ13, (6.7 
)

θ21 + τ21 < 2 + α0 200 - 3 i=1 (θ1i + τ1i) 50 , (6.8 
)

θ21 + τ21 < 4(θ11 + θ12 + θ13) 1 + α0 -1 2 + α0 800 . (6.9)
There is reasonable flexibility in how we might choose these constants (and the above constraints could likely be weakened significantly), but for concreteness, we can chose the following explicit values of these variables: α0 = 0.00001, θ11 = 0.1398, θ12 = 0.1401, θ13 = 0.1402, θ14 = 0.21, θ15 = 0.19, θ16 = 0.1799, θ21 = 0.001, τij = 0.0000001 for all (i, j) ∈ IC. Now we are ready to define the set J . The set J is the set of all principal ideals (α) of O Q(r 1 ) with generator α = a0 + a1r1 + a2r 2 1 + a3r 3 1 where (a0, a1, a2, a3) ∈ Z 4 ∩DP , satisfying the conditions (C1), (C2), (C3), (C4) and (C5) below.

(C1) q(a1, a2, a3) is squarefree.

(C2) Size conditions: We have

q(a1, a2, a3) ≥ X 3/2 , |B14(a0, a1, a2, a3)| ≥ X 3/4 , NP (α) ∈ [X 1+α 0 /2 , X 1+α 0 ].
(C3) Factorisation conditions on α: There exists ideals K, L such that (α) = KL with K a prime ideal satisfying 

X 4α 0 < NP (K) ≤ X 5α 0 . ( 6 
where q21, q11, q12, q13, q14, q15, q16 are prime numbers satisfying

qij ∈ [X θ ij , X θ ij +τ ij ]
for all (i, j) ∈ {(1, 1), (1, 2), [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Deshouillers | On the greatest prime factor of n 2 + 1[END_REF], (2, 1)}, and where q22, q16 are integers (not necessarily prime) with

P -(q22), P -(q17) > q0
where q0 is given by (6.1).

(C5) Coprimality conditions:

(a) (a2, a3) = 30 and a2, a3 ≡ 30 (mod 900), a1 ≡ 1 (mod 30).

(b) (NP (α), q0) = 1.

(c) (q(a1, a2, a3), q3(a1, a2, a3)) = 1.

(d) (q(a1, a2, a3), B14(a0, a1, a2, a3)) = 1.

(e) (q(a1, a2, a3), a2a3) = 1.

With this definition of J , we can verify the property (3.2) if δ0 is chosen small enough.

Lemma 6.1. We have that for all J ∈ J

p e ∥J N P (p)≤X NP (p) ≥ X 1+α 0 /2 .
Proof. This is a consequence of (C2) which forces NP (α) ≥ X 1+α 0 /2 and (C3), which forces all ideal factors of (α) to have norm at most max(X 5α 0 , X 1-3α 0 ) < X. (We note that (6.4) implies that 19α0 < 1).

The next Lemma says that the congruence n ≡ r1 (mod J) can be solved when J ∈ J . We recall that ϱP is defined in (3.4). Lemma 6.2. For all J ∈ J we have ϱP (J) = 1.

Proof. Let J ∈ J . There exists α = a0 + a1r1 + a2r 2 1 + a3r 3 1 with (a0, a1, a2, a3) ∈ Z 4 ∩ DP satisfying (C1),(C2),(C3),(C4),(C5) and such that J = (α). By Lemma 5.5 and (C5)(d), (NP (J), B14(a0, a1, a2, a3)) = 1. The condition (C5)(b) and Lemmas 5.2 and 5.1 imply then that ϱP (J) = 1.

Remark. As mentioned in Section 3, we will work with the set J2 which is the set of J ∈ J such that P -(NP (J)) > X θ 0 . This condition implies (C5)(b).

We see from condition (C2) that if a ∈ J then a = (a0 + a1ν1 + a2ν2 + a3ν3) for some a ∈ Z 4 which lies in the region

R := a ∈R 4 ∩ DP : 7X 1+α 0 /2 < N (a0, a1, a2, a3) ≤ X 1+α 0 , |B14(a0, a1, a2, a3)| ≥ X 3/4 , |q(a1, a2, a3)| ≥ X 3/2 .
(6.12)
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Here we have written NP as the extension of NP (α) to R 4 ; N (a1, a2, a3, a4) := (6.13)

By our choice of DP we see that if a ∈ R then |ai| ≪ X (1+α 0 )/4 for all i ∈ {1, 2, 3, 4}. For notational convenience we set IC to be the set [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Deshouillers | On the greatest prime factor of n 2 + 1[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Erdős | On the greatest prime factor of x k=1 f (k)[END_REF], (2, 1)}, (6.14)

IC := {(1, 1), (1, 2),
so that condition (C4) forces qij ∈ [X θ ij , X θ ij +τ ij ]
for all (i, j) ∈ IC, for example.

7 Proof of Proposition 3.3: The term S 1

In this section we establish Proposition 3.3 by bounding the sum S1 defined by (3.6). The overall approach is similar to previous works. First we reduce to controlling exponential sums, then remove the a0-dependence in the denominator of the phase which means that we can apply the qanalogue of Van der Corput's method whenever the denominator of the phase takes a suitably friable form.

Lemma 7.1 (Reduction to exponential sums). Let S1 be as given by (3.6), and η0, α0, θ0 > 0 be such that

α0 < η0 < 1 - 9 4 α0, 12θ0 + 19α0 < 1.
Then for X ≥ 2, H = X η 0 we have

S1 ≪ (log H) K∈K A N P (A)|P(X θ 0 ) N P (A)≤X 3θ 0 h≤H 2 |E1(X, h; KA)| + |E2(X, h; KA)| h + h 2 /H +o(X), (7.1 
) where for ℓ ∈ {1, 2}

E ℓ (X, h; KA) := (α)∈J KA|(α) e hℓX NP (α) - hU B14 q .
Proof. This is [1, Lemma 5.1].

To show that S1 is small, our task is therefore reduced to showing cancellation in the exponential sums E ℓ . Lemma 5.5 allows us to put the exponential phase into a form where we can then apply the q-analogue of Van der Corput's method. The bounds from this method are summarised in the following lemma. Lemma 7.2 (q-Van der Corput for short exponential sums).

Let k, D ≥ 1, ε > 0. Let f, g, v ∈ Z[X] of degree ≤ D and r = r0 • • • r k be squarefree such that P -(r) > 2 k D.
Suppose that for every p|r there is no polynomial w ∈ Z[X] of degree ≤ k + 1 such that f (X) ≡ w(X)g(X) (mod p). Moreover, suppose that v(X) is not the zero polynomial (mod p) for any p|r. Then for A, B, h ≥ 1 we have

A<n≤A+B (v(n)g(n),r)=1 e hf (n)g(n) r ≪ k,D,ε r ε B ∆ r0 1/2 k+1 + r0 ∆B 2 1/2 k+1 + k j=1 r k+1-j B 1/2 j
, where ∆ := (r0, h).

Proof. This is [1, Lemme 3.10] (a small variation of [START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF]Theorem 2]).

To apply this lemma, the denominator q(a1, a2, a3) in our exponential phase must have a good factorisation. We will apply Theorem 4.1 to show that for a positive proportion of (a1, a2, a3) the denominator q = q(a1, a2, a3) has such a factorisation. We want the e(hU B14/q) factor to oscillate suitably to give this cancellation via Lemma 7.2. The following lemma will ensure that this factor is not degenerate. Lemma 7.3. Let U = a0U1 + U0, V = a0V1 + V0 as in (5.21) and in (5.22). If a0, a1, a2, a3 ∈ Z are such that (a0 + a1r1 + a2r 2 1 + a3r 3 1 ) ∈ J , then (U0(a1, a2, a3), U1(a1, a2, a3), q(a1, a2, a3)) = 1.

Proof. Imagine for a contradiction that p|q(a1, a2, a3), U0(a1, a2, a3), U1(a1, a2, a3). Condition (C4) implies that q(a1, a2, a3) has no prime factors smaller that q0, so certainly p > 2. Then U (a ′ 0 , a1, a2, a3) = 0 (mod p) for all a ′ 0 , and so the equation U B13 + V B14 = qq3 (5.13) simplifies to give V (a ′ 0 , a1, a2, a3)B14(a ′ 0 , a1, a2, a3) ≡ 0 (mod p) for all a ′ 0 . Condition (C5)(d) then implies that B14(a ′ 0 , a1, a2, a3) does not identically vanish (mod p), so V1(a1, a2, a3) = V0(a1, a2, a3) = 0 (mod p).

By conditions (C1) and (C5)(c), a1, a2, a3 satisfy the hypotheses of Lemma 5.16. But this implies that there is a choice of a ′ 0 such that B14(a ′ 0 , a1, a2, a3) = B13(a ′ 0 , a1, a2, a3) = 0 (mod p). Evaluating (5.13) at a ′ 0 , a1, a2, a3 then implies that q(a1, a2, a3)q3(a1, a2, a3) ≡ 0 (mod p 2 ). This is impossible since (q(a1, a2, a3), q3(a1, a2, a3)) = 1 and q(a1, a2, a3) is squarefree by conditions (C5)(c) and (C1). This gives the result.

Finally, we need a short lemma to show that we can restrict attention to q(a1, a2, a3) being not too small. Lemma 7.4 (Bounding terms with q2(a1, a2, a3) small). Let τ20 > 0 and for ℓ = 1, 2, E ′ ℓ (X, h; KA) be the contribution in E ℓ (X, h; KA) given by the (α) ∈ J such that |q2(a1, a2, a3)| ≤ X (1+α 0 )/2-τ 20 . Then

E ′ ℓ (X, h; KA) ≪ X 1+α 0 -τ 20 /2 NP (KA) .
Proof. If E ′ ℓ (X, h; KA) = 0 then the result is trivial. If E ′ ℓ (X, h; KA) ̸ = 0 then there exists at least an ideal ( α) ∈ J such that NP (AK)|( α). By the last assertion of Lemma 5.2, this implies that there exists an integer j such that r1 ≡ j (mod KA). The condition KA|(α) is therefore equivalent to a0 ≡ -a1j -a2j 2 -a3j 3 (mod NP (AK)).

Thus, for any given a1, a2, a3 there are O(X (1+α 0 )/4 /NP (KA)) terms a0 in E ′ ℓ (X, h; KA). We recall that q2(a1, a2, a3) = 1 i=0 Li(a1, a2, a3) with for i = 0, 1:

Li(a1, a2, a3) = a1 + (r1+2i + r2+2i)a2 + (r 2 1+2i + r1+2ir2+2i + r 2 2+2i )a3. If |q2(a1, a2, a3)| ≤ X (1+α 0 )/2-τ 20 then min i=0,1 |L2i(a1, a2, a3)| ≪ X (1+α 0 )/4-τ 20 /2 . (7.2)
For any given a2, a3, the number of a1 satisfying (7.2) is O(X (1+α 0 )/4-τ 20 /2 ). Since there are O(X (1+α 0 )/2 ) choices of a2, a3, the total number of terms in E ′ (X, h; KA) is O(X 1+α 0 -τ 20 /2 ).

We are now able to bound S1 suitably.

Proof of Proposition 3.3. First we wish to apply Lemma 7.1. By (6.4), we have α0 < 1/20, so the conditions of the lemma hold if η0 is slightly larger than α0 and θ0 is sufficiently small. This gives

S1 ≪ (log H) K∈K A N P (A)|P(X θ 0 ) N P (A)≤X 3θ 0 h≤H 2 |E1(X, h; KA)| + |E2(X, h; KA)| h + h 2 /H +o(X),
where

E ℓ (X, h; KA) := (α)∈J KA|(α) e hℓX NP (α) - hU B14 q .
We write E ℓ = E ′ ℓ + E ℓ where E ′ ℓ is the contribution from terms in E ℓ with |q2(a1, a2, a3)| ≤ Y , and E ′′ ℓ is the contribution from terms with |q2(a1, a2, a3)| > Y . By Lemma 7.4, the contribution to S1 from

E ′ ℓ is O(X 1-ϵ+o(1) ) provided Y < X (1+α 0 )/2-4η 0 -ϵ . (7.3)
Therefore we concentrate on the contribution from E ′′ ℓ . As in the proof of Lemma 7.4, there exists an integer j such that the condition KA|(α) is equivalent to a0 ≡ -a1j -a2j 2 -a3j 3 (mod NP (AK)).

(7.4)

Let ã0 = ã0(a1, a2, a3; KA) be a solution of the congruence (7.4). We may write a0 = ã0 + mNP (KA) with m ∈ R ′ (a1, a2, a3) where R ′ (a1, a2, a3) := {m : (ã0 + mNP (KA), a1, a2, a3) ∈ R}.

(We recall that R is the domain defined in (6.12).) This set R ′ (a1, a2, a3) can be written as a finite union of intervals I ′ (a1, a2, a3). Any a0 of the above form ensures that conditions (C2) and (C3) are satisfied. Conditions (C1), (C4) and (C5) parts (a),(c),(e) don't depend on a0. Thus we find

E ′′ ℓ (X, h; KA) ≪ a 1 ,a 2 ,a 3 ≪X (1+α 0 )/4 q 2 (a 1 a 2 ,a 3 )>Y (6.11) m∈I ′ (a 1 ,a 2 ,a 3 ) (N P (α),q 0 )=(q,B 14 )=1 e hℓX NP (α) - hU B14 q .
Here by (6.11) we mean that the summation is constrained by the factorisation condition (6.11) .

We now need to control the gcd between NP (KA) and q. We define t = (NP (KA), q) and t ′ = q/t. Since q is squarefree, (t, t ′ ) = 1. We apply Bezout formula (5.14) to separate the congruence in t and in t ′ and use partial summation to remove the factor e(hℓX/NP (α)). This gives for ℓ = 1, 2, (as in [1, p. 239]) We recall from (6.11) that for all a1, a2, a3 under consideration q(a1, a2, a3) factors as 7 i=1 q1i 2 j=1 q2j for some integers qij of constrained sizes. We now wish to apply Lemma 7.2, which requires that for all a1, a2, a3 under consideration and all p|q(a1, a2, a3), there is no polynomial w(X) ∈ Z[X] of degree less than 10 such that f (X) ≡ w(X)g(X) (mod p).

E ′′ ℓ (X, h; KA) ≪ X 2η 0 +α 0 /4 (a 1 ,a 2 ,a 3 )∈C q 2 (a 1 ,a 2 ,a 3 )>Y (6.11) max B≪ X 1+α 0 4 N P (KA) m≤B (g(m),t ′ )=1 e h tf (m)g(m) t ′ , (7.5 
Let p|q(a1, a2, a3). By (C5)(e), a3 is coprime with p, and so by (5.18), B14 (mod p) is a polynomial of degree exactly two in a0 since its lead coefficient is -a3. By Lemma 7.3 , (p, U0(a1, a2, a3), U1(a1, a2, a3)) = 1, and so U (a0, a1, a2, a3) (mod p) is not identically zero and has degree at most 1 in a0. This implies that for all p|q, there is no polynomial w ∈ Z[X] such that U (X, a1, a2, a3) ≡ w(X)B14(X, a1, a2, a3) (mod p) and we can apply Lemma 7.2 with k = 8. We take r0 = q22/(q22, t), r1 = q21/(q21, t), r2 = q17/(q17, t), r3 = q16/(q16, t), . . . , r8 = q11/(q11, t). By (6.11) and (6.6), we observe that q17 < q1j for all 1 ≤ j ≤ 6. Let

θmax + τmax = sup (i,j)∈I C (θij + τij), (7.6) 
where we recall from (6.14) that IC := {(1, 1), (1, 2), (1, 3), [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Deshouillers | On the greatest prime factor of n 2 + 1[END_REF], [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Erdős | On the greatest prime factor of x k=1 f (k)[END_REF], (2, 1)}.

Then the sum over m in (7.5) is bounded by

m≤B (g(m),t ′ )=1 e h tf (m)g(m) t ′ ≪ q ε B (h, q)(q22, t) q22 1/2 9 + q22 B 2 1/2 9 + sup (i,j)∈I C qij B 1/2 8
.

We insert this bound into E ′′ ℓ (X, h; KA), and then subsitute this into S1. Writing q22 = X θ 22 , this gives

S1 ≪ X 2η 0 +1+ 5α 0 4 +ε X -θ 22 2 -9 + X (θ 22 -1+α 0 2 +6θ 0 +10α 0 )2 -9 + X (θmax+τmax-1+α 0 4 +3θ 0 +5α 0 )2 -8
+ X 1-ϵ+o (1) .

Thus we see that

S1 = o(X) provided 2η0 + 5α0 4 < θ22 2 9 θ22 2 9 < 1 2 9 1 + α0 2 -6θ0 -10α0 -2η0 - 5α0 4 θmax + τmax 2 8 < 1 2 8 1 + α0 4 -3θ0 -5α0 -2η0 - 5α0 4 .
We recall that q22 = q2(a1, a2, a3)/q21, that q2(a1, a2, a3) ∈ [Y, X (1+α 0 )/2 ] and q21 ∈ [X θ 21 , X θ 21 +τ 21 ]. Thus on choosing Y = X (1+α 0 )/4-4η 0 -ϵ so (7.3) is satisfied, we see that the bound S1 = o(X) holds provided

2η0 + 5α0 4 < 1 + α0 4 -θ21 -τ21 -4η0 1 2 9 1 2 9 1 + α0 4 -θ21 < 1 2 9 1 + α0 2 -6θ0 -10α0 -2η0 - 5α0 4 θmax + τmax 2 8 < 1 2 8 1 + α0 4 -3θ0 -5α0 -2η0 - 5α0 4 .
These follow from (6.3), (6.4) and (6.8) on taking θ0 sufficiently small and η0 sufficiently close to α0.

8 Proof of Proposition 3.2: The sum S 0

In this section we estimate the sum S0 from (3.6) and establish Proposition 3.2 all under the assumption of Theorem 4.1.

The variable a 0 in S 0

With the notation α = a0 + a1r1 + a2r 2 1 + a3r 3 1 , we consider the subset R ∈ R 4 is defined by (6.12).

For S0 we proceed in the same way as in [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF], [START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], [START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF] but with slight differences in some steps where a bound in O(X ε ) is not always sufficient. 

C := {(a1, a2, a3) ∈ R 3 : ∃a0 ∈ R s.t. (a0, a1, a2, a3) ∈ R}, (8.3) 
G := {(a1, a2, a3) ∈ Z 3 : ∃a0 ∈ Z s.t. (α) ∈ J }, (8.4 
)

h(q) := µ 2 (q) p|q (1 -2/p) 1 -g(p)/p 1 P -(q)>q 0 , (8.5) 
I(a1, a2, a3) :=

a 0 ∈D(a 1 ,a 2 ,a 3 ) d a0 NP (a0, a1, a2, a3) , (8.6) 
D(a1, a2, a3) := {a0 ∈ R : (a0, a1, a2, a3) ∈ R}.

Here NP (a0, a1, a2, a3) is the quartic form coinciding with NP (a0 + a1r1 + a2r 2 1 + a3r 3 1 ) on integers.

Proof. We want to isolate the variable a0. We note that the condition (α) ∈ J implies that (q(a1, a2, a3), B14(a0, a1, a2, a3)) = 1 and that (a0, a1, a2, a3) ∈ R but otherwise there are no further dependencies between a0 and a1, a2, a3. We use Möbius inversion to detect the condition (q, B14) = 1 when evaluated at a0, a1, a2, a3. This give rise to a squarefree r|(q, B14) which we decompose as r = r ′ 1 r ′ 2 with r ′ 1 |NP (KA) and (r ′ 2 , NP (KA)) = 1. This yields

S0 = K∈K A λ - N P (A) (a 1 ,a 2 ,a 3 )∈C∩G r ′ 1 |N P (KA) r ′ 1 |q(a 1 ,a 2 ,a 3 ) µ(r ′ 1 ) × r ′ 2 |q(a 1 ,a 2 ,a 3 ) (r ′ 2 ,N P (KA))=1 µ(r ′ 2 ) ã0 ∈S(r ′ 1 ,r ′ 2 ) a 0 ∈D(a 1 ,a 2 ,a 3 ) a 0 ≡ã 0 (mod r ′ 2 N P (KA)) 1 NP (α) , (8.8) 
where C, G are as in (8.3) and (8.4)

S(r ′ 1 , r ′ 2 ) := {0 ≤ a0 ≤ r ′ 2 NP (KA) : r ′ 1 r ′ 2 |B14(a0, a1, a2, a3), KA|(α)}.
(8.9) (We have suppressed the dependence of S(r ′ 1 , r ′ 2 ) on a1, a2, a3 for notational convenience.) The inner sum over a0 is now over points in an interval with a congruence constraint, and so by partial summation (and recalling from (6.12) that NP (α) ≫ X 1+α 0 /2 for all a ∈ R), we obtain

a 0 ∈D(a 1 ,a 2 ,a 3 ) a 0 ≡ã 0 (mod r ′ 2 N P (KA)) 1 NP (α) = I(a1, a2, a3) r ′ 2 NP (AK) + O 1 X 1+α 0 /2 . (8.10)
The O(X -(1+α 0 /2) ) error term in (8.10) contributes to S0 a total ≪ 1 X 1+α 0 /2-o(1) N P (K)≪X 5α 0 N P (A)≤X 3θ 0 (a 1 ,a 2 ,a 3 )∈C 1 ≪ X -1/4+3θ 0 +21α 0 /4+o (1) .

(Recall that if a ∈ R then ∥a∥∞ ≪ X (1+α 0 )/4 by our choice of fundamental domain). This is O(X -α 0 /4+o (1) ) if 12θ0 + 22α0 < 1, as in the assumptions of the lemma.

Thus we are left to consider the contribution from the main term of (8.10), namely

(a 1 ,a 2 ,a 3 )∈C K∈K A λ - N P (A) r ′ 1 r ′ 2 |q(a 1 ,a 2 ,a 3 ) r ′ 1 |N P (KA) (r ′ 2 ,N P (KA))=1 µ(r ′ 1 )µ(r ′ 2 ) |S(r ′ 1 , r ′ 2 )|I(a1, a2, a3) r ′ 2 NP (AK)
.

(8.11) By the Chinese Remainder Theorem, we have

|S(r ′ 1 , r ′ 2 )| = p|r ′ 2 N P (KA) |S(r ′ 1 , r ′ 2 , p)|, (8.12) 
where

|S(r ′ 1 , r ′ 2 , p)| :=      |{0 ≤ a0 < p : p|(B14(a0, a1, a2, a3), NP (α))}|, if p|r ′ 1 , |{0 ≤ a0 < p : p|B14(a0, a1, a2, a3)}|, if p|r ′ 2 , |{0 ≤ a0 < p : p|NP (α)}|, if p|NP (KA)/r ′ 1 .
We compute |S(r ′ 1 , r ′ 2 , p)| using Lemmas 5.16 and 5.17. Under the condition P -(q) > q0 we find

|S(r ′ 1 , r ′ 2 , p)| = 2 if p|r ′ 2 , 1 if p|NP (KA).
Using this bound in (8.12) gives

|S(r ′ 1 , r ′ 2 )| = 2 ω(r ′ 2 ) .
Inserting this in the previous expression (8.11) for the main term of S0, we see that the sum over r ′ 1 is 1 if (q(a1, a2, a3), NP (KA)) = 1, and 0 otherwise. Thus the expression (8.11) simplifies to (a 1 ,a 2 ,a 3 )∈C I(a1, a2, a3)

r ′ 2 |q(a 1 ,a 2 ,a 3 ) µ(r ′ 2 )2 ω(r ′ 2 )
r ′ 2 h1(q(a1, a2, a3)), where h1(q) := K∈K (N P (K),q)=1 1 NP (K)

(N P (A),q)=1 λ - N P (A) NP (A)
.

Recalling that K is the set of prime ideals with norm between X 4α 0 and X 5α 0 , we see that for q ≪ X O(1) K∈K (N P (K),q)=1 1 NP (K) = log(5/4) + o(1),

(N P (A),q)=1 λ - N P (A) NP (A) = d≤X 3θ 0 (d,q)=1 λ - d g(d) d = 2e γ log 2 3 + o(1) p<X θ 0 1 - g(p) p p|q p≤X θ 0 1 - g(p) p -1
.

Here we used the fact that the linear sieve lower bound function evaluated at 3 is 2e γ log 2/3. Putting these expressions together now gives the result.

Splitting into small boxes

We see from condition (C2) that if a ∈ J then a = (a0 +a1r1 +a2r 2 1 +a3r 3 1 ) for some a ∈ Z 4 which lies in the region R given by (6.12). We recall that η1 = (log x) -100 . We cover the region R by hyper-rectangles of type

H =]A0, A0 + η1A0]×]A1, A1(1 + η1)]×]A2, A2(1 + η1)]×]A3, A3(1 + η1)].
(8.13) The number of such hyper-rectangles is O(η -4 1 )(log X) 4 = O(η -5 1 ). Furthermore the contribution to S01 from hyper-rectangles such that min(|Ai|) ≤ X 1/4-7α 0 /8 is O(X 1-α 0 /8+ε ) which is sufficiently small.

We If H is not 'good' then we say H is 'bad'. We note that the second and third assertions in this definition corresponds to the conditions (4.3) and (4.4). We denote by HR the set of all good hyper-rectangles. To each hyperrectangle H we associate its projection to R 3 by ignoring a0: 

H ′ =]A1, A1(1 + η1)]×]A2, A2(1 + η1)]×]A3, A3(1 + η1)]. ( 8 
q ij ∈[X θ ij ,X θ ij +τ ij ] (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,a 2 ,a 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,a 2 ,a 3 )
q 21 |q 2 (a 1 ,a 2 ,a 3 ) (q(a 1 ,a 2 ,a 3 ),q 3 (a 1 ,a 2 ,a 3 ))=1 (q,a 2 a 3 )=1 (a 2 ,a 3 )=30, a 1 ≡1 (mod 30) a 2 ,a 3 ≡30 (mod 900)

h(q(a1, a2, a3)).

We recall from (6.13) that NP (a0, a1, a2, a3) is the quartic form coinciding with NP (a0 + a1r1 + a2r 2 1 + a3r 3 1 ) on integers.

Proof. By splitting the sum over a1, a2, a3 and the integral over a0 into the hyperrectangles H, and then restricting only to good hyperrectangles for a lower bound, we find

S01 ≥ H∈H R S ′ 01 (H),
where

S ′ 01 (H) := (a 1 ,a 2 ,a 3 )∈C∩H ′ ∩G h(q(a1, a2, a3))IH(a1, a2, a3), IH(a1, a2, a3) := A 0 (1+η 1 ) A 0 d a0 NP (a0, a1, a2, a3) = A0η1(1 + o(1))
NP (A0, A1, A2, A3) .

We recall from (6.11) that if (a1, a2, a3) ∈ G then q1(a1, a2, a3) and q2(a1, a2, a3) factor as 6 i=1 q1i and q21q22 respectively with q21, q11, q12, q13, q14, q15 primes satisfying qij ≥ X θ ij . In particular, we see that for any choice of a1, a2, a3 there are O(1) choices of qij such that qi(a1, a2, a2) = j qij. Thus, summing over these representations, we find

S01(H) ≫ A0η1 NP (A0, A1, A2, A3) S02(H),
say, with S02(H) as given by the lemma and IC defined in (6.14). This gives the result.

Preparation for the application of Theorem 4.1

Following [1, Section 6.2] or [4, Section 15], we do several manipulations in order to take care of the different coprimality conditions and the multiplicative weight h(q). In our situation it is important that we are slightly more careful than these previous works. We do not impose congruence conditions to moduli larger than (log X) O (1) since this would cause issues related to Siegel zeros (the argument of the previous papers would introduce a congruence constraint of modulus X t 0 for some t0 > 0). This means we need to be careful not to lose the fact that when (a0, a1, a2, a3) ∈ H, the ai are in small intervals. Let

Z := (log X) λ 0 , Z ′ := X α 0 /10000 , (8.16) 
where α0 is the constant used to define the set K (which will be chosen sufficiently small later on) and λ0 is a fixed constant (which will be chosen sufficiently large). From the bound (8.14), we certainly note that since α0 < 1 we have Z 1000 < Z ′100 < min(A0, A1, A2, A3). (8.17)

For brevity we will write NH = NP (A0, A1, A2, A3). (8.18)

Lemma 8.3 (Removing the condition (q, q3) = 1). Let S02(H) be as in Lemma 8.2. Then we have

S02(H) = S03(H) + O η 3 1 A1A2A3 Z 3/4 ,
where

S03(H) := d≤Z µ(d) q ij ∈[X θ ij ,X θ ij +τ ij ] (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,a 2 ,a 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,a 2 ,a 3 ) q 21 |q 2 (a 1 ,a 2 ,a 3 ) d|q(a 1 ,a 2 ,a 3 ) d|q 3 (a 1 ,a 2 ,a 3 ) (q(a 1 ,a 2 ,a 3 ),q 3 (a 1 ,a 2 ,a 3 ))=1 (q,a 2 a 3 )=1 (a 2 ,a 3 )=30, a 1 ≡1 (mod 30) a 2 ,a 3 ≡30 (mod 900)
h(q(a1, a2, a3)).

Proof. First, we detect the condition (q, q3) = 1 via Möbius inversion

S02(H) = q ij ∈[X θ ij ,X θ ij +τ ij ] (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,a 2 ,a 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,a 2 ,a 3 )
q 21 |q 2 (a 1 ,a 2 ,a 3 ) (q(a 1 ,a 2 ,a 3 ),q 3 (a 1 ,a 2 ,a 3 ))=1

(q,a 2 a 3 )=1 (a 2 ,a 3 )=30, a 1 ≡1 (mod 30) a 2 ,a 3 ≡30 (mod 900) h(q(a1, a2, a3))

d|q(a 1 ,a 2 ,a 3 ) d|q 3 (a 1 ,a 2 ,a 3 ) µ(d).
We split S02(H) into three sums,

S02(H) = S03(H) + U21(H) + U22(H),
where S03(H) is the contribution of the terms in S02(H) with d ≤ Z, U21(H) is the contribution from Z < d ≤ Z ′ and U22(H) is the contribution from d > Z ′ . We note that S03(H) is as given in the lemma, so we are left to bound U21(H) and U22(H).

First we bound U21. Recall that q3(a1, a2, a3

) = -a1a3 + a 2 2 -c3a2a3 - c2a 2 3 , so the condition q3 ≡ 0 (mod d) implies that a1 ≡ a3(a 2 2 -c3a2a3 - c2a 2 
3 ) (mod d). (We restrict ourselves to (a3, q(a1, a2, a3)) = 1 so (a3, d) = 1.) Inserting this into the condition q(a1, a2, a3) ≡ 0 (mod d) and multiplying by a 6 3 gives Q(a2, a3) := q(a 2 2 -c3a2a3 -c2a 2 3 , a2a3, a 2 3 ) ≡ 0 (mod d), for a polynomial Q(a2, a3) which is of degree 12 in a2 (and non-zero). For any given a3 the number of roots of Q(a2, a3) (mod d) is O (12 ω(d) ). For any choice of a1, a2, a3 under consideration, there are O(1) choices of primes qij ∈ [X θ ij , X θ ij +τ ij ] with qij|q1(a1, a2, a3)q2(a1, a2, a3). Thus, letting b(a2, a3) = a3(a 2 2 -c3a2a3 -c2a 2 3 ), and noting Z ′ < A 0.99 i (recall (8.17)), we deduce

U21(H) ≪ Z<d≤Z ′ a 3 ∈[A 3 ,A 3 (1+η 1 )] a 2 ∈[A 2 ,A 2 (1+η 1 )] Q(a 2 ,a 3 )≡0 (mod d) a 1 ∈[A 1 ,A 1 (1+η 1 )] a 1 ≡b(a 2 ,a 3 ) (mod d) 1 ≪ A1A2A3η 3 1 Z<d<Z ′ 12 ω(d) d 2 ≪ A1A2A3η 3 1 Z -3/4 .
We now consider U22. Since Q(a2, a3) ≡ 0 (mod d), if Q(a2, a3) ̸ = 0 there are O(X ϵ ) choices of d given a2, a3. We have Q(a2, a3) = 0 if and only if ∃(i, j) such that

(a 2 2 -c3a2a3 -c2a 2 3 ) + (ri + rj)a2a3 + a 2 3 (r 2 i + rirj + r 2 j ) = 0, which rearranges to a 2 2 + a2a3(ri + rj -c3) + a 2 3 (r 2 i + rirj + r 2 j -c2) = 0. Since a3 ̸ = 0, a2/a3 is a root of X 2 + (ri + rj -c3)X + r 2 i + rirj + r 2 j -c2
and there are at most two such roots. Thus for each choice of a2 there are at most 2 choices of a3 such that Q(a2, a3) = 0. Moreover, in this case we still have d|q3(a1, a2, a3) ̸ = 0, so there are O(X ϵ ) choices of d given a1, a2, a3. We deduce that (using

Z ′ ≪ A1, A3) U22(H) ≪ d>Z ′ µ 2 (d) (a 1 ,a 2 ,a 3 )∈H ′ Q(a 2 ,a 3 )̸ =0 a 1 ≡b(a 2 ,a 3 ) (mod d) 1 + d>Z ′ (a 1 ,a 2 ,a 3 )∈H ′ Q(a 2 ,a 3 )=0 d|q 3 (a 1 ,a 2 ,a 3 ) µ 2 (d) ≪ a 2 ∈[A 2 ,A 2 (1+η 1 )] a 3 ∈[A 3 ,A 3 (1+η 1 )] Q(a 2 ,a 3 )̸ =0 d>Z ′ d|Q(a 2 ,a 3 ) µ 2 (d)=1 a 1 ∈[A 1 ,A 1 (1+η 1 )] a 1 ≡b(a 2 ,a 3 ) (mod d) 1 + a 1 ≪A 1 ,a 2 ≪A 2 0<a 3 ≪A 3 Q(a 2 ,a 3 )=0 d|q 3 (a 1 ,a 2 ,a 3 ) 1 ≪ A1 Z ′ a 2 ∈[A 2 ,A 2 (1+η 1 )] a 3 ∈[A 3 ,A 3 (1+η 1 )] Q(a 2 ,a 3 )̸ =0 τ (Q(a2, a3)) + A1A2X ε ≪ A1A2A3X ε Z ′ .
This gives the result.

Lemma 8.4 (Removing the condition (q, a2a3) = 1). Let S03(H) be as given in Lemma 8.3. Then we have

S03(H) = S04(H) + O η 3 1 A1A2A3 Z 1/2 ,
where

S04(H) := d≤Z s 2 s 3 ≤Z µ(d)µ(s2s3) q ij ∈[X θ ij ,X θ ij +τ ij ] ∀ (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 ) q 21 |q 2 (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 ) [d,s 2 s 3 ]|q(a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 ) d|q 3 (a 1 ,a 2 ,a 3 ) (s 2 a ′ 2 ,s 3 a ′ 3 )=30, a 1 ≡1 (mod 30) s 2 a ′ 2 ,s 3 a ′ 3 ≡30 (mod 900) h(q(a1, s2a ′ 2 , s3a ′ 3 )).
Proof. We remove the condition (a2a3, q(a1, a2, a3)) = 1 via Mobius inversion, giving

S03(H) = d≤Z µ(d) q ij ∈[X θ ij ,X θ ij +τ ij ] (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,a 2 ,a 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,a 2 ,a 3 ) q 21 |q 2 (a 1 ,a 2 ,a 3 ) (a 2 ,a 3 )=30, a 1 ≡1 (mod 30) a 2 ,a 3 ≡30 (mod 900) d|q 3 (a 1 ,a 2 ,a 3 ) s|a 2 a 3 [d,s]|q(a 1 ,a 2 ,a 3 )
µ(s)h(q(a1, a2, a3)).

We write s as s = s2s3 with s2|a2 and s3|a3, and write a2 = s2a ′ 2 , a3 = s3a ′ 3 . Let U3(H) denote the contribution given by the s > Z and S04(H) the remaining contribution with s ≤ Z. Thus we are left to bound U3(H).

Since each qi(a1, s2a ′ 2 , s3a ′ 3 ) has a finite number of prime factors in [X θ ij , X θ ij +τ ij ], there are O(1) choices of the qij, so

U3(H) ≪ d≤Z µ 2 (d) Z<s 2 s 3 ≪N 1/4 H µ 2 (s2s3) (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 )∈H ′ [d,s]|q(a 1 ,a ′ 2 s 2 ,a ′ 3 s 3 ) d|q 3 (a 1 ,a ′ 2 s 2 ,a ′ 3 s 3 ) 1.
The form q is monic of degree 6 in a1 (by (5.24), (5.25)) and

[d, s2s3] is squarefree, so given s2, s3, a ′ 2 , a ′ 3 there are O(6 ω([d,s 2 s 3 ]) ) choices of a1 (mod [d, s2s3]) such that q(a1, a ′ 2 s2, a ′ 3 s3) = 0 (mod [d, s2s3]). Since (a1, a ′ 2 s2, a ′ 3 s3) ∈ H ′ we obtain U3(H) ≪ d<Z µ 2 (d) Z<s 2 s 3 ≪N 1/4 H µ 2 (s2s3)6 ω([s 2 s 3 ,d]) η1A2 s2 + 1 η1A3 s3 + 1 η1A1 [s2s3, d] + 1 ≪ ZN 1/4+ε H + ZN 1/4+ε H (|A1| + |A2| + |A3|) + A1A2A3η 2 1 min(A1, A2, A3) ZX ε + η 3 1 A1A2A3 d<Z s>Z 6 ω([d,s]) s[s, d] .
This final term is seen to be O(η 3 1 A1A2A3(log Z) O(1) /Z). Since max(A1, A2, A3) ≪ N 1/4 H and Z = (log X) O (1) , this gives

U3(H) ≪ η 3 1 A1A2A3 Z 1/2 + N 1/2+ϵ H .
This gives the result.

Lemma 8.5 (Simplifying the function h). Let S04(H) be as in Lemma 8.4. Then we have

S04(H) = S05(H) + O η 3 1 A1A2A3 Z ,
where

S05(H) := u≤Z 20 d≤Z s 2 s 3 ≤Z µ(d)µ(s2s3)ℓ(u) q ij ∈[X θ ij ,X θ ij +τ ij ] ∀ (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 ) q 21 |q 2 (a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 ) [d,s 2 s 3 ,u]|q(a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 ) d|q 3 (a 1 ,a 2 ,a 3 ) (s 2 a ′ 2 ,s 3 a ′ 3 )=30, a 1 ≡1 (mod 30) s 2 a ′ 2 ,s 3 a ′ 3 ≡30 (mod 900) 1,
and ℓ is the multiplicative function defined by

ℓ(p ν ) :=          g(p)-2 p-g(p) , if p > q0 and ν = 1, -1, if 7 ≤ p ≤ q0 and ν = 1, -h(p), if ν = 2, 0, if ν ≥ 3,
with q0 given by (6.1).

Proof. Recalling (8.5), we see that h = 1 * ℓ where ℓ is as given by the lemma. In particular,

h(q(a1, s2a ′ 2 , s3a ′ 3 )) = u|q(a 1 ,s 2 a ′ 2 ,s 3 a ′ 3 )
ℓ(u).

Since a1 ≡ 1 (mod 30) and 30|(a2, a3), (u, 30) = 1. We substitute this into our definition of S04(H), and consider separately the contribution S05(H) from u < Z 20 and the contribution U4(H) from u > Z 20 . Since ℓ(u) = 0 when there exists p such that p 3 |u, we may write u = v 2 w with µ 2 (vw) = 1. Since U4(H) has u > Z 20 , it suffices to separately bound the contribution of terms U41(H) with w > Z 10 and the contribution U42(H) of terms with v 2 > Z 10 ≥ w.

First we bound U41(H) with w > Z 10 . Since q0 > 10, we see that |ℓ(u)| ≤ 10 ω(vw) /w. Following an entirely analogous argument to our bound for U2(H) in Lemma 8.3, we can find that

U41(H) ≪ Z s 2 s 3 <Z µ 2 (s 2 s 3 )=1 w≥Z 10 wv 2 |q µ 2 (vw) (60) ω(vw) w η1A1 wv 2 + 1 η 2 1 A2A3 s2s3 ≪ A2A3X ε + η 3 1 A1A2A3(log X)Z -3 ≪ A1A2A3 Z .
Thus we are left to bound U42(H) involving terms with v ≥ Z 5 . We see

U42(H) ≤ V ′ (H) + (i,j)∈I C Vij(H),
where Vij(H) denotes those terms with qij|v for some qij ∈ [X θ ij , X θ ij +τ ij ], and V ′ (H) denotes those terms with

( (i,j)∈I C qij, v) = 1 for all qij ∈ [X θ ij , X θ ij +τ ij ], (i, j) ∈ IC.
First we consider V21(H). By (6.6), we have

6 i=1 θ1i + θ21 > 1 + α0.
We recall q1(a1, a2a3) ≪ X 1+α 0 for all (a1, a2, a3) ∈ H and that 6 j=1 q1j|q1(a1, a2, a3) with 6 j=1 q1j ≫ X 6 j=1 θ 1j . Therefore we must have that (q21, q1(a1, a2, a3)) = 1. Since α0 < 1/19 by (6.4) and q 2 21 ≤ X 2θ 21 +2τ 21 ≤ X 1/4-7α 0 /8 ≤ min(A1, A2, A3) by (6.8) and (8.14), we deduce that

V21(H) ≪ X ε q 21 ∈[X θ 21 ,X θ 21 +τ 21 ] (a 1 ,a 2 ,a 3 )∈H ′ q 2 21 |q 2 (a 1 ,a 2 ,a 3 ) 1 ≪ X -θ 21 +ε A1A2A3.
We now consider V1j(H). As with V21(H), we can't have q 2 1j |q1(a1, a2, a3) by size considerations and (6.6). Therefore if q 2 1i |q(a1, a2, a3) then q1i|(q1(a1, a2, a3), q2(a1, a2, a3)), and so Lemma 5.13 shows that P ((a2 -c3a3)a3) ≡ 0 (mod q1i). Again, we have that q1j ≤ min(A1, A2, A3). Thus we have

V1i(H) ≪ X ε q 1i ∈[X θ 1i ,X θ 1i +τ 1i ] (a 2 ,a 3 )∈[A 2 ,A 2 (1+η 1 )]×[A 3 ,A 3 (1+η 1 )] P ((a 2 -c 3 a 3 )a 3 )≡0 (mod q 1i ) a 1 ∈[A 1 ,A 1 (1+η 1 )] q 1i |q 1 (a 1 ,a 2 ,a 3 ) 1 ≪ X -θ 1i +ε A1A2A3.
Finally, we are left to bound

V ′ (H). Each v counted in V ′ (H) may fac- tored as v = v1v2v3, with v1 := p|v p 2 |q 1 (a 1 ,a 2 ,a 3 ) p, v2 := p|v/v 1 p 2 |q 2 (a 1 ,a 2 ,a 3 ) p, v3 := v v1v2
.

Since v was squarefree, we see that v1, v2, v3 are pairwise coprime and squarefree. By Lemma 5.13 again, P ((a2 -c3a3)a3) ≡ 0 (mod v3). In V ′ (H), v is coprime with all the qij, and so for any a1, a2, a3 ∈ H

v 2 1 v3 ≪ q1(a1, a2, a3) 5 j=1 q1j ≪ X 1+α 0 -5 j=1 θ 1j < η1A2, (8.19) 
v 2 2 v3 ≪ q2(a1, a2, a3) q21 ≪ X (1+α 0 )/2-θ 21 . (8.20)
Thus we have

V ′ (H) ≪ s,d<Z µ 2 (d)µ 2 (s)=1
w<Z 10 10 ω(w) w

v 1 v 2 v 3 >Z 5 µ 2 (wv 1 v 2 v 3 )=1 a 2 ∈[A 2 ,A 2 (1+η 1 )] a 3 ∈[A 3 ,A 3 (1+η 1 )] P ((a 2 -c 3 a 3 )a 3 )≡0 (mod v 3 ) a 1 ∈[A 1 ,A 1 (1+η 1 )] v 2 1 v 3 |q 1 (a 1 ,a 2 ,a 3 ) v 2 2 v 3 |q 2 (a 1 ,a 2 ,a 3 )
1.

Let d1 ∈ Z[a2, a3] denote the discriminant of q1 (viewing q1 as a polynomial in a1), and d2 ∈ Z[a2, a3] denote the discriminant of q2. By Lemma 5.13, we see that the inner sum restricts a1 to one of O(6 ω(v 1 v 2 v 3 ) ) residue classes modulo v 2 1 v 2 2 v3/(v1, d1(a2, a3))(v2, d2(a2, a3)). Thus [START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF][START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF], [START_REF] De La Bretèche | Niveau de répartition des polynômes quadratiques et crible majorant pour les entiers friables[END_REF][START_REF] Conrad | Galois groups of cubics and quartics (not in characteristic 2)[END_REF], (2, 4)} be the set of the indexes (i, j) such that (ri, rj) is involved in the factorisation of q1. We note that d1(a2, a3)

a 1 ∈[A 1 ,A 1 (1+η 1 )] v 2 1 v 3 |q 1 (a 1 ,a 2 ,a 3 ) v 2 2 v 3 |q 2 (a 1 ,a 2 ,a 3 ) 1 ≪ 6 ω(v 1 v 2 v 3 ) η1A1(v1, d1(a2, a3))(v2, d2(a2, a3)) v 2 1 v 2 2 v3 + 1 . (8.21) Let I1 = {(1, 3),
= (i,j),(k,l)∈I 1 (i,j)̸ =(k,l) (a2(ri + rj -r k -r ℓ ) + a3(r 2 i + rirj + r 2 j -r 2 k -r 2 ℓ -r k r ℓ )) d2(a2, a3) = -(a2(r1 + r2 -r3 -r4) + a3(r 2 1 + r1r2 + r 2 2 -r 2 3 -r3r4 -r 2 4 )) 2 .
We remark that the coefficient in a 12 2 in d1 is non zero because we can't have ri + rj -r k -r l = 0 for two different (i, j), (k, ℓ) ∈ I1. The case {i, j} ∩ {k, ℓ} ̸ = ∅ is clear, the other case was noticed in Remark (ii) after the proof of Lemma 5. [START_REF] Merikoski | On the largest prime factor of n 2 + 1[END_REF].

For d2, it may be the case that r1 + r2 -r3 -r4 = 0. However in this case we can't also have r 2 1 + r1r2 + r 2 2 -r 2 3 -r3r4 -r 2 4 = 0 since this would imply that r1 + r2 = r3 + r4 and r1r2 = r3r4 which is not possible when the roots of P are distinct. Thus either the coefficient of a2 in d2 is non-zero or the coefficient of a3 is non-zero.

To estimate the sum over v1, v2, v3, a2, a3 of the terms with d1(a2, a3), d2(a2, a3) in (8.21), we write wi = (vi, di(a2, a3)) for i = 1, 2 and next forget the coprimality between vi/wi and di(a2, a3)/wi. This sum is thus bounded by

v 1 v 2 v 3 ≥Z 5 v 2 1 v 3 ≤X 1+α 0 -6 j=1 θ 1j v 2 2 v 3 ≤X (1+α 0 )/2-θ 21 µ 2 (v 1 v 2 v 3 )=1 6 ω(v 1 v 2 v 3 ) v 2 1 v 2 2 v3 w 1 |v 1 w 2 |v 2 w1w2 a 2 ∈[A 2 ,A 2 (1+η 1 )] a 3 ∈[A 3 ,A 3 (1+η 1 ) d 1 (a 2 ,a 3 )≡0 (mod w 1 ) d 2 (a 2 ,a 3 )≡0 (mod w 2 ) P ((a 2 -c 3 a 3 )a 3 )≡0 (mod v 3 ) 1.
If the coefficient in a 2 2 in d2(a2, a3) is non zero, then the inner sum over a2, a3 is

≪ η1A3 1 + η1A2 w1w2v3 12 ω(w 1 w 2 v 3 ) ,
otherwise the condition w2|d2(a2, a3) is equivalent to w2|dP a3 for some dP ∈ Z depending only of P (we recall that w2 is square free) and thus the inner sum over a2, a3 is bounded by

≪ 1+ η1A3 w2 1+ η1A2 w1v3 12 ω(v 1 v 2 v 3 ) ≪ 12 ω(w 1 w 2 v 3 ) 1+ η1A3 w2 + η1A2 w1v3 + η 2 1 A2A3 w1w2v3 .
Finally we obtain that

V ′ (H) ≪ Z 2 (log Z) 10 v 1 v 2 v 3 ≥Z 5 v 2 1 v 3 ≤X 1+α 0 -6 j=1 θ 1j v 2 2 v 3 ≤X (1+α 0 )/2-θ 21 µ 2 (v 1 v 2 v 3 )=1 6 ω(v 1 v 2 v 3 ) η 2 1 A2A3 + w 1 |v 1 w 2 |v 2 12 ω(w 1 w 2 v 3 ) η1A1w1w2 v 2 1 v 2 2 v 2 3 η1A3 + η1A2 w1v3 + η 2 1 A2A3 w1w2v3 ≪ Z -3 (log Z) 10 η 3 1 A1A2A3 + Z 3 A1A2A3 min(A1, A2, A3) X 3(1+α 0 )/4-(i,j)∈I C θ ij /2 .
By (8.14) and (6.6) we see that X

3(1+α 0 )/4-ij∈I C θ ij /2 ≤ min(A1, A2, A3)X -ϵ .
Putting everything together then gives the result. Lemma 8.6 (Removing (a2, a3)/30 = 1). Let S05(H) be as given in Lemma 8.5. Then we have

S05(H) = S06(H) + O η 3 1 A1A2A3 Z ,
where

S06(H) := t≤Z 50 u≤Z 20 d≤Z s 2 s 3 ≤Z (t,30)=1 µ(d)µ(s2s3)ℓ(u)µ(t) q ij ∈[X θ ij ,X θ ij +τ ij ] ∀ (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,a 2 ,a 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,a 2 ,a 3 ) q 21 |q 2 (a 1 ,a 2 ,a 3 ) [d,s 2 s 3 ,u]|q(a 1 ,a 2 ,a 3 ) d|q 3 (a 1 ,a 2 ,a 3 ) [t,s 2 ]|a 2 [t,s 3 ]|a 3 a 2 ,a 3 ≡30 (mod 900) a 1 ≡1 (mod 30)
1.

Proof. Since we have a2, a3 ≡ 30 (mod 900), we can detect (a2, a3)|30 using Möbius inversion

1 (a 2 ,a 3 )|30 = t|(a 2 ,a 3 ) (t,30)=1
µ(t) and separately consider the contribution S06(H) from terms with t ≤ Z 50 and the contribution U5(H) from terms with t > Z 50 . Since there are O(1) choices of the qij given a choice of a1, a2, a3, we see that

U5(H) ≪ t>Z 50 u≤Z 20 d,s 2 s 3 ≤Z (a 1 ,a 2 ,a 3 )∈H ′ t|(a 2 ,a 3 )
O( 1)

≪ Z 30 Z 50 <t<min(A 2 ,A 3 ) η1A1 η1A2 t + 1 η1A3 t + 1 ≪ η 3 1 A1A2A3 Z .
This gives the result. Proof of Lemma 8.7 assuming Theorem 4.1. Recalling the definition of S06 from Lemma 8.6, we remark that the different conditions modulo 30 on a1, a2, a3 imply that (q(a1, a2, a3), 30) = 1 and thus we may impose that (ds2s3tu, 30) = 1. Splitting (a1, a2, a3) into residue classes (mod [t, u, d, s2, s3]), we see that

S06(H) = t≤Z 50 u≤Z 20 d≤Z s 2 s 3 ≤Z (ds 2 s 3 tu,30)=1 µ(d)µ(s2s3)ℓ(u)µ(t) u 0 ∈S(d,s 2 ,s 3 ,t,u) S07(u0, [d, s2, s3, t, u]), (8.22) 
where

S07(u0, m) := q ij ∈[X θ ij ,X θ ij +τ ij ] ∀ (i,j)∈I C q 21 ≡1 (mod Dq 2 ) (a 1 ,a 2 ,a 3 )∈H ′ 6 j=1 q 1j |q 1 (a 1 ,a 2 ,a 3 ) q 21 |q 2 (a 1 ,a 2 ,a 3 ) (a 1 ,a 2 ,a 3 )≡u 0 (mod m) a 2 ,a 3 ≡30 (mod 900), a 1 ≡1 (mod 30) 1, S(d, s2, s3, t, u) := (u1, u2, u3) (mod [d, s2s3, t, u]) : [d, s2s3, u]|q(u1, u2, u3), d|q3(u1, u2, u3), [s2, t]|u2, [s3, t]|u3 .
We now apply Theorem 4.1 on incomplete norms with K = Q(r1 + r3), ν1 = 1, ν2 = r1 + r3, ν3 = r 2 1 + r 2 3 + r1r3 and ν4 such that ν4 is in the ring of integers of K and (ν1, ν2, ν3, ν4) is a Q-basis of K. By Theorem 4.1 (taking Xi = Ai, ℓ = 5,

ℓ ′ = 3, θi = θ1i log X log A 1 , θ ′ i = (θ1i + τ1i) log X log A 1 , τ = θ21 log X log A 1 , τ ′ = (θ21 + τ21) log X log A 1 ), we have that S07(u0, m) = (1 + o(1)) η 3 1 A1A2A3 30 5 m 3 φ(Dq 2 ) (i,j)∈I C log 1 + τij/θij .
Here we have used the fact that (4.3) and (4.4) hold by (8.14). Similarly (4.6) holds by (6.3), (4.7) holds by (6.2), (4.8) holds by (6.5), (4.9) holds by (6.6), (4.10) holds by (6.7) and (4.11) holds by (6.8) and (6.9) and by noticing that 4 1+α 0 ≤ log X log A 1 ≤ 4 1+α 0 /2 . Substituting this into our expression (8.22) for S06, we find that

S06(H) = (1 + o(1)) η 3 1 30 5 A1A2A3 φ(Dq 2 ) (i,j)∈I C log 1 + τij/θij m≤Z 72 L(m) m 3 , (8.23) 
where

L(m) := d≤Z s 2 s 3 ≤Z u≤Z 20 (ds 2 s 3 tu,30)=1 t<Z 50 [d,s 2 s 3 ,t,u]=m µ(d)µ(s2s3)µ(t)ℓ(u)|S(d, s2, s3, t, u)|.
We wish to remove the upper bound constraints on d, s2, s3, u, t, m so we can understand m L(m)/m 3 via an Euler product. Let

L * (m) := [d,s,t,u]=m (ds 2 s 3 tu,30)=1 |µ(d)µ(s)µ(t)ℓ(u)| s 2 s 3 =s |S(d, s2, s3, t, u)|, L(m) := [d,s,t,u]=m (ds 2 s 3 tu,30)=1 µ(d)µ(s)µ(t)ℓ(u) s 2 s 3 =s |S(d, s2, s3, t, u)|, which are multiplicative functions of m. We note that L * (m) ≥ max(|L(m)|, | L(m)|)
for all m and that L(m) = L(m) for m ≤ Z. From the support of µ, ℓ we have L * (p k ) = 0 for k ≥ 3. We easily check that L * (p) ≤ 2 5 p and L * (p 2 ) ≤ 3p 2 for p > q0 since |ℓ(p)| ≤ 2/(p -2) in this range. We deduce that L * (m)/m 3 ≪ τ (m) 5 /m 2 . We note that L(p k ) = 0 for k ≥ 2 and 2 ≤ p ≤ q0, and that L(p k ) = 0 for any k ≥ 1 when p = 2, 3, 5. We find

m≤Z 72 L(m) m 3 = m≤Z L(m) m 3 + O m>Z L * (m) m 3 = m L(m) m 3 + O m>Z τ (m) 5 m 2 = 7≤p≤q 0 1 + L(p) p 3 p>q 0 1 + L(p) p 3 + O 1 Z 1/2 .
From our bounds on L * we see that p>q 0 (1 + L(p)/p 3 ) ≫ 1 and the product over p ≤ q0 converges. We wish to show that the product converges to a strictly positive constant, and so need to check that 1+ L(p)/p 3 doesn't vanish for some small prime p with 7 ≤ p ≤ q0. If p|[d, s2, s3] then for u = 1 or p, we have

|S(d, s2, s3, u, 1)| = |S(d, s2, s3, u, p)|. Since ℓ(p) + ℓ(1) = 0 when 7 ≤ p ≤ q0, we deduce [d,s 2 ,s 3 ]=p [d,s 2 ,s 3 ,t,u]=p µ(d)µ(s2s3)µ(t)ℓ(u)|S(d, s1, s2, t, u)| = 0.
The value L(p) is then

L(p) = 1 -p -|{(u1, u2, u3) (mod p) : p|q(u1, u2, u3)}|. Then 1 + L(p)/p 3 ≥ (p 3 -6p 2 -p + 1)/p 3 > 0, when p ≥ 7.
Thus m≤Z 72 L(m)/m 3 ≫ 1, and so substituting this into (8.23) and using the fact τij/θij ≫ 1 we obtain the result.

Proof of Proposition 3.2

Proof of Proposition 3.2 assuming Theorem 4.1. By Lemmas 8.1, 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7 in turn, we see that

S0 ≫ 1 log X H∈H R A0A1A2A3η 4 1 NP (A0, A1, A2, A3) + O 1 Z 1/2 .
(Note that in this application of Lemma 8.7 we are assuming Theorem 4.1, and that we have 12θ0 + 22α0 < 1 required for Lemma 8.1 since we are taking θ0 sufficiently small and assuming that α0 satisfies (6.4).) We note that

H∈H R A0A1A2A3η 4 1 NP (A0, A1, A2, A3) = H⊂R A0A1A2A3η 4 1 NP (A0, A1, A2, A3) - H⊂R H bad A0A1A2A3η 4 1 NP (A0, A1, A2, A3) .
If H is bad, then max(A1, A2, A3) 4 η 1/10 1 ≥ q1(A1, A2, A3) or there exists i ∈ {0, 1, 2, 3} such that |Ai| < η1 max(|A0|, |A1|, |A2|, |A3|). The first inequality implies that there exists (i, j) ∈ IC such that Li,j(A1, A2, A3)

:= |A1+(ri+rj)A2+(r 2 i +rirj+r 2 j )A3| ≪ η 1/40 1 max(A1, A2, A3).
Thus, by partial summation

H⊂R H bad A0A1A2A3η 4 1 NP (A0, A1, A2, A3) ≪ (i,j)∈I C A=2 ℓ X 1- 7α 0 8 ≪A≪X 1+α 0 4 (a 0 ,a 1 ,a 2 ,a 3 )∈R L i,j (a 1 ,a 2 ,a 3 )≤η 1/40 1 A max(a 0 ,a 1 ,a 2 ,a 3 )≪A 1 A 4 + 3 i=0 A=2 ℓ X 1- 7α 0 8 ≪A≪X 1+α 0 4 (a 0 ,a 1 ,a 2 ,a 3 )∈R a i ≤η 1 A max(a 0 ,a 1 ,a 2 ,a 3 )≪A 1 A 4 ≪ η 1/40 1 log X.
Similarly, we find by partial summation

H⊂R A0A1A2A3η 4 1 NP (A0, A1, A2, A3) = (1 + o(1)) (a 0 ,a 1 ,a 2 ,a 3 )∈R 1 NP (a0, a1, a2, a3) ≫ log X.
Putting everything together now gives Proposition 3.2.

Thus we are left to establish Theorem 4.1.

Incomplete norm forms

In this section we perform our initial reductions to reduce the proof of Theorem 4.1 to that of establishing Proposition 9.13 and Proposition 9.14. We roughly follow the argument of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] in this section, but require a number of small technical modifications.

Let K be a quartic number field, OK its integer ring, ClK its class group. Let ν1, ν2, ν3, ν4 ∈ OK such that v = (ν1, ν2, ν3, ν4) is a Q-basis of K. We suppose for convenience that ν1 = 1 and K = Q(ν2). We then define Ov = Z[ν1, ν2, ν3, ν4] the order generated by v.

We let N (•) = NK (•) be the norm on K, and note that this is a different norm to NP on Q(r1) encountered earlier.

There exists an integral basis of OK , w = (ω1, ω2, ω3, ω4) and some integers wij, 1 ≤ i ≤ j ≤ 4, such that νj = j i=1 wijωi (j = 1, 2, 3, 4).

(9.1) (cf. for example [16, Proposition 2.11]).

From O K to O v and vice-versa

We denote by Lwv = (wij) 1≤i,j≤4 the matrix of v in w so that for all 1 ≤ j ≤ 4, νj =4 i=1 wijωi. By (9.1) this matrix is upper triangular and the absolute value of its determinant is

W = |w11w22w33w44| ∈ Z * (9.2) 
Lemma 9.1. For all α ∈ OK , there exist a1, a2, a3, a4 ∈ Z, with

α = 1 W 4 i=1 aiνi
Conversely, there exists a subset V0 ⊂ {0, . . . , W -1} 4 such that for all a ∈ Z 4 we have

1 W
Proof. This is variant of an argument used in the proof of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 9.4].

Let β0 := 1 W 4 i=1 ( 
b0)iνi. For all v = (v1, . . . , v4) ∈ {0, . . . , W -1} 4 , there exists u = u(b0, v) ∈ Z 4 such that b0 + q(v + W u) ∈ C since qW ≤ δ0B, the side length of C. We will prove that the set

W := β ′ 0 = 1 W 4 i=1 b ′ i νi with b ′ = b0+q(v+W u(b0, v)), v ∈ {0, . . . , W -1} 4
satisfies the conclusion of the lemma. First we suppose that b ≡ b0 (mod q). This implies that there exist four integers m1, m2, m3, m4 such that bi = (b0)i + qmi. We get

β := 1 W 4 i=1 biνi = 1 W 4 i=1 ((b0)i + miq)νi = β0 + q W 4 i=1 miνi.
Since W |q, this implies that β ∈ OK . If we choose β ′ 0 = β0+ q W 4 i=1 viνi+ with 0 ≤ v1, . . . , v4 < W such that vi ≡ mi (mod W ) then we would have

β = β ′ 0 + q W 4
i=1 (mi -vi + W ui)νi, and thus β ≡ β ′ 0 (mod q). Now we prove the reciprocal assertion. We suppose that there exists

β ′ 0 ∈ W such that β ≡ β ′ 0 (mod q). Then β = β ′ 0 + qγ for some γ ∈ OK . There exists g1, g2, g3, g4 ∈ Z such that γ = 1 W 4 i=1 giνi. For each i = 1, 2, 3, 4, we have b i W = (b 0 ) i +q(v i +W u i +g i ) W . This implies that b ≡ b0 (mod q).
For any ideal d of OK , we define the function ϱv by

ϱv(d) := |{a ∈ [1, N (d)] 3 : d|(a1ν1 + a2ν2 + a3ν3)}| N (d) 2 . ( 9.3) 
This function satisfies the following properties.

Lemma 9.4.

1. For all degree one prime ideals p with (N (p), W ) = 1, we have ϱv(p) = 1.

We have

x ∈ [1, p 2 ] 3 : p 2 |N 3 i=1 xiνi ≪ p 4 .
3. For any ideal e such that N (e) is a power of p, we have

ϱv(e) N (e) ≪ 1 p 2
unless e is a degree 1 prime ideal above p. 5. For k ≥ 3, we have

x ∈ [1, p k ] 3 : p k |N 3 i=1 xiνi ≪ kp 11k/4 .
Proof. The first four assertions are essentially given by [14, Lemma 7.7], except that they work with a basis ν1, ν2, ν3, ν4 in place of 1, θ, θ 2 , θ 3 which has a negligible effect on the proof. Indeed, by (9.1) the Q-vector space spanned by ν1, ν2, ν3 is the same as the one spanned by ω1, ω2, ω3, and the change-of-basis matrix between the basis ν1, ν2, ν3, ν4 and ω1, ω2, ω3, ω4 has determinant W . Thus when (N (d), W ) = 1 we have

ϱv(d) = |{a ∈ [1, N (d)] 3 : d|(a1ω1 + a2ω2 + a3ω3)}| N (d) 2 ,
and so it is sufficient to prove these four statements with the basis w in place of v. The proof is then the same as in [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF].

We are left to establish assertion 5. Since N (ν1

) ̸ = 0, for any choice of x2, x3, gx 2 ,x 3 (x1) := N (x1ν1 + x2ν2 + x3ν3) is a non-zero polynomial of degree 4 in x1. Thus, given x2, x3, if N (x1ν1 + x2ν2 + x3ν3) ≡ 0 (mod p k ),
we see that ∥x1 -α∥p ≪ p -k/4 for one of the 4 roots α of gx 2 ,x 3 over Qp. Thus there are O(p 3k/4 ) choices of x1 ∈ [1, p k ] for each choice of x2, x3. This gives the result.

Let γK be the residue in s = 1 of ζK and we define S to be the Euler product5 +O 2 4ω((m)I) exp(-c log R) .

S :=

Proof. The proof is exactly the same as in [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 8.5]. [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 8.5] states the result with N (J) o (1) in place of 2 4ω(J) , but following the proof we see that the error term can be taken as exp(-c This operation is helpful to detect the elements of Ov with a fourth coordinate equal to zero. The following lemma turns the problem of detecting this zero coordinate into a question about lattices. Proof. The argument is essentially a special case of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 7.2] . We will expose it in a more pedestrian way. First we suppose that D = 1. For all 1 ≤ i, j ≤ 4 there exist rational numbers λ i,j,k , 1 ≤ k ≤ 4 such that νiνj = Proof. The proof is the same as that of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 4.2] which concerns the case νi = θ i-1 . The only place where this change could have an importance is for the bound of the sums with any

√ log R) P|J (1 - 1 N (P) 3/4 ) -
d such that N (d) ≪ X 1/n max(|x 1 |,|x 2 |,|x 3 |)≪X d|( 3 i=1 x i ν i ) 1.
Since the νi are linear combinations of some θ j , j = 0, 1, 2, 3 for θ such that K = Q(θ), the condition d|( 3 i=1 xiνi) can be split in the xi into arithmetic progression (mod N (d)), and thus the argument of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] combined with Lemma 9.4 apply also in our case. Furthermore we have (1) .

∥d∥≤D 1 ∥z1(d)∥ 2 ≪ D 10/3+o
Proof. The proof is exactly the same as the proof of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 7.3] except that we have a slightly different definition for ⋄, and so require Lemmas 9.7 and 9.8 instead of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 4.2] and [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 7.2]. Lemma 9.10. Let d be an ideal of OK with (N (d), q) = 1. Let R ⊂ [-X, X] 3 as in the Proposition 9.11 below. Then we have

| a ∈ Z 3 ∩R : d| 3 i=1 aiνi , a ≡ a0 (mod q)}| = ϱv(d) vol (R) N (d)q 3 +O(N (d) 4 X 2 ).
Proof. The proof is identical as the proof of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 7.4] with v in place of (1, . . . , θ n-1 ). In fact, the arguments of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] give a slightly stronger error term of O(X 2 ϱv(N (δ))(qN (δ)) -2 + ϱv(N (δ))).

Sums of Type I

We now state a similar result to [14, Proposition 7.5] Proposition 9.11. Let R ⊂ [-X, X] 3 be a region such that any line parallel to the coordinate axes intersects R in O(1) intervals. For any given u0 ∈ Z 3 and q ≤ √ X we define

Γ = 3 i=1 aiνi : a ∈ Z 3 ∩ R, a ≡ u0 (mod q) .
Let Γd = {κ ∈ Γ : d|(κ)}. Then we have

N (d)∈[D,2D] (N (d),q)=1
|Γd|-ϱv(d) vol (R) q 3 N (d) ≪ X 2 q 1+o(1) D 1/3+o(1) +Dq 4+o (1) . (9.6)

Proof. We follow the proof of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Proposition 7.5], but now we work with a general order Ov in place of Z[θ]. This involves minor modifications at the beginning of the argument; the last steps require no modification. For brevity we emphasise just the key points requiring modification and only sketch the rest of the argument. We split the summation on the ideals d according to their class in ClK . Let C be a given class and consider the contribution of all the d ∈ C. Since the d in the summation in (9.6) are coprime with q, we can fix a representative integral ideal c ∈ C such that (N (c), q) = 1 and with N (c) = q o (1) . The ideal dc -1 (N (c)) is a principal ideal of OK . By Lemma 9.2 we can find a generator of the form δ = 1 W 4 i=1 diνi where the di are integers such that |di| ≪ D 1/n q o (1) . Then δc :=

1 W N (c) 4
i=1 diνi is a generator of the principal fractional ideal dc -1 . In [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] it is proved that |σ0(δc)| ≫ D 1/4 q o(1) for all embeddings σ0.

Let α ∈ Γd, so (α) = a ′ d for some integral ideal a ′ . Since (α) = a ′ cdc -1 and (α) and dc -1 = (δc) are principal, a ′ c is principal too, so a ′ c = (β) for some generator β ∈ OK . By Lemma 9.1, we can take

β = 1 W 4 i=1 biνi where b = (b1, b2, b3, b4) ∈ Z 4 satisfies (b (mod W )) ∈ V0. Then (α) = (β)(δc). Let d = (d1, d2, d3, d4). We have W 2 N (c)βδc = 4 k=1 (d ⋄ b) k ν k . βδc = 4 k=1 1 W 2 N (c) 4 i,j=1 ℓ i,j,k bidi ν k .
The coefficient of νi are integers if and only b1, b2, b3, b4 satisfy some congruences modulo W 2 N (c). We also need to impose that c|(β). This is also equivalent to some congruences conditions modulo W 2 N (c) for b1, b2, b3, b4. Let q1 = [q, W 2 N (c)] and V ′ 0 ⊂ {0 . . . , q1 -1} 4 the set of r classes satisfying all these conditions and furthermore such that

( d ⋄ b)4 ≡ 0 (mod q1) and ( d ⋄ b)i W 2 N (c) ≡ (u0)i (mod q) for 1 ≤ i ≤ 3.
Thus, for d ∈ C, we are interested in

|Γd| = b 0 ∈V ′ 0 b∈Z 4 b≡b 0 (mod q 1 ) δcβ∈Γ 1.
The rest of the proof follows [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]. Let Λ d be the lattice introduced in Lemma 9.7. We write b = b (1) + q1b (2) where b (1) is some vector of Λ d such that b (1) ≡ b0 (mod q1) (when such b (1) exists) and b (2) 

∈ Λd c |Γd| = ′′ b 0 ∈V ′ 0 b (2) ∈Λ d b≡b 0 (mod q 1 ) δcβ 1 +q 1 δcβ 2 ∈Γ 1,
where ′′ indicates that the b0 are as above but furthermore such that there exists a vector b (1) in the lattice Λd and βj = 1 i νi for j = 1, 2. The argument now follows the proof of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Proposition 7.5] precisely, except that we apply Lemmas 9.8, 9.10 for the basis v in place of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemmas 7.3 and 7.4].

Initial steps in the Type II sum

We first note that Theorem 4.1 is trivial if m > (log X) K , so we may assume that m < (log x) K . (9.7) The contribution of the a ∈ X , such that a ≡ u0 (mod m) and m0 > D0, is less than

If a ∈ Aq 1 •••q ℓ (u0
m 0 |m ∞ m 0 >D 0 a∈X a≡u 0 (mod m) N 3 i=1 a i ν i ≡0 (mod m 0 ) 1 ≪ η 3 1 3 i=1 Xi m 0 |m ∞ m 0 >D 0 4 ω(m 0 ) m0m 2 ≪ η 3 1 3 i=1 Xi m 2 √ D0 m 0 |m ∞ m 0 >D 0 4 ω(m 0 ) √ m0 ≪ η 3 1 3 i=1 Xi D 1/3 0 . ( 9.9) 
We now suppose that m0 ≤ D0. Let

M(m0) := v0 ∈ [1, mm0] 3 : v0 ≡ u0 (mod m), N 3 i=1 (v0)iνi ≡ 0 (mod m0), m, N ( 3 i=1 (v0)iνi) m0 = 1 . (9.10)
Then for every a ∈ A(u0, m) such that m0 = (N (a1ν1 +a2ν2 +a3ν3), m ∞ ), there exists exactly one v0 ∈ M(m0) such that a ≡ v0 (mod mm0).

Putting this together with (9.9) deduce that .11) By (4.9), there exists ε > 0 such that X ℓ i=1 θ i +min(θ 0 ,...,θ ℓ ) > X 4+ε and by (4.7) the intervals [X θ i , X θ ′ i ] do not overlap. Thus each a ∈ A such that N (a) ≡ 0 (mod q1 • • • q ℓ ) with X θ i ≤ qi ≤ X θ ′ i , is divisible by exactly one prime ideal Pi with N (Pi) ∈ [X θ i , X θ ′ i ] (for all 1 ≤ i ≤ ℓ). We are now ready to settle the connection between the set Aq(v0, m ′ , p) in Theorem 4.1 and the sets of ideals just defined above. For any primes q1, . . . , q ℓ with qi ∈ [X θ i , X θ ′ i ], we have

Aq 1 •••q ℓ (u0, m, p) = m 0 |m ∞ m 0 ≤D 0 v 0 ∈M(m 0 ) |Aq 1 •••q ℓ (v0, m0m, p)|+O η 3 1 3 i=1 Xi D 1/3 0 . ( 9 
|Aq 1 •••q ℓ (v0, m ′ , p)| = X 0 N (P i )=q i | A P 1 •••P ℓ (X0, v0, m ′ , p)|. (9.15) 
Any ideal (a1ν1 + a2ν2 + a3ν3) counted in (9.15) may be factored as

(a1ν1 + a2ν2 + a3ν3) = M0I ℓ i=1 Pi, (9.16) 
where each Pi is a prime ideal with norm in [X θ i , X θ ′ i ] and I is an ideal with

N (I) ∈ I0 := X 4 0 X -ℓ i=1 θ ′ i m0 , X 4 0 (1 + η3)X -ℓ i=1 θ i m0 = [I1, I2], (9.17) 
say.

We choose now O(η -1 3 log X) reals I ∈ I0 such that I0 is covered by the union of the intervals [I, I(1 + η3)[. Let Î0 denote the set of these reals I.

Since we have (N ( 3 i=1 aiνi)/m0, m) = 1 when a ≡ v0 (mod m ′ ), we have (m ′ , N (I) ℓ i=1 N (Pi)) = 1. For brevity we will write A(v0, m ′ , p) in place of A(X0, v0, m ′ , p) when the context will be clear.

To have a precise control of the size of the norms of some ideals, we cover each interval [θi,

θ ′ i ] by O(η -2 2 ) distinct intervals of size O(η 2 2 ) so that, ℓ i=1 [θi, θ ′ i ] = ∪ l∈E R(l), (9.18) 
where E is some subset of N ℓ of size O(η -2ℓ

2

) and each R(l) is of type

R(l) = ℓ i=1 [ti, t ′ i ) with |t ′ i -ti| ≪ η 2 2
(except that in the intervals with t ′ i = θ ′ i we take the whole segment [ti, θ ′ i ]), (cf [14, section 8 p.45]). We write R(l) = R1(l) × R2(l) with R2(l) representing the first ℓ ′ coordinates and R1(l) the final ℓ -ℓ ′ coordinates.

For a polytope R ⊂ R s (for some s), we define

1R(a) = 1, a = p1 • • • ps with N (pi)
= X e i and (e1, . . . , es) ∈ R, 0, otherwise.

Thus we need to study the quantity 

T (R(l)) := X τ ≤p≤X τ ′ I∈I M 0 Ia∈A(v 0 ,m ′ ,p) 1 R(l) (a), (9.19) 

Approximation weights

We recall that η3 = η 10000ℓ 2

2

. A key idea of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] is to approximate the indicator 1R 2 by a weight 1R 2 which will be easier to control. For S ⊂ R s , with s ∈ N, we consider the function ]. This function is so that cS (N (a)) corresponds to the probability for an ideal of norm close to N (a) to have a prime factorisation compatible with S (cf. [14, section 8]). We recall below some properties of this function that we will frequently use later on. Lemma 9.12.

cS (t) = (e 1 ,...,es)∈S s i=1 e i ∈I t de1 • • • des η 1/2 3 s i=1 ei , ( 9 
• If S = s i=1 [ui, u ′ i ] is an hyperrectangle with min ui > ε0 > 0 and s > 1, then

cS (t + δ) -cS (t) ≪ δ t • If S = s i=1 [ui, u ′ i ] is an hyperrectangle with min ui > ε0 > 0 then cS (t) ≪ε 0 1 log X .
Proof. The first part is a particular case of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 8.3 (iii)]. The proof of the second point is a direct computation analogous to [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] :

cS (t) ≤ 1 √ η3 e i ∈[u i ,u ′ i ] 1≤i≤s-1 es∈I t -s-1 i=1 e i d es us s-1 i=1 d ei ui .
The integral over es is O( √ η3(log X) -1 ) and the contribution of the other integrals is O(1).

Let ϵ00 > 0 and R := X ϵ 00 . (9.22)

The approximate weights of 1R 2 are defined by

1R 2 (b) := cR 2 (N (b)) d|b λd, (9.23) 
where

λd := µ(d) log R N (d) , N (d) < R, 0, otherwise.
Remark. Our weights are somewhat simpler than the one introduced in [14], because we don't need to take care of the perturbations caused by a possible exceptional character χ * . (Ultimately we will only require estimates with moduli up to a fixed power of log X, whereas in [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF] larger moduli needed to be considered due to losses occurring in high dimensions.)

introduces few additional complications to Tsieve and Proposition 9.13, but quite significant additional technical details to T1 and Proposition 9.14. Assuming these propositions for now, we can establish Theorem 4.1 by putting all our manipulations together.

Proof of Theorem 4.1 assuming Propositions 9.13 and 9.14. We recall from (9.11) that

Aq 1 •••q ℓ (u0, m, p) = m 0 |m ∞ m 0 ≤D 0 v 0 ∈M(m 0 ) | Aq 1 •••q ℓ (v0, m ′ , p)|+O η 3 1 3 i=1 Xi D 1/3 0 . ( 9 
.27) We focus on the A terms. We use the notation Î0 introduced just after (9.17) and for any given real I ∈ Î0, I is the associated set of ideals defined just after (9.19). We recall from (9.15), (9.17) and (9.19) that

| Aq 1 •••q ℓ (v0, m ′ , p)| = X 0 N (P i )=q i | A P 1 •••P ℓ (X0, v0, m ′ , p)| = X 0 I∈ Î0 N (P i )=q i J∈I M 0 J ℓ i=1 P i ∈ Ã(v 0 ,m ′ ,p) 1 = X 0 I∈ Î0 R 1 ,R 2 ℓ i=1 [θ i ,θ ′ i ]=⊔R 1 ×R 2 J∈I a 1R 1 (a) b JM 0 ab∈ Ã(v 0 ,m ′ ,p) 1R 2 (b).
By assumption of Theorem 4.1, we have τ ′ < ( ℓ ′ i=1 θi -1)/100, and so choosing ϵ00 sufficiently small means that the hypothesis of Proposition 9.13 is satisfied. Thus, summing over p ∈ [P1, P2] (which is [X τ , X τ ′ ] be (9.26)) and applying Propositions 9.13 and 9.14 (with a suitably large constant K) gives

p∈[P 1 ,P 2 ] | Aq 1 •••q ℓ (v0, m ′ , p)| = X 0 I∈ Î0 R=R 1 ×R 2 ℓ i=1 [θ i ,θ ′ i ]=⊔R 1 ×R 2 Tsieve(R) + T1(R) = (2 + O(η 1/2 3 ))η3 log(P2/P1) ϕ(D f ) g(m ′ ) m ′3 T3 + O 3 i=1 Xi (log X) K-O(1) , (9.28) 
where

T3 := X 0 I∈ Î0 R=R 1 ×R 2 ℓ i=1 [θ i ,θ ′ i ]=⊔R 1 ×R 2 | A(X0)|cR(X 4 0 /mI).
Here we used that there are at most O(η -2ℓ

2

) subsets R, O(η -1 3 η1) reals X0 and O(η -1 3 log X) reals I to bound the contribution from T1 by Proposition 9.14.

We now concentrate on T3. Since the subsets R form a partition of

T := ℓ i=1 [θi, θ ′ i ], we find R=R 1 ×R 2 ℓ i=1 [θ i ,θ ′ i ]=⊔R 1 ×R 2 cR(X 4 0 /mI) = cT (X 4 0 /mI), so T3 = X 0 | A(X0)| I∈ Î0
cT (X 4 0 /mI).

By Lemma 9.12 applied to cT we have for all I ∈ Î0 cT (X 4 0 /mI) = 1 η3

I(1+η 3 ) I cT (X 4 0 /mv) v dv + O(η3).
Expanding the definition (9.21) of cT and swapping the order of summation and integration, we find

I∈ Î0 I(1+η 3 ) I cT (X 4 0 /mv) v dv = 1 η 1/2 3 e i ∈[θ i ,θ ′ i ] 1≤i≤ℓ I∈ Î0 v∈[I,I(1+η 3 )[ v∈ X 4 0 m ℓ i=1 X e i , X 4 
0 (1+ √ η 3 ) m ℓ i=1 X e i dv v ℓ i=1 d ei ei = 1 η 1/2 3 e i ∈[θ i ,θ ′ i ] 1≤i≤ℓ X 4 0 (1+ √ η 3 )/(m ℓ i=1 X e i ) X 4 0 /(m ℓ i=1 X e i ) dv v ℓ i=1 d ei ei = log(1 + √ η3) η 1/2 3 ℓ i=1 log θ ′ i θi .
We note that this is independent of X0, so we find

T3 = log(1 + √ η3) η 3/2 3 ℓ i=1 log θ ′ i θi X 0 | A(X0)| + O log X X 0 | A(X0)| = (1 + O( √ η3)) η3 ℓ i=1 log θ ′ i θi | A(X)|. (9.29) 
Putting together (9.27), (9.28) and (9.29) we find

p∈[P 1 ,P 2 ] q 1 ,...q ℓ q i ∈[X θ i ,X θ ′ i ] Aq 1 •••q ℓ (u0, m, p) = 2 log P 2 P 1 ϕ(D f ) ℓ i=1 log θ ′ i θi | A(X)| m 0 |m ∞ m 0 ≤D 0 v 0 ∈M(m 0 ) g(m ′ ) m ′3 + O η 1/2 3 3 i=1 Xi + O η 3 1 3 i=1 Xi D 1/3 0 . ( 9 

.30)

Finally it remains to estimate the inner double sum. The summand is independent of v0, so recalling from (9.12) that m ′ = m0m we are left to estimate 

m 0 <D 0 m 0 |m ∞ |M(m0)| (mm0) 3 P|(m) ∞ k=2 ϱv(P k ) N (P k ) -1 . ( 9 
| ≤ m 2 0 m, and thus for any given m the sum over m0 converges. We may therefore extend it to all m0 ≥ 1 cost of an admissible error term. Next we note that the sets of the a ∈ [1, X] 3 with a ≡ u0 (mod m) can be partitioned into sets of the a ∈ [1, X] 3 such that a ≡ v0 (mod mm0), with m0 ≤ X 2 and v0 ∈ M(u0), and so

m 0 <D 0 m 0 |m ∞ |M(m0)| (mm0) 3 = (1 + O(D -1/4 0 )) m 0 <X 2 m 0 |m ∞ |M(m0)| (mm0) 3 = (1 + O(D -1/4 0 ) X 3 + O(X 2 ) m 0 <X 2 m 0 |m ∞ v 0 ∈M(m 0 ) a∈[1,X] 3 a≡v 0 (mod m 0 ) 1 = (1 + O(D -1/4 0 )) X 3 + O(X 2 ) a∈[1,X] 3 a≡u 0 (mod m) 1 = 1 m 3 (1 + O(D -1/4 0 
)).

Substituting this into (9.30) and recalling from (9.13), (9.14

) that D0 = (log X) 4K , η3 ≪ (log X) -3K and | A(X)| = η 3 1 X1X2X3 + O(η3X1X2X3) gives Theorem 4.1.
10 Proposition 9.13: The term T sieve (R)

In this part we obtain an analogue of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 8.6] by expanding the sieve terms and applying Proposition 9.11.

If a and b are some ideals satisfying 1R 1 (a) = 1R 2 (b) = 1 then a and b factor into prime ideals as a =

ℓ i=ℓ ′ +1 Pi, b = ℓ ′ i=1 Pi with N (Pi) ∈ [X t i , X t i (1 + O(η 2 2 log X))] for 1 ≤ i ≤ ℓ. In particular, N (b) ∈ [B 4 1 , B 4 1 (1 + O(η 2 2 log X))] (10.1) 
where

B 4 1 := X ℓ ′ i=1 t i . (10.2) 
Moreover, from the definition (9.21) of cR 2 , we see that

1R 2 (b) is also supported on N (b) ∈ [B 4 1 , B 4 1 (1 + O(η 2 2 log X))]. Lemma 10.1. Let B 4 1 > X 1+ϵ R and R = R1 × R2. Then we have Tsieve(R) = M1(R) + E1(R)
where M1(R) is given by

M1(R) := p∈[P 1 ,P 2 ] p≡1 (mod D f ) I∈I a 1R 1 (a) N (d)<R N (d),m)=1 λd × cR 2 X 4 0 m0N (aI) | A adI (v0(y), m ′ , p)|, and 
E1(R) satisfies R X 0 I∈ Î0 |E1(R)| ≪ η 1/2 3 η -2ℓ 1 (log X) 11 3 i=1
Xi.

Proof. We substitute our definition (9.23) of 1R 2 into our expression (9.24) for Tsieve, and write u = M0Iab. This gives

Tsieve(R) = p∈[P 1 ,P 2 ] p≡1 (mod D f ) I∈I a 1R 1 (a) N (d)<R λd u∈ A(v 0 ,m ′ ,p) M 0 Iad|u cR 2 (N (u/aIM0)). (10.3) If u ∈ A(v0, m ′ , p) then N (u) ∈ [X 4 0 , X 4 0 (1 + η3)]
. By Lemma 9.12, this implies cR 2 (N (u/aIM0)) = cR 2 (X 4 0 /m0N (aI)) + O(η3). Thus we write

Tsieve(R) = M1(R) + O(E1(R)), (10.4) 
where M1(R) is as given in the lemma and We then apply Proposition 9.11 to estimate | A IadM 0 (v0, m ′ , 1)|, recalling that N (IadM0) ≪ X 4 R/B 4 1 and m ′ ≪ (log X) O(1) . This gives

E1(R) := η3 p∈[P 1 ,P 2 ] p≡1 (mod D f ) I∈I a 1R 1 (a) N (d)<R |λd|| A Iad (v0, m ′ , p)|.
E1(R) ≪ η3 I∈I a 1R 1 (a) N (d)<R (N (d),m ′ )=1 |λd| | A(X0, X )|ϱv(adI) N (aId)(m ′ ) 3 + X o(1) N (d)<R (N (d),m)=1 |λd| X 2 X 4 R B 4 1 1/3 + X 4 R B 4 1 X . (10.6) 
Crudely, if B 4 1 > X 1+ϵ R, we see the second term in (10.6) contributes to (10.6)

≪ X 3+o(1) XR 4 B 4 1 + XR 4 B 4 1 1/3 ≪ X 3-ϵ/4 . (10.7) 
By an Euler product upper bound and Lemma 9.6, we see that First we simplify Z1(I). Since this is a sum of a smooth function over products of ℓ prime ideals in a bounded region, this can be estimated using the Prime Ideal Theorem. Following the arguments of [14, Section 8, proof of Lemma 8.6] we find that

I∈ Î0 I∈I a 1R 1 (a) N (d)<R (N (d),m ′ )=1 |λd| | A(X0, X )|ϱv(adI) N (aId)(m ′ ) 3 (10.8) ≪ (log X)| A(X0, v0, m ′ )| N (I),N ( 
Z1(I) = cR 1 ×R 2 (X 4 0 /m0N (I)) + O(η3).
We recall that I = {I : (N (I), m) = 1, N (I) ∈ [I, I + η3I]} and R = cR1 × R2. Thus, by Lemma 9.12, we have

Z1(I) = cR(X 4 0 /m0I) + O(η3). (10.16) 
Now we consider Z2(I). By Lemma 9.5 we find that Putting together (10.16) and (10.17), we see that

Z2(I) = h(I)g((m ′ )) S γK m ′3 + O(16 ω((m)I) exp(-c log R)), (10.17 
I∈I Z1(I)Z2(I) = g((m ′ )) ScR(X 4 0 /m0I) γK m ′3 J∈I h(J) + O(η 2 3 I). (10.18)
Since h(I) is multiplicative, the sum can be calculated by a contour computation

J∈I h(J) = 1 2πi 2+i∞ 2-i∞ I s ((1 + η3) s -1) s I h(I) N (I) s ds = Ress=0 I s ((1 + η3) s -1) s I h(I) N (I) s + O(exp(-c log R)). (10.19) 
To simplify some notation we will write 

g(b) := 1R 2 (b) -1R 2 (b). ( 11 
T1(R) = C∈Cl K a 0 ,b 0 (mod m ′ ) N (c)(a 0 ⋄b 0 ) i ≡(v 0 ) i (mod m ′ ), for i=1,2,3,4
Tc(R, a0, b0), (11.2) with (a0)4 = 0 since (a ⋄ b)4 = 0 and c ∈ C is a well chosen representative, and c ′ as above

Tc(R, a0, b0) = p∈[P 1 ,P 2 ] p≡1 (mod D f ) I∈I a≡a 0 (mod m ′ ) b≡b 0 (mod m ′ ) M 0 Ic|(α),c ′ |(β) (αβ)/(N (c))∈ A(p) 1R 1 (α) M0Ic g (β) c ′ , with now A(p) = A(X , 0, 1, p).
We recall that our previous conditions (10.1), (10.2) imply that

N (β) ∈ [B 4 , B 4 (1 + O(η 2 2 log X))],
where

B = B1N (c ′ ) 1/4 ∈ [B1, B1(log X) o(1) ]
The support of 1R 1 implies that

N (α) ∈ [A 4 , A 4 (1 + η 2 2 log X)]
where (recalling that N (I) ∈ [I, I(1 + η3)] from (9.20))

A 4 := X ℓ i=ℓ ′ +1 t i N (c)m0I ≪ X ℓ i=ℓ ′ +1 t i I(log X) 5K . (11.3) 
We note that A 4 B 4 ≪ X 4 (log X) 6K . We will use the notation of [14, p. 80 and 71]: Let F be a fundamental domain such that if 1R 1 ((α)/M0Ic) = 1 and α ∈ F then ai ≪ A for all i = 1, 2, 3, 4 and similarly, bi ≪ B for all 1 ≤ i ≤ 4 whenever β ∈ F and g((β)/c) ̸ = 0. By slight abuse of notation, we will also regard F as a subset of R 4 so that a ∈ F corresponds to α ∈ F .

We will concentrate on ideals (β) with not too many divisors. For this we introduce a slight variant of g for a suitably large fixed constant K1. Following [14, section 11] except that we apply Lemma 9.8, we prove that we can replace gb by g b with a error term less than O(η4X 3 0 (log X) O (1) ). This error is sufficiently small for Proposition 9.14 when K1 is chosen large enough in term of K.

g b := 1R 2 (b/c ′ ) -1R 2 (b/c ′ ) if τ (b) ≤ η -1
Thus now we have to concentrate on sums Tc(R, a0, b0) = for some λK depending only on K (λK = γK /hK , but we do not need this). We note that from the support of 1R 1 and 1R 2 and 1R 2 we my restrict to a ∈ CA and b ∈ CB. It will make some later technicalities simpler if we introduce the restriction p ∤ N (b) to the terms in T1. By Proposition 9.11 and the divisor bound, we can do this at the cost of an error term of size (11.9)

Dispersion method

We swap the order of summation, and apply Cauchy-Schwarz. The ideals I and a/I are coprime since N (I) < X θ i for all 1 ≤ i ≤ ℓ. In the application of Cauchy-Schwarz we can group these ideals together. We recall that the set RX 0 is defined in (11.4). This gives Thus we see that 1.

Thus we wish to show that T4 is small compared with A 2 B 6 .

Collinear b 1 , b 2

We separate the situation when b1 and b2 are collinear (in which case we have ∧(b1, b2) = 0 where ∧(x, y) is the L 2 norm of the six 2 × 2 subdeterminants of the 2 × 4 matrix with columns x and y). Thus we have T4 = T5 + T6, (11.11) where T5 is those terms with ∧(b1, b2) = 0 and T6 is those terms with ∧(b1, b2) ̸ = 0. We first concentrate on T5.

Lemma 11.1. T5 ≪ X o(1) A 3 B 3 .

Proof. Let c be the shortest non-zero vector with integer components which is collinear with b1 (this is b1 divided by the gcd of its components).

Then we see that b1 = λ1c for some λ ∈ Z, and since b2 is collinear with b1, we also have that b2 = λ2c for some λ2 ∈ Z. Thus we see that 1.

We see that the inner sum is O(1) since P1 ≫ B ϵ and f (λ1a ⋄ c) ≪ B O (1) . We then split the size of ∥c∥ into dyadic ranges, giving

T5 ≪ η -2 4 (log X) sup C≪B B 2 C 2 c∈Z 4 ∥c∥≍C a∈Z 4 ∩C A (a⋄c) 4 =0
1.

We now let z = (a ⋄ c). By the divisor bound, given z there are O(τK (z)) choices of a, c. Thus we see that

T5 ≪ η -2 4 (log X) sup C≪B B 2 C 2 z 1 ,z 2 ,z 3 ≪AC τK (z1ν1 + z2ν2 + z3ν3) ≪ η -3 4 A 3 B 3 .
Thus we are left to bound T6.

Lattice counts

We now concentrate on the inner sum. This gives the result.

We are now able to make progress on our aim of bounding T8. Lemma 11.7. Let T8 be as given by (11.12). Then we have T8 ≪ η4A2 B 6 + η -12 This implies that p| det (λij4) 1≤i,j≤4 which is not possible for p large enough if this determinant is non zero. But this determinant can't be zero, otherwise, there would be µ1, µ2, µ3, µ4 such that This gives the result.

We're now in a position to simplify our sum. .

Using our expression (11.18), we see that this is given by .

  n∈[x,2x] P + (P (n))≥x 1+η 1 = n∈[x,2x] ∃p|(n-r 1 ): N P (p)≥x 1+η 1 ≫ 1 log x n∈[x,2x] p e |(n-r 1 ) N P (p)≥x 1+η log NP (p).By inclusion-exclusion and the fact that p e |(n-r 1 ) log p = log P (n), we have that the double sum on the right hand side is given byn∈[x,2x] log P (n)-n∈[x,2x] p e |(n-r 1 ) N P (p)≤2x log NP (p)-n∈[x,2x] p e |(n-r 1 ) 2x<N P (p)<x 1+η log NP (p).

( 3 +

 3 o(1))x log x -n∈[x,2x] n∈A p e |(n-r 1 ) 2x<N P (p)<x 1+η log NP (p) -n∈[x,2x] n / ∈A p e |(n-r 1 ) 2x<N P (p)<x 1+η log NP (p).

  n∈[x,2x] p e |(n-r 1 ) N P (p)≥x 1+η log NP (p) ≥ δ0#A log x -(3η + o(1))x log x.

Theorem 4 . 1 (

 41 localised factors of values of incomplete norm forms). Let f (X1, X2, X3) ∈ Z[X1, X2, X3] be a homogeneous quadratic polynomial which splits into two distinct linear factors

  Factorisations conditions of auxiliary polynomials:The values of the forms q1(a1, a2, a3) and q2(a1, a2, a3) evaluated at a1, a2, a3 can be factored as: , a2, a3) = q21q22 with q21 ≡ 1 (mod Dq 2 ),

  ) where C is the projection of R onto the final 3 coordinates and f (m) := U (ã0 + mNP (KA)), g(m) := B14(ã0 + mNP (KA)).

Lemma 8 . 1 ((a 1

 811 Removing the variable a0). Let 12θ0 + 22α0 < 1. We have ,a 2 ,a 3 )∈C∩G I(a1, a2, a3)h(q(a1, a2, a3)),(8.1)g(p) := |{P : NP (P) = p}|, (8.2)

8. 4 1 Lemma 8 . 7 (

 4187 Application of Theorem 4.Application of Theorem 4.1). Let S06(H) be as in Lemma 8.6. Then we have S06(H) ≫ η 3 1 A1A2A3.

4 .

 4 For any ideals a, b, ϱv(ab) = ϱv(a)ϱv(b) if (N (a), N (b)) = 1.

Lemma 9 . 5 .

 95 There exists a constant c > 0 such that for any ideal I of OK , m ∈ N, R ≥ 2 we have

9. 2 For 1 ≤

 21 Multiplication in O v Definition. For any vectors d, e ∈ Z 4 \ {0}, we define d ⋄ e as be the vector b ∈ Q 4 such that i ≤ 4 we denote by (d ⋄ e)i the coordinate bi.

Lemma 9 . 7 .

 97 For any d ∈ Z 4 \ {0} let Λ d be the subset of Z 4 defined byΛ d = {e ∈ Z 4 : (d ⋄ e)4 = 0}.Then Λ d is a lattice of rank 3 and det (Λ d ) ≪ ∥d∥/D,where D is the GCD of the components of d.

4 k=1λλ 4 i=1Lemma 9 . 8 .≪ X 3

 44983 ijk ν k . For all d, e ∈ Z 4 , ijk diej ν k Identifying the fourth coordinate, we deduce for all d ∈ Z 4 \ {0}, Λ d = e ∈ Z 4 : λij4di, for j = 1, 2, 3, 4 correspond to the coefficients of the fourth row of the matrix in basis v of the multiplication by d = d1ν1 + d2ν2 + d3ν3 + d4ν4. Since d ̸ = 0, this matrix is invertible and at least one of these coefficients is non zero. This shows that Λ d has rank 3. By [7], the determinant of Λ d is equal to the determinant of the dual lattice that is for us the lattice spanned by the vector of this vector have size O(max 1≤i≤4 |di|), det (Λ d ) ≪ ∥d∥. This ends the proof in the case D = 1. In the case D > 1, we observe that Λ d = Λ d D , and we can apply the previous case. For any m ∈ N and X ≥ 3, we have max(|x 1 |,|x 2 |,|x 3 |)≪Xτ (log X) Om(1) .

Lemma 9 . 9 .

 99 Let d ∈ Z 4 \ {0} ∩ [-D, D] 4 and Λ d as in Lemma 9.7. Let z1(d) denote a shortest non-zero vector in Λ d . Then we have ∥z1(d)∥ ≪ D 1/3 and |{d ∈ [1, D] 4 : ∥z1(d)∥ ≤ Z}| ≪ D 3+o(1) Z 3 .

  , m, p) then there exists d ∈ N such that N (a1ν1 + a2ν2 + a3ν3) = d ℓ i=1 qi. The conditions on qi imply that (m, q1• • • q ℓ ) = 1 but in general, it is not clear that (d, m) = 1.This may gives some complications in the application of Proposition 9.11. Let us write m0 = (d, m ∞ ) and recall the notation X = 3 i=1 [Xi, Xi(1 + η1)[ from (4.1). In almost cases, m0 is small. Let D0 := (log X) 4K . (9.8)

  with I := {I : N (I) ∈ [I, I + η3I[, (N (I), m) = 1} (9.20) for each of the O(η -2ℓ

( 10 . 5 )

 105 We concentrate on E1(R). For any( 3 i=1 xiνi) ∈ A, the number of primes p ∈ [P1, P2] such that p|f (x1,x2, x3) is finite. This allows us to remove the summation over p and replace | A Iad (v0, m ′ , p)| with | A Iad (v0, m ′ , 1)| in E1(R) at the cost of a factor O(1).

2

 2 a),N (d)<X |ρv(adI)| N (adI) ≪ (log X) 9 | A(X0, v0, m ′ )|. (10.9) where M2(R) := | A(X0, X )| p∈[P 1 ,P 2 ] p≡1 (mod D f ) |{y1, y2, y3 (mod p) : f (y1, y2, y3) ≡ 0 (mod p)}|. (10.15)

  e ) N (P e ) -ρv(P e+1 ) N (P e+1 ) .

. 1 )

 1 We first split the sum over b into ideal classes C ∈ ClK . Let c ∈ C with (N (c), m ′ ) = 1 and N (c) ≪ m ′o(1) ≪ (log X) o(1) and let c ′ = (N (c)/c). Since the ideals in the set A are principal, the ideals M0Iac and bc ′ are principal. Therefore they are respectively of the form (α), (β) with M0Ic|(α), c ′ |(β) with W α = a1ν1 + a2ν2 + a3ν3 + a4ν4, W β = b1ν1 + b2ν2 + b3ν3 + b3ν4, where a1, a2, a3, b1, b2, b3, b4 ∈ Z and with a, b lying in the fundamental domain D. We will write a = (a1, a2, a3, a4), b = (b1, b2, b3, b4). In order to handle the modulo m condition between b and Ia we split the sums according to some congruence classes on α, β modulo m ′ . Together this gives

RX 0 := x ∈ R 4 :R b 1 ,b 2 :

 412 xi ∈ [Xi, Xi(1 + η1)], i = 1, 2, 3, x4 = 0, = a ∈ R 4 : ∥a∥ ∈ [A, 2A], a ⋄ b1 ∈ RX 0 , a ⋄ b2 ∈ RX 0 .

0 1FFor T > 0 ,

 00 p∈[P 1 ,P 2 ] p≡1 (mod D f ) I∈I a≡a 0 (mod m ′ ) b≡b 0 (mod m ′ ) M 0 Ic|(α),c ′ |(β) I(αβ)/(N (c))∈ A(p)a⋄b∈R X we denote by CT the subset of R 4 defined by CT = {a ∈ F : N (a) ∈ [T 4 , 2T 4 ]}, so that a ∈ CA and b ∈ CB. By Weber's Theorem [19], we have |CT | = λK T 4 + O(T 3 ),

≪ 1 +X 2 B 4 8 ) 1 .

 12481 p∈[P 1 ,P 2 ] b∈C B N (b)≡0 (mod p) bu∈ A(0,1,p) X o(1) ≪ X ε (X 3 P -1We recall that f ∈ Z[X1, X2, X3] is quadratic and homogeneous and D f is the associated modulus introduced in the hypothesis of Theorem 4.1 so that when p ≡ 1 (mod D f ), the function f (mod p) factors as the product of two linear factors. Thus the condition p|f (a ⋄ b) is equivalent to p|vp •(a⋄b) or p|wp •(a⋄b) for two non-zero vectors vp, wp ∈ Z 4 . There are O(p 5 ) choices of ap, bp (mod p) such that (ap ⋄ bp)4 = vp • (ap ⋄ bp) = wp • (ap ⋄ bp) whenever p is sufficiently large in terms of f . Therefore, as above, provided (11.8) holds, the contribution of the a, b such that p|vp • (a ⋄ b) and p|wp • (a ⋄ b) is bounded by X o(1) p∈[P 1 ,P 2 ] ap,bp∈{1,...,p} 4 (ap⋄bp) 4 ≡0 (mod p) p|vp•(ap⋄bp) p|wp•(ap⋄bp) b∈Z 4 ∩C B b≡bp (mod p)u∈ A(0,1,p) b|u u≡(ap⋄bp) (mod p) 1 ≪ X 3+ε P -1Putting this together, we see that it suffices for us to estimate for each C ∈ ClK with a representative c ∈ C and each a0, b0 (mod m ′ ) the sumsT3(R) := p∈[P 1 ,P 2 ] p≡1 (mod D f ) I∈I b∈Z 4 ∩C B b≡b 0 (mod m ′ ) p∤N (b)a∈Z4 ∩C A (a⋄b)∈R X 0 p|vp•(a⋄b) a≡a 0 (mod m ′ )

T 2 3 ≪ A 4 a∈Z 4 b 2 .

 3442 ∩C A a≡a 0 (mod m ′ ) p∈[P 1 ,P 2 ] p≡1 (mod D f ) b∈Z 4 ∩C B a⋄b∈R X 0 p|vp•(a⋄b) b≡b 0 (mod m ′ ) p∤N(b)g

p 1 g b 1 g b 2 a∈Z 4

 124 ,p 2 ∈[P 1 ,P 2 ] p 1 ≡p 2 ≡1 (mod D f ) b 1 ,b 2 ∈Z 4 ∩C B b 1 ≡b 2 ≡b 0 (mod m ′ ) p 1 ∤N (b 1 ), p 2 ∤N (b 2 ) ∩C A a∈R b 1 ,b 2 p 1 |vp 1 •(a⋄b 1 ) p 2 |vp 2 •(a⋄b 2 )

1 ,b 2 1 .≪ B 1 3 4 C 3 ≪ B 17/ 3 . 4 C 3 d 3 . 2 b 2 B 4 C 3 d 3 p 4 ≪ B 6 p 8 + B 17/ 3 .Lemma 11 . 6 . 6 p 7 + B 17/ 3 . 5 C 3 Cd B 2 B 8 p 5 C

 11134334322448311667353285 Let Λ b 1 ,b 2 and Λ b 1 ,b 2 ,p 1 ,p 2 denote the lattices Λ b 1 ,b 2 := {x ∈ Z 4 : (x ⋄ b1)4 = (x ⋄ b2)4 = 0}, Λ b 1 ,b 2 ,p 1 ,p 2 := {x ∈ Λ b 1 ,b 2 : p1|vp 1 • (x ⋄ b1), p2|vp 2 • (x ⋄ b2)}.Thus the inner sum in T6 isa∈C A ∩Λ b 1 ,b 2 ,p 1 ,p 2 a∈R b If b1, b2 are not collinear, then Λ b 1 ,b 2 is a lattice of rank 2, and so it has a Minkowski-reduced basis {z1, z2} ([14, Lemma 4.1] for example). If ∧(b1, b2) ≪ B then b1 lies within O(1) of the line proportional to b2, and so there are O(B) choices of b1. Since det (Λ b 1 ,b 2 ) ≥ 1, these terms contribute a total (ignoring the congruence conditions (mod p) for an upper bound) ≪ ∥b 2 ∥≪B O(B) ≪ B 5 . If ∧(b1, b2) ∈ [B, B 4/3 ] then we separately consider those with ∧(b1, b2) ∼ B 2 /C for C ∈ [B 2/3 , B] running through powers of 2, and again drop the congruence constraints. By Lemma 11.4 there are choices of b1 given b2.If ∧(b1, b2) ∼ B 2 /C then det (Λ b 1 ,b 2 ) ≥ B/C (since D b 1 b 2 ≤ B). Thus these terms contribute ≪ C=2 j ∈[B 2/3 ,B] b 2 ∈Z 4 ∩C B C B BThus we are left to consider the terms with∧(b1, b2) ∼ B 2 /C for some C ≤ B 2/3 . The condition D b 1 ,b 2 = d forces b1 ∝ b2 (mod d),and so b1 ≡ λb2 (mod d) for some λ ∈ {1, . . . , d}. Since c1 ̸ ∝ c2 (mod p), we see p ∤ d. Thus b1 ≡ c0(λ) (mod dp), where c0(λ) ≡ λb2 (mod d) and c0(λ) ≡ c1 (mod p). By Lemma 11.4, the number of choices of b1 is therefore≪ 1≤λ≤d #C C,pd,c 0 (λ),b 2 ≪ d 1 If D b 1 ,b 2 = d and ∧(b1, b2) ∼ B 2 /C then det (Λ b 1 ,b 2 ) ≫ B 2 /(Cd).Thus we find that the contribution from terms with ∧(b1, b2)≥ B 4/3 is b 1 , b 2 ∈Z 4 ∩C B ∧(b 1 ,b 2 )≥B b 1 ≡c 1 (mod p) b 2 ≡c 2 (mod p) primitive 1 det (Λ b 1 ,b 2 ) ≪ 1≤d≤B C=2 j ≪B 2/3 dC B ∈Z 4 ∩C B b 2 ≡c 2 (mod p) B +Thus we have a suitable bound in each case, giving the result. Let c1, c2 ∈ Z 4 be non-zero (mod p) with c1 ∝ c2 (mod p).Then we haveb 1 , b 2 ∈Z 4 ∩C B ∧(b 1 ,b 2 )̸ =0 primitive b 1 ≡c 1 (mod p) b 2 ≡c 2 (mod p) 1 det (Λ b 1 ,b 2 ) ≪ BProof. This is similar to the proof of Lemma 11.5. Since the estimates in the proof of Lemma 11.5 when ∧(b1, b2) ≪ B 4/3 didn't depend on whether p|D b 1 ,b 2 or not, an identical argument shows that the contribution of b1, b2 with ∧(b1, b2) ≪ B 4/3 contributes O(B 17/3 ). Therefore we just need to consider the contribution when ∧(b1, b2) ≫ B 4/3 . We split the summation according to ∧(b1, b2) ∼ B 2 /C and D b 1 ,b 2 = d. Since c1 ∝ c2 (mod p), we have c1 ≡ λ0c2 (mod p) for some λ0. Since b1 ≡ c1 (mod p) and b2 ≡ c2mod p we then see that p|d. The condition D b 1 ,b 2 = d forces b1 = λb2 (mod d) for some λ, with λ ≡ λ0 (mod p). Thus, by Lemma 11.4, the number of choices of b1, b2 with ∧(b1, b2) ∼ B 2 /C and D b 1 ,b 2 = d is ≪ b 2 ∈Z 4 ∩C B b 2 ≡c 2 (mod p) 1≤λ≤d λ≡λ 0 (mod p) #C C,d,λb 2 ,b 2 ≪ 1 3 d 3 + B 5 . When ∧(b1, b2) ∼ B 2 /C and D b 1 ,b 2 = d we have det (Λ b 1 ,b 2 ) ≫ B 2 /(Cd). Thus the total contribution from terms with ∧(b1, b2) ≫ B 4/3 is d≤B p|d C=2 j ≪B 2/3 d 3 + B 5 ≪ B 6 p 7 + B 17/3 .

4 A 2

 42 sup C 1 ,C 2 |T11| + |T12| ,where the supremum is over all hypercubes C1, C2 ⊆ CB of side length η3 4 B andT11 := p∈[P 1 ,P 2 ] p≡1 (mod D f ) b 1 ∈Z 4 ∩C 1 ,b 2 ∈Z 4 ∩C 2 b 1 ≡b 2 ≡b 0 (mod m ′ ) ∧(b 1 ,b 2 )̸ =0 p∤N (b 1 )N (b 2 ) g b 1 g b 2 f b 1 ,b 2 ,p,p det (Λ b 1 ,b 2 ) ,(11.13)T12 := p 1 ,p 2 ∈[P 1 ,P 2 ] p 1 ≡p 2 ≡1 (mod D f ) 1 p1p2 b 1 ∈Z 4 ∩C 1 ,b 2 ∈Z 4 ∩C 2 b 1 ≡b 2 ≡b 0 (mod m ′ ) ∧(b 1 ,b 2 )̸ =0 p 1 ∤N (b 1 ), p 2 ∤N (b 2 ) g b 1 g b 2 D b 1 ,b 2 ∧(b1, b2) . (11.14)Proof. Let η5 := η 3 4 . We wish to replace R ′′ b 1 ,b 2 with a quantity which doesn't depend on b1, b2 by splitting CB into O(η -4 5 η 4

O 1 p 2 .

 2 and then the matrix of the multiplication by µ1ν1 + µ2ν2 + µ3ν3 + µ4ν4 wouldn't be invertible. Thus cp = 0 for all p ∈ [P1, P2].Thus, we have that1 p 2 S1(c1, c2) = 1 p a (0) normal 1 (a (0) ⋄c 1 ) 4 ≡v•(a (0) ⋄c 1 )≡0 (mod p) (a (0) ⋄c 2 ) 4 ≡v•(a (0) ⋄c 2 )≡0 (mod p)+ However, we havec 1 ,c 2 (mod p) 1 p a (0) normal 1 (a (0) ⋄c 1 ) 4 ≡v•(a (0) ⋄c 1 )≡0 (mod p)(a (0) ⋄c 2 ) 4 ≡v•(a (0) ⋄c 2 )≡0 (mod p) ≪ p 5 .

Lemma 11 .

 11 12. LetT ′ 11 := p∈[P 1 ,P 2 ] p≡1 (mod D f ) b 1 ∈Z 4 ∩C 1 ,b 2 ∈Z 4 ∩C 2 b 1 ≡b 2 ≡b 0 (mod m) ∧(b 1 ,b 2 )̸ =0 p∤N (b 1 )N (b 2 )D b 1 ,b 2 g b 1 g b 2 f b 1 ,b 2 ,p,p det (Λ b 1 ,b 2 ).Then we haveT ′ 11 ≪ X o(1) B 6 P1 + X o(1) P 7 2 B 17/3 .Proof. Firstly, by splitting b1, b2 into residue classes (mod p), we have thatT ′ 11 = p∈[P 1 ,P 2 ] p≡1 (mod D f ) c 1 ,c 2 (mod p) c 1 ̸ ∝c 2 N (c 1 )N (c 2 )̸ =0 (mod p) b 1 ∈Z 4 ∩C 1 ,b 2 ∈Z 4 ∩C 2 b 1 ≡b 2 ≡b 0 (mod m) ∧(b 1 ,b 2 )̸ =0 b 1 ≡c 1 (mod p) b 2 ≡c 2 (mod p) g b 1 g b 2 f b 1 ,b 2 ,p,p det (Λ b 1 ,b 2 )

p∈[P 1 ,P 2 ] 4 j=0 2 b 1

 12421 p≡1 (mod D f ) c 1 ,c 2 (mod p) c 1 ̸ ∝c 2 N (c 1 )N (c 2 )̸ =0 (mod p) Sj(c1, c2) p ∈Z 4 ∩C 1 ,b 2 ∈Z 4 ∩C 2 b 1 ≡b 2 ≡b 0 (mod m) ∧(b 1 ,b 2 )̸ =0 b 1 ≡c 1 (mod p) b 2 ≡c 2 (mod p) g b 1 g b 2 det (Λ b 1 ,b 2 )

  1 , which is clearly sufficient for our slightly stronger bound.

	Lemma 9.6. For any 2 ≤ R ≤ x we have		
		N (d)≤R	µ 2 (d)	N (I)≤x	ϱv(dI) N (dI)	≪ (log x) 8 .
	Proof. By Rankin's trick, we have				
	N (d)≤R	µ 2 (d)	N (I)≤x	ϱv(dI) N (dI)	≤	N (P)≤x	1 + 2	k≥1	ϱv(P k ) N (P k )	.
	By Lemma 9.4, if P is a degree 1 prime ideal above p then the term in
	parentheses is 1 + 2/p + O(1/p 2 ), and if P is of degree more than 1 above
	p then this is 1 + O(1/p 2 ). The result now follows from the Prime Ideal
	Theorem.									

  ,λ 2 ≪B/∥c∥ a∈Z 4 ∩C A (a⋄c) 4 =0 p 1 ,p 2 ∈[P 1 ,P 2 ] p 1 |f (λ 1 a⋄c) p 2 |f (λ 2 a⋄c)

	T5 ≪ η -2 4	
	c∈Z 4	λ 1
	∥c∥≪B	

Similarly, in the work of Heath-Brown[START_REF] Heath-Brown | The largest prime factor of x 3 + 2[END_REF] dealing with cubic P (X), the associated form q is a binary cubic, and it suffices to just obtain distribution estimates for q in arithmetic progressions

We can check that P 1 (X) + (r 1 r 2 + r

r

) and P 2 (X) + (r 1 r 2 + r 3 r 4 )(X + i<j r i r j ) have coefficients which are symmetric integer polynomials in the r i , and so are in Z[X]. Since r 1 r 2 + r 3 r 4 ∈ Z, it follows that P 1 (X) and P 2 (X) are in Z[X].

If ∆ 1 = ∆ 2 = 0 then the roots of r 1 + r 2 and r 1 r 2 are in Q. This contradicts the fact that [Q(r 1 ) : Q] =

In[START_REF] De La Bretèche | Plus grand facteur premier de valeurs de polynômes aux entiers, with an appendix : Explications des calculs du résultant dans le cas général by R. de la Bretèche and J.-F. Mestre[END_REF] and[START_REF] Dartyge | Le problème de Tchébychev pour le douzième polynôme cyclotomique[END_REF] this form corresponds to the form q 4 .

i=1aiνi ∈ OK ⇔ ∃u ∈ V0 : a ≡ u (mod W ).

This definition of S is slightly different as the one given in[START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]. In the present paper S doesn't depend on some modulus q * or m.

i=1aiνi .

) choices of l ∈ E.

) smaller hypercubes of side length η5B. We see that vol (R ′′ b 1 ,

b 2 ) depends continuously on the components of b1 and b2, and that vol (R ′′ b 1 ,b 2 ) is always of size O(A 2 ). Moreover, if we restrict b1, b2 to hypercubes of side length η5B

Proof. Let α ∈ OK . There exist (a1, a2, a3, a4) ∈ Z 4 and (a ′ 1 , a ′ 2 , a ′ 3 , a ′ 4 ) ∈ Q 4 such that α = 4 i=1 aiωi = 4 i=1 a ′ i νi. With our previous notation,

The matrix (Lwv) -1 is of type 1 W (w ′ ij ) 1≤i,j≤4 where the coefficients w ′ ij are integers. This implies the first part of the lemma.

The second part of the lemma is also a direct consequence of the change of basis formula. With our previous notation we have The set V0 is the the subset of {0, . . . , W -1} 4 formed by all the solutions of these congruences. Lemma 9.2. Let a be a principal ideal. Then there is a generator α of a such that |α σ | ≪ N (a) 1/4 for all embeddings σ : K → C. Furthermore there exists W > 0 depending only on v such that

aiνi for some integers ai ≪ N (a) 1/4 .

Proof. The first part is a particular case of [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemma 4.3]. The last part follows also from this lemma combined with Lemma 9.1.

Lemma 9.3. Let C be an hypercube of side length δ0B which contains a point b0 ∈ Z 4 such that ∥b0∥ ≪ B. We suppose that b0 = (W -1 4 i=1 (b0)iνi) is an integral ideal whose norm satisfies N (b0) = B 4 0 ≫ B 4 . Let q such that W |q and 10qW ≤ δ0B.

Then there exists a set W(b0) of W 4 elements β ′ 0 ∈ OK with β ′ 0 = W - 1 4 i=1 (b ′ 0 )iνi and with b ′ 0 ∈ C, such that for all b ∈ C, b ≡ b0 (mod q) if and only if β = 1 W 4 i=1 biνi ∈ OK and there exists β ′ 0 ∈ W(b0) with β ≡ β ′ 0 (mod q).

Any a ∈ A(v0, mm0) is such that the associated ideal ( 3 i=1 aiνi) may be factored as ( 3 i=1 aiνi) = M0J with N (M0) = m0 and (N (J), m) = 1. This property will simplify some GCD considerations in the next sections. Let m ′ := m0m ≪ (log x) 5K (9.12) denote this extended modulus (where we obtained the size bound from (9.7) and (9.8)).

Switching to ideals with norms in small boxes

We introduce the sets of principal ideals of OK (recalling X from (4.1))

For any a ∈ A there is exactly one (a1, a2, a3) ∈ X such that a = (a1ν1 + a2ν2 + a3ν3). We justify this in a similar way as in [14, Proof of Lemma 5.2 assuming Proposition 5.1 pp. [START_REF] Jensen | Generic Polynomials: Constructive Aspects of the Inverse Galois Problem[END_REF][START_REF] Maynard | Primes represented by incomplete norm forms[END_REF].

X by (4.4) and then

).

If α ̸ = β then βα -1 can't be a unit because the length between two units is ≫ 1 and we have a contradiction.

Next we consider the sets

aiνi) ∈ A : a ≡ v0 (mod m ′ ) and p|f (a1, a2, a3)

and for any ideal d,

By the definition of X , N (a1ν1

Next we introduce the sets

We now write

where

and

For brevity again we will write Tsieve(R) and T1(R) in place of Tsieve(R, v0) and T1(R, v0) when v0 is clear from the context. We see that Theorem 4.1 follows immediately from the following two propositions. Proposition 9.13 (Estimate for Tsieve). If we have ϵ00 <

where

Xi.

Proposition 9.14 (Bound for T1(R)). Let R = R1 × R2 and T1(R) be as above. If we have

then for any K > 0 we have

We remark that we are assuming the general setup in Propositions 9.13 and 9.14; in particular, the constants θ1, θ ′ 1 , . . . , θ ℓ , θ ′ ℓ determining R are assumed to satisfy (4.6)-(4.10).

We will establish Proposition 9.13 in Section 10 and the harder Proposition 9.14 in Section 11. The presence of the sum over primes p ∈ [P1, P2] Thus, substituting (10.7) and (10.9) into (10.6) we find for B 4 1

Summing this over all O(η -2ℓ

2

) hyperrectangles R and all relevant X0, and recalling (9.14) that η3 is much smaller than η2 we find

Xi + X 3-ϵ/6 .

(10.10)

This gives the result.

Thus we have to evaluate M1(R).

Lemma 10.2. Let B 4 1 > X 1+ϵ RP 12 2 and let M1(R) be as given by Lemma 10.1. Then we have

Proof. First we want to apply Proposition 9.11 to estimate | A adJ (v0, m ′ , p)|.

To do this we split according to residue classes (mod p). For any (y1, y2, y3) such that f (y1, y2, y3) ≡ 0 (mod p) let ũ0(y) be a solution of the two equations ũ0(y) ≡ y (mod p) and ũ0(y) ≡ v0 (mod m ′ ). Thus 

Since the function ϱv is multiplicative, (a, dI) = 1, and a is a product of degree one prime ideals of large enough norm, by Lemma 9.4, we have ϱv(adI)/N (adI) = ϱv(dI)/(N (dI)N (a)). Thus 

Putting together (10.11), (10.12), (10.21) and (10.22) now gives the result.

We are now in a position to establish Proposition 9.13.

Proof of Proposition 9.13. We see that putting together Lemma 10.1 and 10.2 gives the desired conclusion provided B 4 1 > X 1+ϵ RP 12 2 . Recalling from (9.22), (9.26) and ( 10

and ϵ is taken sufficiently small. This gives the result.

11 Proposition 9.14: The term T 1 (R)

In this section we use the dispersion method to bound T1(R) and establish Proposition 9.14. Let us recall the expression of T1(R)

Without loss of generality we may assume that ∥z1∥ ≤ ∥z2∥. Thus we have that

for some constants c1, c2, c3, c4 depending only on b1, b2, p1 and p2. The condition λ1z1

By Davenport's Theorem on counting lattice points ([14, Lemma 7.1] for example), we have that

c1 ≡ c2 ≡ 0 (mod p1) and c3, c4 not both 0 (mod p2), p1, c3 ≡ c4 ≡ 0 (mod p2) and c1, c2 not both 0 (mod p1), p1, p1 = p2 and c1c4 ≡ c2c3 (mod p1) and c1, c2 not all 0 (mod p1), p1p2, otherwise.

We split T6 into the contribution from the main term vol

p 2 and the error term O(A/∥z1∥). This gives

where

We first show that the contribution T7 from the error term is small.

Proof. We note that z1 ∈ Z 4 with ∥z1∥

Thus we can rearrange the summation to give

The condition (b⋄z1)4 = 0 forces b to lie in a rank 3 lattice of determinant ≍ ∥z1∥. Thus the inner sum is O(B 3 /∥z1∥ + B 2 ). Thus we obtain the bound

This gives the result.

Thus we are left to show that T8 is small compared with A 2 B 6 .

Further lattice estimates

We recall that

is the determinant of the lattice (that is, the 2-dimensional area of parallelogram generated by z1, z2) and R ′′ b 1 ,b 2 is the 2-dimensional region formed by intersecting CA with the z1, z2 plane. We thus have

.

We first establish a few simple estimates.

Lemma 11.3.

Proof. We have that

.

On the other hand, we know that

.

Putting these together gives the result.

Then we have

Proof. The condition ∧(b1, b2) ∼ B 2 /C forces b1 to lie in a cylinder C with axis of length O(B) proportional to b2, and with radius O(B/C).

We then see that we can cover this cylinder with For any c1, c2 ∈ Z 4 , the notation c1 ∝ c2 indicates that the two vectors are proportional. We consider separately those b1, b2 with ∧(b1, b2) ≪ B, those with B ≪ ∧(b1, b2) ≪ B 4/3 , and those b1, b2 with

then vol (R ′ b 1 ,b 2 ) varies by O(η5A 2 ) as b1, b2 vary within these hypercubes. Thus we see that

where

.

By the above lemmas, we have that

, on recalling that η5 = η 3 4 . Thus we are left to bound T10. We separate the terms when the two primes in the outer sum are the same. Thus T10 = T11 + T12, (11.16) where T11 denotes the terms with p1 = p2 and T12 those terms with p1 ̸ = p2. T11 clearly is equal to the expression given in the lemma, but (recalling

p1p2 in T12 to obtain the desired expression. We first note that since p1 ∤ N (b1) the multiplication-by-b1 matrix M b 1 is invertible (mod p1). This means that for every x (mod p1) there is a unique a (mod p1) such that x = a⋄b1 (mod p1) , and so vp 1 •(a⋄b1) = 0 (mod p1) is therefore a non-trivial constraint on the components of a (mod p1). Similarly since p2 ∤ N (b2), we see p2|vp 2 • (a ⋄ b2) is a non-trivial constraints on the components of a (mod p2). From this it follows that we have that f b 1 ,b 2 ,p 1 ,p 2 = p1p2, and so T12 is given by the expression in the lemma.

First we concentrate on T11.

The case p 1 = p 2

In this section we wish to bound the sum T11 from (11.13). We first see by Lemma 11.6 the contribution of terms with b1 ∝ b2 (mod p) to T11 is

Thus we have

where T ′ 11 counts those terms in T11 with b1 ̸ ∝ b2 (mod p), or equivalently with p ∤ D b 1 ,b 2 .

When b1 ̸ ∝ b2 (mod p), we see that the constraints (a ⋄ b1)4 = 0 (mod p) and (a ⋄ b2)4 = 0 (mod p) are two linearly independent linear constraints on a (mod p). In particular, the index

We separate the above count according to the rank of the multiplicationby-a matrix Ma (mod p). Thus

where Si(b1, b2) counts those a (mod p) such that Ma has rank i and satisfies (a

First we consider S4.

Lemma 11.8.

Proof. In this case Ma has rank 4, and so is invertible (mod p). Given any choice of c1 (mod p) with p ∤ N (c1), we see that a ⋄ c1 = Mc 1 a where the multiplication-by-c1 matrix Mc 1 has determinant N (c1), and so is invertible (mod p). Therefore, given any choice of x (mod p), there is a unique choice of a (mod p) with p ∤ N (a) such that a ⋄ c1 ≡ x (mod p). Similarly, since we only consider a with Ma is invertible, given any choice of y (mod p) there is then a unique choice of c2 (mod p) such that a ⋄ c2 ≡ y (mod p). Since there are O(p 4 ) choices of x, y (mod p) with x4 = y4 = 0 and v • x = v • y = 0 (mod p), there are therefore O(p 4 ) choices of a, c2 (mod p) such that p ∤ N (a) and

as required. Now we consider S2 and S3.

Lemma 11.9.

Proof. Since Ma is not invertible (mod p) and has determinant N (a), we see that p|N Proof. The only a such that Ma has rank 0 is the vector 0 (mod p).

Finally, we need to consider the situation where Ma has rank 1, which is slightly more complicated.

Lemma 11.11.

Proof. If Ma has rank 1, then there are p 3 choices of b (mod p) such that Mab = 0 (mod p). On the other hand, let a = (a1ν1 + a2ν2 + a3ν3 + a4ν4) and b = (b1ν1 + b2ν2 + b3ν3 + b4ν4). If Mab = 0 (mod p), then the ideal ab is a multiple of (p), and so b is a multiple of (p)/ gcd(a, (p)). Therefore for there to be p 3 choices of b (mod p), a must be a multiple of (p)/p for some degree one prime ideal p above p. Since there are O(1) degree one prime ideals p above p and there are O(p) different multiples of (p)/p we see that there are O(p) possible vectors a such that Ma has rank 1.

Since the rank is unchanged by replacing a with λa for any non-zero scalar λ, we see all such a are scalar multiples of one of O(1) choices of vector a (0) .

Call such a vector a (0) 'normal' if the constraints (a (0) ⋄ c2)4 ≡ v • (a (0) ⋄ c2) ≡ 0 (mod p) are non-trivial on c2 (mod p), and call a (0) 'exceptional' if the constraints are trivial on c2 (mod p). We see that if a (0) is normal, then there are O(p 3 ) choices of c2 (mod p) and so O(p 4 ) choices of (c2, a) (mod p) with a a multiple of a (0) .

We now prove that when p is large enough, there are no exceptional a (0) .

If (a (0) ⋄ c)4 ≡ 0 (mod p) ∀c, then this equation holds in particular for all c in {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Writing a (0) = (a

Using Lemma 11.11 we get

where

By Lemma 11.5, we have that

Lemmas 11.10, 11.11, 11.9, 11.8 show that

Thus we see that the term

This ends the proof of Lemma 11.12.

Putting everything in this section together, we are left to show that T12 is small compared with B 6 .

The case p

In this section we bound the sum T12 given by (11.14). Lemma 11.13. We have

where, Ssep is given by

Proof. We wish to reintroduce terms with p1 ∤ N (b1) and p2 ∤ N (b2) so that the inner sum is independent of p1, p2. There are O(p 3 1 ) choices of c1 (mod p1) such that p1|N (c1). Thus, by Lemma 11.5, we see that the terms with p1|N (b1) contribute a total

Similarly, we see that terms p2|N (b2) contribute a total O(B 6 /P1 + P 7 2 B 17/3 ). Thus we find that

Noting that the sum over p1, p2 is O(1), this gives the result.

Thus it remains to bound Ssep.

Reduction to small residue classes and small boxes

We first show that the contribution to Ssep from terms with

Lemma 11.14. Let K2 > 0 We have

Proof. This is similar to the proof of Lemma 11.5. Indeed, the argument in the proof of Lemma 11.5 shows that the contribution from terms with

), and the contribution from terms with

Thus we see that the total contribution is

Thus we just need to consider 

Then we have

Ssep ≪K η 20 4 B 6

Proof. Let η6 = η 30 4 . By Lemma 11.14, the contribution to Ssep from terms with ∧(b1, b2)

). Thus we may focus on the remaining terms.

Since ∧(b1, b2) is continuous in b1, b2 we see that if a pair of cubes

). Thus we may replace ∧(b1, b2) with

at the cost of an error term of size η6η -2 4 B 6 ≪ η 20 4 B 6 . Putting this together, we have

Now we wish to simplify the condition D b 1 ,b 2 = d to a congruence condition, which will finally allow us to separate the variables b1, b2. By Moebius inversion we have

).
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By Lemma 11.4, the contribution of the second term to Ssep is O(η 20 4 B 6 ). Thus we see that

where

By assumption of the lemma, we have that

Substituting this in then gives

Thus we see that it is sufficient to obtain a suitable bound for g b on average over hypercubes in residue classes.

Localised bound and Proof of Proposition 9.14

To finish our proof we need to show that we have a suitable estimate for g b ≈ 1R(b) -1R(b) over b restricted to small boxes and arithmetic progressions. We don't require estimates arithmetic progressions to moduli larger than (log X) O (1) , and there are no issues caused by a possible Siegel zero.

Proposition 11.16. For every K > 0 and every polytope R under consideration, we have

Proof. This is the equivalent of [14, Proposition 9.7], and the proof works in exactly the same manner for our situation. Therefore we only highlight a couple of main details.

First we estimate the contribution from 1R(b). Since b is in a small cube, no two elements can generate the same ideal, and so we can write the sum as a sum of principal ideals. We can use Hecke Grossencharacters to detect the congruence conditions and the restriction of b to the cube C. The Prime Number Theorem for Grossencharacters then allows one to suitably estimate the resulting sums over 1R(b), giving an explicit main term and an error term which is OK (B 4 /(log B) K ). This is essentially the same argument as [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]].

The contribution from 1R(b) can be estimated by swapping the order of summation in the sieve sum and using the fact that b ∈ Z ∩ C are equidistributed in suitable aritmetic progressions as in [START_REF] Maynard | Primes represented by incomplete norm forms[END_REF]Lemmas 9.5 and 9.6]. This gives a main term and a error term OK (B 4 /(log B) K ).

The main term contributions from 1R(b) and 1R(b) are the same apart from opposite signs and so cancel, giving the result.

We note that the number of elements of CB with τ (d) > η Therefore, provided the consant K1 defining η4 is chosen sufficiently large, we may replace g b with 1R(b/c ′ ) -1R(b/c ′ ) at the cost of an acceptable error term whenever c ′ |b. We note that c ′ |b is determined by a congruence condition on b (mod N (c ′ )), and recall than N (c ′ ) ≪ (log X) o (1) . Therefore Proposition 11.16 implies that the hypothesis of Lemma 11.15 is satisfied. Finally, we are able to complete our proof of Proposition 9.14.

Proof of Proposition 9.14. We recall that | A(X0)| ≍ η 3 1 X 3 0 . Putting together the equations (11.2), (11.7) and the argument of Section 11.1, we find that provided B < X 3/4-ϵ /P 3/2 2 (from (11.8)) we have

where T3 is given by (11.9).

Putting together (11.10), (11.11) A 2 • η 20 4 B 6 .

Since 3 i=1 Xi ≫≍ A 3 B 3 (log X) -K , this gives the result provided A < B 3-ϵ , BP 2 2 < A 1-ϵ , P 21 2 < B 1-ϵ , and the constant K1 defining η4 is taken sufficiently large in terms of K.

(Here we used that the second inequality implies (11.8).) After taking ϵ suitably small, we see that the first condition is implied by the first inequality of (4.10), whereas the final two inequalities are implied by the assumption τ ′ ≤ min(4

/100. This gives Proposition 9.14. This completes the proof of Proposition 9.14, and hence Theorem 4.1 and Theorem 1.1.