On the largest prime factor of quartic polynomial values: the cyclic and dihedral cases
Résumé
Let P (X) ∈ Z[X] be an irreducible, monic, quartic polynomial with cyclic or dihedral Galois group. We prove that there exists a constant c_P > 0 such that for a positive proportion of integers n, P (n) has a prime factor ≥ n 1+c _P .
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|