Erebus: Explaining the Outputs of Data Streaming Queries - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Erebus: Explaining the Outputs of Data Streaming Queries

Dimitris Palyvos-Giannas
  • Fonction : Auteur
Marina Papatriantafilou
  • Fonction : Auteur
Vincenzo Gulisano
  • Fonction : Auteur
  • PersonId : 1215834

Résumé

In data streaming, why-provenance can explain why a given outcome is observed but offers no help in understanding why an expected outcome is missing. Explaining missing answers has been addressed in DBMSs, but these solutions are not directly applicable to the streaming setting, because of the extra challenges posed by limited storage and by the unbounded nature of data streams. With our framework, Erebus, we tackle the unaddressed challenges behind explaining missing answers in streaming applications. Erebus allows users to define expectations about the results of a query, verifying at runtime if such expectations hold, and also providing explanations when expected and observed outcomes diverge (missing answers). To the best of our knowledge, Erebus is the first such solution in data streaming. Our thorough evaluation on real data shows that Erebus can explain the (missing) answers with small overheads, both in low-and higher-end devices, even when large portions of the processed data are part of such explanations.
Fichier principal
Vignette du fichier
p230-palyvos-giannas.pdf (913.76 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03940591 , version 1 (07-02-2023)

Identifiants

Citer

Dimitris Palyvos-Giannas, Katerina Tzompanaki, Marina Papatriantafilou, Vincenzo Gulisano. Erebus: Explaining the Outputs of Data Streaming Queries. Very Large Data Base, Aug 2023, Vancouver, Canada. pp.230 - 242, ⟨10.14778/3565816.3565825⟩. ⟨hal-03940591⟩
134 Consultations
156 Téléchargements

Altmetric

Partager

More