On the asymptotics of extremal lp-blocks cluster inference - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

On the asymptotics of extremal lp-blocks cluster inference

On the asymptotics of extremal lp-blocks cluster inference

Résumé

Extremes occur in stationary regularly varying time series as short periods with several large observations, known as extremal blocks. We study cluster statistics summarizing the behavior of functions acting on these extremal blocks. Examples of cluster statistics are the extremal index, cluster size probabilities, and other cluster indices. The purpose of our work is twofold. First, we state the asymptotic normality of block estimators for cluster inference based on consecutive observations with large lp-norms, for p > 0. Second, we verify the conditions we require on classic models such as linear models and solutions of stochastic recurrence equations. Regarding linear models, we prove that the asymptotic variance of classical index cluster-based estimators is null as first conjectured in Hsing T. [26]. We illustrate our findings on simulations.
Fichier principal
Vignette du fichier
main.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03912267 , version 1 (23-12-2022)
hal-03912267 , version 2 (05-01-2024)
hal-03912267 , version 3 (10-01-2024)
hal-03912267 , version 4 (01-07-2024)

Identifiants

Citer

Gloria Buriticá, Olivier Wintenberger. On the asymptotics of extremal lp-blocks cluster inference. 2022. ⟨hal-03912267v1⟩
94 Consultations
42 Téléchargements

Altmetric

Partager

More