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December 23, 2022

ON THE ASYMPTOTICS OF EXTREMAL `p-BLOCKS

CLUSTER INFERENCE

GLORIA BURITICÁ AND OLIVIER WINTENBERGER

Abstract. Extremes occur in stationary regularly varying time series
as short periods with several large observations, known as extremal
blocks. We study cluster statistics summarizing the behavior of func-
tions acting on these extremal blocks. Examples of cluster statistics are
the extremal index, cluster size probabilities, and other cluster indices.
The purpose of our work is twofold. First, we state the asymptotic
normality of block estimators for cluster inference based on consecutive
observations with large `p-norms, for p > 0. Second, we verify the condi-
tions we require on classic models such as linear models and solutions of
stochastic recurrence equations. Regarding linear models, we prove that
the asymptotic variance of classical index cluster-based estimators is null
as first conjectured in [26]. We illustrate our findings on simulations.

1. Introduction

We study stationary heavy-tailed time series with regularly varying dis-
tributions; cf. [5]. In this framework, extremal observations cluster: an
extreme value triggers a short period with numerous large observations.
This behavior is known to perturb classical inference procedures tailored for
independent observations like high quantile inference; see [20]. This cluster-
ing effect can be summarized with the extremal index, initially introduced
in [34] and [35]. We can interpret it as the inverse of the mean number of
consecutive exceedances above a high threshold in a short period of time.
In this article, we aim to infer such properties of the clustering effect by
letting functionals act on consecutive observations with extremal behavior.
For example, we can recover the extremal index from this setting and other
important indices of the extremes of the series.

We consider cluster statistics of regularly varying time series (Xt) with
values in (Rd, | · |), and tail index α > 0; a formal definition is conferred to
Section 2.2. For cluster inference, we consider a sample X[1,n] together with
the sequence (bn), and we define the sample of disjoint blocks (Bj)j=1,...,mn

as blocks of consecutive observations with

Bj := (X(j−1)bn+1, . . . ,Xjbn) = X(j−1)bn+[1 : bn],(1.1)

such that bn → ∞, mn = n/bn → ∞, as n → ∞. We follow the p-clusters
theory developed in [12] for a fixed p ∈ (0,∞]. The extremal behavior of
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regularly varying time series is modeled by the conditional behavior of a
block Bj given that its `p-norm is large:

P(B1/xbn ∈ A | ‖B1‖p > xbn)
w−→ P(YQ(p) ∈ A ), n→∞,(1.2)

such that Y is independent of Q(p) ∈ `p, P(Y > y) = y−α, for y > 1,

‖Q(p)‖p = 1 a.s. The weak convergence holds for a family of shift-invariant
continuity sets A ⊂ `p, and (xn) is a suitable sequence satisfying P(‖B1‖p >
xbn)→ 0, as n→∞. The spectral p−cluster process Q(p) models the short
period’s behavior under the rare event that its `p-norm is large. We study
p-cluster statistics of the form

fQp = E[fp(YQ(p))] ,(1.3)

for suitable `p-continuity functions fp : `p → R, invariant to the shift opera-
tor. To infer the cluster statistic (1.3), we use the disjoint blocks estimators
proposed in [12], and defined as

f̂Qp :=
1

k

mn∑
t=1

fp(Bt/‖B‖p,(k+1))11(‖Bt‖p > ‖B‖p,(k+1)),(1.4)

where ‖B‖p,(1) > ‖B‖p,(2) > . . . > ‖B‖p,(mn), denotes the sequence of order
statistics of the `p-norms of blocks defined in (1.1).

The main goal of this article is to establish the asymptotic normality of the
block estimators in Equation (1.4), tailored for cluster inference. We state
moment, mixing and bias assumptions yielding the existence of a sequence
(kn), satisfying k = kn →∞, mn/kn →∞ such that

√
k
(
f̂Qp − fQp

) d−→ N (0,Var(fp(YQ(p))) ) , n→∞,(1.5)

and the limit is a centered Gaussian distribution. As a result, we see that the
asymptotic variance of the blocks estimator can be computed in terms of the
p−cluster Q(p). In general, it is possible to obtain numerous representations
of one cluster statistics in (1.3) combining the choice of p with fp. This
follows by the change-of-norms equation given in [12] that we recall in (2.12).
For example, the extremal index admits distinct p−clusters representations
in the form of (1.3) if we use p = ∞ or p = α, the tail-index of the series;
cf. [13]. This strategy points to new inference methodologies to estimate
the same statistic. The asymptotic result in (1.5) allows us to compare the
variances of these inference procedures tuned with different p.

We show that introducing `p−norm block order statistics in (1.4), in-
stead of order statistics of the sample (|Xt|) as in [18, 14], can lead to a
better asymptotic variance for cluster inference. We give examples of vari-
ance reduction in the case of linear models with short-range dependence,
for inference of classical indices. In our examples, the asymptotic variance
Var(fp(YQ(p))) is null because of the deterministic properties of the spec-
tral p-cluster process of linear models. For linear models, the advantage of
replacing thresholds with block maxima records was previously investigated
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in [26]. Existing works [17, 18, 14, 33] following [26] focus on cluster of ex-
ceedances inference such that p = ∞. Our asymptotic result comforts and
extends the heuristics presented in [26] for p =∞ and linear models to the
case p <∞ and general models. To prove the asymptotic normality of block
estimators, we rely on the asymptotics of disjoint block estimators studied
in Theorem 2.10. in [17], and the theory of empirical processes therein. We
also follow the modern overview in [33]. To handle the asymptotics of ex-
tremal `p-blocks, we build on the large deviation principles studied in [12],
and appeal to the p-cluster processes theory therein.

The blocks estimator in Equation (1.4) compares favourably to state-of-
the-art methodologies for cluster inference in terms of asymptotic variance.
Considering inference through extremal `p-blocks with p < ∞ has already
proven in [12] to be advantageous in terms of bias. Choosing p = α can be
useful in practice to make tuning the parameters in the blocks estimator less
susceptible to time dependencies; see [12]. We illustrate on simulations that
the `α–block estimator is competitive both in terms of bias and variance for
finite sample sizes. This approach performs well even when the tail index
α > 0 has to be estimated with a Hill-type procedure.

The article is organized as follows. Preliminaries on mixing coefficients,
regular variation, and the p-clusters theory of stationary time series are
compiled in Section 2. In Section 3 we present our main result in Theo-
rem 3.1, stating the asymptotic normality of the block estimators introduced
in Equation (1.4). We work under mixing, moment, and bias conditions on
the series that we also present in Section 3. Section 4 studies examples
of extremal cluster inference such as estimation of the extremal index, the
cluster size probabilities, and the cluster index for sums. We conclude by
verifying our conditions on classical models such as linear processes and sto-
chastic recurrence equations in Section 5. In the case of linear models with
short-range dependence, Theorem 5.6 states that the `p-block estimators of
all the aforementioned quantities have null-asymptotic variance. Thereby,
they are super-efficient for cluster inference of important indices as conjec-
tured by [26] for p =∞. We illustrate the finite-sample performances of our
estimators in Section 6. All proofs are deferred to Section A.

1.1. Notation. We consider stationary time series (Xt) taking values in
Rd, that we endow with a norm | · |. Let p > 0, and (xt) ∈ (Rd)Z. Define
the p-modulus function ‖ · ‖p : (Rd)Z → [0,+∞] as

‖(xt)‖pp :=
∑

t∈Z|xt|
p ,

and define the sequential space `p as

`p := {(xt) ∈ (Rd)Z : ‖(xt)‖pp < +∞} ,
with the convention that, for p =∞, the space `∞ refers to sequences with
finite supremum norm. For any p ∈ (0,+∞], the p-modulus functions induce
a distance dp in `p, and for p ∈ [1,+∞), it defines a norm. Abusing notation,

we call them `p-norms for p ∈ (0,+∞]. Let ˜̀p = `p/ ∼ be the shift-invariant
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quotient space where: (xt) ∼ (yt) if and only if there exists k ∈ Z such that

xt−k = yt, t ∈ Z. We also consider the metric space (˜̀p, d̃p) such that for

[x], [y] ∈ ˜̀p,

d̃p([x], [y]) = inf
k∈Z
{dp(xt−k,yt), (xt) ∈ [x], (yt) ∈ [x]},

and without loss of generality, we write an element [x] in ˜̀p also as (xt).
Further details on the shift-invariant spaces are deferred to [12, 4].

The operator norm for d × d matrices, A ∈ Rd×d, is defined as |A|op :=
sup|x|=1 |Ax|. The truncation operations of (xt) at the level ε, for ε > 0, are
defined by

(xεt ) = (xt11|xt|6ε) , (xtε) = (xt11|xt|>ε) .

The notation a∧b denotes the minimum between two constants a, b ∈ Z, and
a ∨ b denotes its maximum. We write log+(x) = log(x) ∨ 0, for x ∈ (0,∞).
We sometimes write x for the sequence x := (xt) ∈ (Rd)Z. Furthermore, for
a, b,∈ Z, and a 6 b, we write as x[a,b] the vector (xt)t=a,··· ,b taking values

in (Rd)b−a+1. We sometimes write x[a,b] ∈ ˜̀p, which means we take the

natural embedding of x[a,b] in ˜̀p defined by assigning zeros to undefined

coefficients. It will be convenient to write G+(˜̀p) for the continuous non-

negative functions on (˜̀p, d̃p) which vanish in a neighborhood of the origin.

2. Preliminaries

2.1. Mixing coefficients. Let (Xt) be an Rd-valued strictly stationary
time series defined over a probability space ((Rd)Z,A,P). The properties
of stationary sequences are usually studied through mixing coefficients. De-
note the past and future σ−algebras by

Ft60 := σ((Xt)t60), Ft>h := σ((Xt)t>h), h > 1 ,

respectively. We recall the definition of mixing coefficients (ρh), (βh), below

ρh = sup
f∈L2(Ft60 ), g∈L2(Ft>h )

|Corr(f, g)|,

βh = dTV
(
PFt60⊗Ft>h , PFt60

⊗ PFt>h
)
,

where dTV (·, ·) is the total variation distance between two probability mea-
sures: ((Rd)Z,A,P1), ((Rd)Z,A,P2), and P1⊗P2(A×B) = P1(A)P2(B), for
A,B ∈ A. For a summary on mixing conditions see [8, 16, 42].

Remark 2.1. The ρ−mixing coefficients (ρt)t>0 were introduced in [32],
and popularized due to the Ibragimov central limit theorem for dependent
stationary sequences in [28]. This theorem states that sufficient conditions
for the central limit of stationary sequences to hold are the mixing condition:∑∞

t=1 ρ2t < ∞, together with a moment assumption of order κ > 2. The
aforementioned mixing condition was studied in detail in [7, 40, 46, 48];
see [8] for a review. However, aside from the m0-dependent case and the
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Gaussian case (where ρt = 0 for t > m0 and ρt 6 πβt, respectively) there is
no general recipe for computing ρ–mixing rates.

Remark 2.2. A detailed interpretation of the β−mixing coefficients (βh)
in terms of the total variation distance can be found in Chapter 1.2 in
[16]. These mixing coefficients are well adapted while working with Markov
processes. Indeed, a strictly stationary Harris recurrent Markov chain (Xt),
satisfies βt → 0 as t→∞; see Theorem 3.5 in [8].

2.2. Regular variation. We consider stationary time series (Xt) taking
values in (Rd, | · |) and that it is regularly varying with tail index α > 0: all
its finite-dimensional vectors are multivariate regularly varying of the same
index. In this case we write (Xt) satisfies RVα. Borrowing the ideas in [5],
(Xt) satisfies RVα if and only if, for all h > 0, there exists a vector (ΘΘΘt)|t|6h,

taking values in (Rd)2h+1 such that

P(x−1(Xt)|t|6h ∈ · | |X0| > x)
d−→ P(Y (ΘΘΘt)|t|6h ∈ ·), x→ +∞,(2.6)

where Y is independent of (ΘΘΘt)|t|6h and P(Y > y) = y−α, y > 1. We call

the sequence (ΘΘΘt), taking values in (Rd)Z, the spectral tail process.
The time series (ΘΘΘt) does not inherit the stationarity property of the

series. Instead, the time-change formula of [5] holds: for any s, t ∈ Z, s 6
0 6 t and for any measurable bounded function f : (Rd)t−s+1 → R,

E[f(ΘΘΘs−i, . . . ,ΘΘΘt−i)11(|ΘΘΘ−i| 6= 0)] = E[|ΘΘΘi|α f(ΘΘΘs/|ΘΘΘi|, . . . ,ΘΘΘt/|ΘΘΘi|)].
(2.7)

2.3. p-cluster processes. Let (Xt) be a stationary time series satisfying

RVα. For p > 0, we say the series admits a p-cluster process Q(p) ∈ ˜̀p if
there exists a well-chosen sequence (xn), satisfying

P(‖X[1,n]‖p > xn) ∼ n c(p)P(|X1| > xn), n→∞(2.8)

with c(p) ∈ (0,∞), nP(|X1| > xn)→ 0, and

P(X[1,n]/xn ∈ · | ‖X[1,n]‖p > xn)
w−→ P(YQ(p) ∈ · ), n→∞,(2.9)

where Y is independent of Q(p) ∈ ˜̀p, P(Y > y) = y−α, for y > 1, ‖Q(p)‖p = 1

a.s., and the limit in (2.9) holds in (˜̀p, d̃p). We study below the anti-
clustering and vanishing-small values conditions noted AC, CSp, respec-
tively, which guarantee the existence of p−clusters. We rephrase next the
Theorem 2.1. of [12].

Proposition 2.3. Let (Xt) be a stationary time series satisfying RVα. Let
(xn) be a sequence such that nP(|X1| > xn)→ 0, as n→∞ and p > 0. For
all δ, ε > 0, assume

AC : lims→∞ lim supn→∞ P(‖X[s,n]‖∞ > εxn | |X1| > εxn ),

CSp: limε↓0 lim supn→∞
P
(
‖X[1,n]/xn

ε‖pp>δ
)

nP(|X1|>xn) = 0.
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Then, if p > α, Equation (2.8) holds with c(∞) 6 c(p) 6 c(α) = 1, and (Xt)

admits a p−cluster process Q(p) in the sense of (2.9). If p < α, existence of

the p−cluster process holds if E[‖Q(α)‖αp ] <∞. In this case, Equation (2.8)

holds with c(p) = E[‖Q(α)‖αp ].

From Proposition 2.3 we see that assuming AC, and CSα, the time series
(Xt) admits an α-cluster Q(α), where α > 0, denotes the tail index. In this
case, appealing to Proposition 3.1. in [12], we have

Q(α) d
= ΘΘΘ/‖ΘΘΘ‖α, ∈ ˜̀α ,(2.10)

where (ΘΘΘt) is the spectral tail process from Equation (2.6). Moreover, if

CSp, CSp′ , and E[‖Q(α)‖αp ] + E[‖Q(α)‖αp′ ] < ∞ also hold, then the p, p′-
clusters exist and are related by the change-of-norms formula below

P(Q(p) ∈ ·)
= c(p)−1E[‖Q(α)‖αp 11(Q(α)/‖Q(α)‖p ∈ ·)](2.11)

=
c(p′)

c(p)
E[‖Q(p′)‖αp 11(Q(p′)/‖Q(p′)‖p ∈ ·)].(2.12)

Since ‖Q(p)‖p = 1 a.s. for any p > 0, then c(α) = 1, and E[‖Q(p′)‖αp ] =
c(p)/c(p′), where c(p), c(p′), are as in Equation (2.8).

Remark 2.4. We can check readily that if
∑∞

t=1 ρt < ∞, then AC holds
for all sequences of levels (xn) satisfying nP(|X1| > xn)→ 0, as n→∞.

Remark 2.5. Using the monotonicty of norms, we see straightforwardly
that CSp implies the condition CSp′, for p′ > p > 0. If p > α, where α
is the tail index, the condition CSp is always satisfied for sequences (xn)
such that nP(|X1| > xn) → 0, as n → ∞. In the case α/2 < p 6 α,
if
∑∞

t=0 ρt < ∞, then condition CSp holds for sequences (xn) such that

there exists κ > 0, satisfying n/x
p∧(α−κ)
n → 0, as n → ∞. This follows by

Remarks 5.1. and 5.2. in [12].

3. Asymptotic normality

3.1. Main result. Let (Xt) be an Rd-valued stationary time series satisfy-
ing RVα. Assume the conditions of Proposition 2.3 hold for p > 0, the series
admits a p-cluster process Q(p) ∈ ˜̀p, and (2.9) holds for a sequence of high
levels (xn) satisfying P(‖X[1,n]‖p > xn) → 0. Recall the block estimator in
(1.4) is tuned with the block lengths (bn), and the number (kn) of extremal
blocks. The total number of disjoint blocks in a sample is denoted (mn)
with mn = bn/bnc. We assume the relation between (kn) and (bn)

k := kn =
⌊
mnP(‖X[1,n]‖p > xbn)

⌋
∼ n c(p)P(|X1| > xbn), n→∞,(3.13)
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holds, where c(p) ∈ (0,∞) are as in (2.8). In what follows, if the sequences
(xn), (bn), (kn), (mn), appear then they coincide with the ones mentioned
here.

Our main result is presented in this section in Theorem 3.1. It establishes
the asymptotic normality of the block estimator in (1.4) under the moment,
bias, and mixing assumptions that we introduce below.

L: Let fp : ˜̀p → R, be such that fp ∈ G+(˜̀p). Moreover assume u 7→
fp((xt)/u) is a non-increasing function, and assume there exists δ > 0 such
that for all u > 0,

mn

kn
E[fp(B1/u xbn)2+δ] = O(1),(3.14)

as n→∞, and E[fp(YQ(p))2] <∞.

B: Let fp : ˜̀p → R satisfy L. Fix ε > 0, and assume the bias conditions

0 = lim
n→∞

√
k sup
u∈[1−ε,1+ε]

∣∣ E[fp(B1/u xbn)11(‖B1/xbn‖p > u)]

P(‖B1‖p > xbn)
− u−α fQp

∣∣ ,
(3.15)

0 = lim
n→∞

√
k sup
u∈[1−ε,1+ε]

∣∣ P(‖B1/xbn‖p > u)

P(‖B1‖p > xbn)
− u−α

∣∣ ,
(3.16)

where fQp is as in (1.3).

MX: Assume the mixing coefficients (βt) satisfy the condition

lim
n→∞

mnβbn = 0.(3.17)

MXβ: Let fp : ˜̀p → R satisfy L, and let δ > 0 be such that (3.14) hold.
Assume there exists a sequences (`n), satisfying `n → ∞, and the mixing
coefficients (βt) satisfy mnβ`n/kn → 0, `n/bn → 0, as n→∞, and

lim
n→∞

∑mn
t=1(mnβtbn/kn)

δ
2+δ = 0.(3.18)

If fp is bounded, we assume
∑mn

t=1mnβtbn/kn → 0 instead of (3.18).

MXρ: Assume the correlation coefficients (ρt) satisfy
∑mn

t=1 ρtbn → 0 and

lim
s→∞

lim
bn→∞

∑bn
t=sP(|Xt| > εxbn | |X0| > εxbn) = 0.(3.19)

We state in Theorem 3.1 below our main result on the asymptotic nor-
mality of the blocks estimator. We defer its proof to Section A.

Theorem 3.1. Let (Xt) be a stationary time series satisfying RVα. Assume
the conditions of Proposition 2.3 hold, such that the series admits a p-cluster
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process Q(p) ∈ ˜̀p. Consider fp : ˜̀p → R such that L and B hold. Assume
also MX holds, and assume either MXβ or MXρ hold. Then, there exists
(kn) such that k = kn →∞, mn/kn →∞, and

√
k
(
f̂Qp − fQp

) d−→ N (0,Var(fp(YQ(p))) ) , n→∞.(3.20)

Here we follow the notation from equations (1.3) and (1.4).

Remark 3.2. The proof of Theorem 3.1 follows the functional central limit
theorem stated in Theorem C.4.5 in [33]. Condition L restricts the family of
functions we can consider for inference. Equation (3.14) entails a Lindeberg-
type condition holds.

4. Cluster statistics

In view of Theorem 3.1, we derive asymptotic normality of classical cluster
index estimators in extreme value theory.

4.1. The extremal index. Let (Xt) be a stationary time series in (Rd, | · |)
satisfying RVα. The extremal index θ|X| of the series (|Xt) is a measure of
serial clustering introduced in [34] and [35]. We recall the extremal index
estimator proposed in [13], based on extremal `α−blocks.

Corollary 4.1. Consider fp : ˜̀p → R to be the function x 7→ ‖x‖α∞/‖x‖αα.

Assume the conditions of Theorem 3.1 hold for p = α. Let θ|X| = E[‖Q(α)‖α∞],
hence we deduce an estimator

θ̂|X| =
1

k

m∑
t=1

‖Bt‖α∞
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k+1)),(4.21)

such that
√
k
(
θ̂|X| − θ|X|

) d−→ N (0,Var(‖Q(α)‖α∞)), n→∞ .

Proof. The proof of Corollary 4.1 follows directly as fp ∈ G+(˜̀p) is a bounded
continuous function satisfying L. �

For comparison we review the blocks estimator based on extremal `∞−blocks
proposed in [25]:

θ̂B|X| =
1

knbn

mn∑
t=1

11(‖Bt‖∞ > |X|(k+1)) .(4.22)

Direct computations from Example 10.4.2 in [33] yield
√
k(θ̂B|X| − θ|X|)

d−→ N (0, σ2
θ), n→∞,
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where σ2
θ ∈ [0,+∞), and

σ2
θ = θ2

|X|
∑
j∈Z

E[|ΘΘΘj |α ∧ 1]− θ|X|

= θ2
|X|
∑
j∈Z

∑
t∈Z

E[|Q(α)
j+t|

α ∧ |Q(α)
t |α]− θ|X|.(4.23)

The last equality follows appealing to the time-change formula in (2.7) and
Equation (2.10). As a result, we can compare the asymptotic variances of

θ̂|X| and θ̂B|X| in the cases where Q(α) is known. This is the topic of Section 5.

4.2. The cluster index for sums. Let (Xt) be a stationary time series
with values in (Rd, | · |) satisfying RVα. We recall [39] coined the constant
c(1) in (2.8) as the cluster index for sums. We review a cluster-based esti-
mator of it, introduced in [12], based on extremal `α-blocks.

Corollary 4.2. Consider fp : ˜̀p → R to be the function x 7→ ‖x‖α1 /‖x‖αα.
Assume the conditions of Theorem 3.1 hold for p = α ∧ 1, and α < 2. Let
c(1) = E[‖Q(α)‖α1 ] <∞, hence one deduces an estimator

ĉ(1) =
1

k

m∑
t=1

‖Bt‖α1
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k+1)),(4.24)

such that
√
k
(
ĉ(1)− c(1)

) d−→ N (0,Var(‖Q(α)‖α1 )) , n→∞,
and c(1) is as in (2.8) with p = 1.

Proof. The proof of Corollary 4.2 follows directly from Theorem 3.1 as fp ∈
G+(˜̀p) is a bounded continuous function satisfying L. �

Another sums index cluster-based estimator we can consider is the one
proposed in [33] based on extremal `∞-blocks:

ĉB(1) =
1

kbn

mn∑
t=1

11(‖Bt‖1 > |X|(k+1)).(4.25)

Then, relying on Example 10.4.2 in [33],
√
k(ĉB − c(1))

d−→ N (0, σ2
c(1)), n→∞.

for a constant σ2
c(1) ∈ [0,+∞) defined by

σ2
c(1) = c(1)2

∑
j∈Z

∑
t∈Z

E[|Q(α)
j+t|

α ∧ |Q(α)
t |α]− c(1).(4.26)

Similarly as in Example 4.1, whenever Q(α) is known, we can compare di-
rectly the asymptotic variances relative to the estimators ĉ(1) and ĉB(1).
Section 5 covers this topic for classical models where the cluster process is
known.
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4.3. The cluster sizes. In general, a classical approach to model serial
exceedances is using point processes as in [35] and [26]. For the levels (an),
satisfying nP(|X1| > an)→ 1, as n→∞, and for every fixed x > 0 consider
the point process of exceedances with state space (0, 1]:

ηn,x(·) := Nn

(
{y : |y| > x} × ·

)
=

n∑
i=1

εi/n(·) 11(|Xi| > xan) .

Under mixing and anti-clustering conditions, for fixed x > 0, we can express
the limiting point process in [26] such as

ηn,x(·) d→ ηx(·) := N
(
{y : |y| > x} × ·

)
=

∞∑
i=1

∑
j∈Z

11
(
Γ
−1/α
i |Q(α)

ji | > x
)
εUi(·) ,

where the points (Ui) are iid uniformly distributed on (0, 1), (Γi) are the

points of a standard homogeneous Poisson process, and (Q
(α)
·i ) are iid copies

of the cluster process Q(α). Using the independence among these three
processes, one can easily rewrite the limit as

ηx(t) =

Nx(t)∑
i=1

ξi , 0 < t 6 1 ,(4.27)

where

• Nx is a homogeneous Poisson process on (0, 1] with intensity x−α,
• for an iid sequence (Yi) of Pareto(α)-distributed random variables

which is also independent of (Q
(α)
i ),

ξi =
∑
j∈Z

11(Yi |Q(α)
ij | > 1) ,

• Nx, (ξi) are independent.

Relying on the point process of exceedances representation in (4.27), the
random variables (ξi) can be interpreted as counts of serial exceedances from

one cluster. Furthermore, we deduce the relation P(ξ1 > 0) = E[‖Q(α)‖α∞] =
θ|X|, and also get an expression for the cluster size probabilities

P(ξ1 = j) = E[|Q(α)|α(j) − |Q
(α)|α(j+1)]

= E[πQj (Q(α))] = πj , j > 1 .(4.28)

The statistic πj can be understood as the probability of recording a cluster
of length j. The blocks estimator provide natural estimators

π̂j =
1

k

m∑
t=1

|Bt|α(j) − |Bt|
α
(j+1)

‖Bt‖αα
11(‖Bt‖α > ‖B‖α,(k+1)),(4.29)

|Bt|(1) > |Bt|(2) > . . . > |Bt|(b) are the order statistics of Bt, the t-th block.
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Corollary 4.3. Consider the function πQj : ˜̀p → R defined by πQj (x) :=

(|x|α(j) − |x|
α
(j+1))/‖x‖

α
α, where |x|(1) > |x|(2) > . . . . Assume the conditions

of Theorem 3.1 hold for p = α. Then, for all j > 1 we have
√
k
(
π̂j − πj

) d−→ N (0,Var(πQj (Q(α)))) , n→∞ .(4.30)

Corollary 4.3 provides a novel procedure for estimating cluster size prob-
abilities based on extremal `α−blocks. As in the previous examples, the
asymptotic variance can be computed as long as Q(α) is known. This allows
for comparison with the other cluster-based inference procedures provided
in [25, 21, 45]. One advantage of our methodology is that we can straight-
forwardly infer the asymptotic variances of cluster sizes since we express
them as cluster statistics in (4.30). Moreover, inference through extremal
`α-blocks has already proven to be useful in [12] for fine-tuning the hyper-
parameters of the estimators, see also the discussion in Section 6.

5. Models

5.1. Linear m0–dependent sequences. We consider (Xt) to be a m0–
dependent time series with values in (Rd, | · |) satisfying RVα.

Example 5.1. The time series (Xt) is a linear moving average of order
m0 > 1 if it satisfies

Xt := Zt + ϕ1Zt−1 + · · ·+ ϕm0Zt−m0 , t ∈ Z,(5.31)

with Rd-variate iid innovations (Zt) satisfying RVα, and (ϕj) ∈ Rm0.
Alternatively, the max-moving average of order m0 > 1 satisfies

Xt := max{Zt, ϕ1Zt−1, . . . , ϕm0Zt−m0}, t ∈ Z,(5.32)

with R+-variate iid innovations (Zt) satisfying RVα, and (ϕj) ∈ Rm0
+ .

Then both moving averages satisfy RVα with |Q(α)| admitting the same

deterministic expression (|ϕt|/‖(ϕj)‖α) in ˜̀α, see for instance Proposition
3.1. in [12] and Chapter 5 of [33].

Let p > α/2. For all κ > 0, a sequence satisfying xn = O(b
κ+1/(p∧α)
n )

verifies AC and CSp. This is a consequence of Remark 2.5. Choosing (xn)
in this way implies there exist κ′ > 0, and (kn) satisfying

kn = O(n b−κ
′−α/(p∧α)

n ),(5.33)

such that Equation (3.13) holds from an application of Potter’s bound. Since
κ can be chosen arbitrarily small, κ′ can also be chosen arbitrarily close to
zero. Keeping this in mind, we can state the Proposition below. The proof
is postponed to Section B.

Proposition 5.2. Consider (Xt) to be a m0–dependent time series with
values in (Rd, | · |). Consider p > α/2, and a sequence (kn) satisfying (5.33),

such that k = kn →∞, mn/kn →∞. Consider fp : ˜̀p → R, and assume L
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and B hold. Then,
√
k(f̂Qp − fQp )

d−→ N (0,Var( fp(YQ(p)) )), n→∞.
In particular, the α-cluster based estimators from Section 4 in (4.21) (4.24),
and (4.29), are asymptotically normally distributed. Their asymptotic vari-
ances are null in the case of the moving averages of Example 5.1.

5.2. Linear processes. In this section we consider stationary linear pro-
cesses (Xt) with values in (Rd, | · |) satisfying RVα.

Example 5.3. Consider (Xt) to be an Rd−variate sequence satisfying

Xt =
∑
t∈Z

ϕjZt−j , t ∈ Z,(5.34)

for a sequence of iid innovations (Zt) satisfying RVα, and a sequence (ϕj)
in RZ. Moreover, assume there exists κ > 0 such that ‖(ϕj)‖(α−κ)∧2 <∞.

In the setting of Example 5.3, a stationary solution (Xt) exists and
satisfies RVα (c.f. [15, 37]). Proposition 5.4 below demonstrates condi-
tions AC, CSp hold for p > α/2, and a suitable sequence (xn) such that
nP(|X1| > xn) → 0 as n → ∞. Therefore, the time series (Xt) admits an

α−cluster process Q(α), which we can compute in terms of the filter (ϕj),

and the spectral measure of the random variable Z0, denoted by ΘΘΘZ
0 , with

|ΘΘΘZ
0 | = 1 a.s. We obtain the expression, cf. Chapter 5 of [33],

Q(α) d
= (ϕt/‖(ϕj)‖α)ΘΘΘZ

0 , ∈ ˜̀α.(5.35)

Note again that the norm of the α−cluster process, i.e., |Q(α)|, is determin-

istic in ˜̀α. Assuming ‖(ϕj)‖p <∞, we can compute the indices c(p) in (2.8)
by

c(p) = E[‖Q(α)‖αp ] = ‖(ϕj)‖αp /‖(ϕj)‖αα < ∞.(5.36)

Classic examples of these heavy-tailed linear models are auto-regressive mov-
ing averages, i.e., ARMA processes, with iid regularly varying noise; cf. [10].

The proposition below guarantees that the assumptions of Proposition 2.3
hold. We defer its proof to Section B.1.

Proposition 5.4. Consider (Xt) to be a linear process with values in (Rd, | ·
|), as in Example 5.3. Consider p > α/2, and a sequence (xn) such that

n/x
p∧(α−κ)
n → 0, n→∞, for some κ > 0. Then it holds for all δ > 0

lim
s→∞

lim sup
n→∞

P(‖X[1,n]/xn −X
(s)
[1,n]/xn‖

p
p > δ)

nP(|X1| > xn)
= 0,(5.37)

where X
(s)
t :=

∑
|j|6s ϕjZt−j. Thus AC and CSp are satisfied.

We now review the mixing properties of a linear process. We recall below
the statement in Theorem 2.1. in [41] (see Lemma 15.3.1. in [33]).
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Proposition 5.5. Consider (Xt) to be a causal linear process with values in
(Rd, | · |), as in Example 5.3 with ϕj = 0, for j < 0. Assume the distribution

of Z0 is absolutely continuous with respect to the Lebesgue measure in Rd,
and has a density gZ satisfying

i)
∫
|g(x− y)− g(x)|dx = O(|y|), for all y ∈ Rd,

ii) ϕt = O(t−ρ), for t > 0, and ρ > 2 + 1/α,
iii)

∑∞
j=0 ϕjx

j 6= 0, for all x ∈ Rd with |x| < 1,

Then, for all 0 < κ < α, the mixing coefficients (βt) satisfy

βt = O
(
t
1− (ρ−1)(α−κ)

1+α−κ
)
.(5.38)

Combining Propositions 5.4 and 5.5, we state below the asymptotic nor-
mality of the p-cluster based estimators for linear processes in Theorem 5.6.
We defer its proof to Section B.2.

Theorem 5.6. Consider (Xt) to be a causal linear process with values in
(Rd, | · |), as in Example 5.3. Let ρ > 0, and assume the conditions of
Proposition 5.5 hold with ϕt = O(t−ρ), for t > 0. Consider p > α/2, and
a sequence (kn) satisfying (5.33), such that k = kn → ∞, mn/kn → ∞.

Consider fp : ˜̀p → R, and assume L and B hold. Furthermore, assume

i) for δ > 0 as in (3.14),

ρ > 3 + 2
α + 2

δ (1 + 1
α),

ii) for all κ > 0, n b
− (ρ−1)(α−κ)

1+α−κ
n → 0, as n→∞.

If fp is bounded, condition i) can be replaced by ρ > 3 + 2/α. Then,
√
k(f̂Qp − fQp )

d−→ N
(
0,Var( fp(YQ(p)) )

)
, n→∞.

In particular, the α-cluster based estimators from Section 4 in (4.21) (4.24),
and (4.29), are asymptotically normally distributed and their asymptotic
variances are null.

Regarding cluster inference in the case of linear models, the α-cluster
approach has an optimal asymptotic variance for shift-invariant function-
als since we use the `α−norm order statistics. For this reason, it compares
favourably with state-of-the-art blocks estimator. For example, for the ex-
tremal index, the super-efficient estimator in (4.21) has a lower asymptotic
variance than the blocks estimator in (4.22). Indeed the asymptotic variance
σ2
θ of the latter, computed in (4.23), is not necessarily null. For example,

for the autoregressive process of order one AR(1) one has σ2
θ = 1− θ|X| > 0.

The main drawback of the α-cluster estimator is that we must infer α. We
propose to use a consistent and unbiased Hill estimator of 1/α; see [25, 44].
Numerical experiments in Section 6 show this works fine in practice.

5.3. Affine stochastic recurrence equation solution under Kesten’s
conditions. In this section we focus on the causal solution to the affine
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stochastic recurrence equation SRE under Kesten’s conditions. To guarantee
the existence of a solution (Xt), with values in (Rd, |·|) as in (5.39) satisfying
RVα, we rely on Theorem 2.1. and Theorem 2.4 in [2]. For an overview, we
refer to [11]. In what follows, we study time series (Xt) as in the Example 5.7
below.

Example 5.7. Consider (Xt) to be a sequence with values in Rd satisfying

Xt = AtXt−1 + Bt, t ∈ Z,(5.39)

where ((At,Bt)) is an iid sequence of non-negative random d × d matri-
ces with generic element A, and non-negative random vectors with generic
element B taking values in Rd. For the existence of a causal stationary
solution, we assume

i) E[log+ |A|op] + E[log+ |B|] < ∞,
ii) under i), assume the Lyapunov exponent of (At), denoted γ, satisfies

γ := lim
n→∞

n−1 log |At · · ·A1|op < 0, a.s.

To guarantee the heavy-tailedness condition RVα, we also assume

iii) B 6= 0 a.s., and A has no zero rows a.s.
iv) there exists κ > 0 such that E[|A|κop] < 1,
v) the set Γ from Equation (5.40) generates a dense group on R,

Γ = {log |an · · ·a1|op : n > 1, an · · ·a1 > 0,

an, . . . ,a1 are in the support of A’s distribution },(5.40)

vi) there exists κ1 > 0 such that E[(mini=1,...,d
∑d

t=1Aij)
κ1 ] > dκ1/2, and

E[|A|k1op log+ |A|op] <∞.
vii) under i)− vi), there exists a unique α > 0 such that

lim
n→∞

n−1 logE
[
|An · · ·A1|αop

]
= 0,(5.41)

and E[|B|α] <∞. If d > 1 assume α is not an even integer.

The Rd-variate series (Xt), satisfying (5.39) and i)− vii), admits a causal
stationary solution and satisfies RVα, with α > 0 as in Equation (5.41).

The previous example is motivated by the seminal Kesten’s paper [31].
We follow Theorem 2.1. in [2] to state conditions i) − ii) of Example 5.7.
Under the conditions i)− ii), the unique solution (Xt) of (5.39) has the a.s.
causal representation

Xt =
∑
i>0

At−i+1 . . .At Bt−i, t ∈ Z,(5.42)

where the first summand is Bt for i = 0 by convention; for an overview see
[11].

One of the main reasons why the solutions to SRE as in Example 5.7 have
received strong interest, is because (Xt) satisfies RVα even when the innova-
tions ((At,Bt)) are light-tailed. This feature was first noticed in [31] where
the original Kesten’s assumptions were introduced. In Kesten’s framework,
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a causal stationary solution to the SRE exists as in (5.42), and the extremes
of the series occur due to the sums of infinitely many terms of growing length
products appearing in (5.42); see [6] for a review. Further, the community
adopted the simplified Kesten’s conditions stated by Goldie in [22] for uni-
variate SRE. These conditions also aim to capture the heavy-tailed feature
under lighter-tailed innovations. In Example 5.7, we borrow the conditions
iii) − vii) established for the multivariate setting from Theorem 2.4 and
Corollary 2.7. in [2]. Then, a solution (Xt) as in Example 5.7 satisfies RVα,
for α > 0, and the index of regular variation α is the unique solution to
the Equation (5.41). We are also interested in Example 5.7 because it mod-
els classic econometric time series such as the squared ARCH(p), and the
volatility of GARCH(p, q) processes; see [11].

Concerning the extremes of (Xt) in Example 5.7, the forward spectral tail
process satisfies the relation

ΘΘΘt = At · · ·A1ΘΘΘ0, t > 0,

where (At) is an iid sequence distributed as A; see [30]. The backward
spectral tail process has a cumbersome representation that we omit here;
c.f. [30]. We state in Proposition 5.8 sufficient conditions on (A,B) yielding
assumptions AC, CSp hold for p > α/2, and a suitable sequence (xn) such
that nP(|X1| > xn)→ 0 as n→∞. In this case the time series (Xt) admits

an α−cluster process Q(α). We recall the identity from Equation (8.6) of

[12]: c(p) = E[‖Q(α)‖αp ] = E[‖(ΘΘΘt)t>0‖αp − ‖(ΘΘΘt)t>1‖αp ], for c(p) as in (2.8).
Then, letting p = α/2, a straightforward computation yields

c(p) 6 2E[‖(ΘΘΘt)t>0‖α−pp ] = 2E[
∑

t>0|At · · ·A1ΘΘΘ0|p]
6 2 s

∑
t>0(E[|As · · ·A1|pop])t,

and E[|As · · ·A1|pop] < 1, for p < α and s > 1 fixed sufficiently large in the
setting of Example 5.7. Hence, for p ∈ (α/2, α), c(p) <∞ in (2.8), and then

the series admits a p−cluster process Q(p).
We state now Proposition 5.8 which verifies conditions AC, CSp for the

SRE equation. The proof is postponed to Section B.3.

Proposition 5.8. Let (Xt) be a stationary time series with values in (Rd, | ·
|), as in Example 5.7. Let p > α/2, and consider (xn) such that there exists

κ > 0 satisfying n/x
p∧(α−κ)
n → 0, as n→∞. Then, (xn) satisfies conditions

AC and CSp.

In the setting of SRE equations, condition AC has been shown in Theorem
4.17 in [38]. In [38], the authors already considered a condition similar to
CSp. Parallel to their setting, we propose a proof of Proposition 5.8 which
shows CSp holds over uniform regions Λn = (xn,∞) such that n/xpn → 0,
as n→∞, in the sense of (2.69). Thereby, our proof extends Theorem 4.17
in [38] to uniform regions Λn not having an upper bound.

Concerning the mixing properties of (Xt)t>0 as in Example 5.7, we use
that it is a Markov chain and that X0 has the stationary distribution. As
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mentioned in Remark 2.2, we can then use Markov chain’s theory to compute
its mixing coefficients; cf. [36]. We review Theorem 2.8. in [2], yielding an
exponential decay of the mixing-coefficients (βt) of the series. For a general
treatment see Chapter 4.2 in [11].

Proposition 5.9. Consider a time series (Xt) with values in (Rd, | · |), as
in Example 5.7. Assume there exists a Borel measure µ on (Rd, | · |), such
that the Markov chain (Xt)t>0 is µ-irreducible, i.e., for all C ⊂ Rd with
µ(C) > 0, ∑∞

t=0P(Xt ∈ C |X0 = x) > 0, x ∈ R.(5.43)

Then (Xt) has mixing coefficients (βt) satisfying βt = O(ρt) for some ρ ∈
(0, 1), and we say it is strongly mixing with geometric rate. Moreover,
(Xt)t>0 is irreducible with respect to the Lebesgue measure if (A,B) admits
a density.

We can now state the asymptotic normality of cluster-based estimator for
SRE solutions in Theorem 5.10 below. The proof is postponed to Section
2.4.

Theorem 5.10. Consider (Xt) to be the causal solution to the SRE in
(5.39) with values in (Rd, | · |), as in Example 5.7. Assume the conditions
of Proposition 5.9 hold. Consider p > α/2, and a sequence (kn) satisfy-

ing (5.33), such that k = kn →∞, mn/kn →∞. Consider fp : ˜̀p → R, and
assume L and B hold. Assume log(n)/bn → 0, as n→∞, Then,

√
k(f̂Qp − fQp )

d−→ N (0,Var(f(YQ(p)))), n→∞.
In particular, the α-cluster based estimators from Section 4 in (4.21) (4.24),
and (4.29), are asymptotically normally distributed.

Remark 5.11. In this example, the asymptotic variances of the α-cluster
based estimators from Section 4 in (4.21) (4.24), and (4.29) are non-null.
The limiting variances in Theorem 5.10 are difficult to compare with the
existing ones in the literature because of the complexity of the distribution
of Q(p). However, we provide simple `α-block estimators of the asymptotic
variances in Section 6.

6. Numerical experiments

This section aims to illustrate the finite-sample performance of the α-
cluster estimators on time series (Xt) with tail-index α > 0. In all the
models we consider in Section 5, we work under the assumption that the
tuning parameters of the α-cluster satisfy (5.33). We take κ′ = 1 in (5.33)

which yields b =
√
n/k. In this case, the implementation of our estimators

can be written solely as a function of k. Recall k = kn must satisfy k →∞
and m/k → ∞ with m = [n/b]. Numerical comparisons of our α-cluster
based approach with other existing estimators for the extremal index and
the cluster index are at the advantage of our approach; see [13] and [12].
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The code of all numerical experiments is available at: https://github.

com/GBuritica/cluster_functionals.git.

6.1. Cluster size probabilities. We reviewed in Section 4.3 how cluster
sizes play a key role to model the serial behavior of exceedances. In this
section, we implement the cluster size probabilites estimation procedure
from Equation (4.29) in an example of a solution to the SRE under Kesten’s
conditions.

Example 6.1. Consider the non-negative univariate random variables A,
B, defined by logA = N−0.5, where N denotes a standard Gaussian random
variable, and B is uniformly distributed in [0, 1]. Let (Xt) be the solution
to the SRE in (5.39). Then, (Xt) satisfies RVα with α = 1. If (Aj) is a
sequence of iid random variables with generic element A, then

Q
(α)
t

d
= Πt/‖(Πj)‖α , t ∈ Z ,

with

Πt
d
=


At · · ·A1 if t > 1,

At · · ·A−1 if t 6 −1,

1 if t = 0 .

This follows by Example 6.1 in [30], and Proposition 3.1 in [12]. Then,
for p > α/2, the p-cluster based estimators (4.21) (4.24), and (4.29) are
asymptotically normally distributed.

Recall the cluster sizes π1, π2, . . . , defined in (4.28). We infer the clus-
ter sizes of Example 6.1 using α-cluster estimates. To illustrate Theo-
rem 5.10, we run a Monte–Carlo simulation experiment based on 1 000 sam-
ples (Xt)t=1,...,n of length n = 12 000 from Example 6.1. For each sampled
trajectory, we obtain estimates π̂1, π̂2, . . . , letting k = 8 and b = 38 in (4.29).
We use the known value of the tail-index α = 1. We also estimate the ex-
tremal index θX of the series from Equation (4.21). Theorem 5.10 yields,
for j > 0,

Var(
√
k (π̂j − πQj )) → Var(πQj (Q(α))), n→∞,(6.44)

where πQj are the cluster functional yielding the cluster sizes πj with the

notation in (4.30). Notice that the asymptotic variance of our cluster sizes
estimate is again a cluster statistic that we can infer. We compute an es-
timate of the asymptotic variance in (6.44) using cluster-based estimates,
and compare this estimate with the empirical variance obtained from the
Monte-Carlo simulation study. Figure 1 plots the profile of the limit Gauss-
ian distribution where the asymptotic variance is computed in these two
ways. As expected from Equation (6.44), the curves overlap, even if k is
small.

In the case of SRE equations, the cluster sizes were studied in detail in
[24]. The authors proposed a method to approximate the true values when

https://github.com/GBuritica/cluster_functionals.git
https://github.com/GBuritica/cluster_functionals.git


18 G. BURITICÁ AND O. WINTENBERGER

Extremal Index

 

D
e

n
s
it
y

0.20 0.25 0.30 0.35 0.40 0.45

0
2

4
6

8
1

0
1

2

Cluster Size 1

 

D
e

n
s
it
y

0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
1

0
1

2

Cluster Size 2

 

D
e
n
s
it
y

0.05 0.10 0.15

0
5

1
0

1
5

2
0

2
5

3
0

Cluster Size 3

 

D
e
n
s
it
y

0.02 0.04 0.06 0.08 0.10

0
1
0

2
0

3
0

4
0

Figure 1. Histogram of estimates θ̂X of the extremal index
using (4.21), and the cluster size probability π̂1, π̂2, π̂3, using
(4.28). We simulate 1 000 samples (Xt)t=1,...,n of Example 6.1
with n = 12 000. The dotted curve is the estimated Gauss-
ian density from the Monte-Carlo simulation study. The solid
curve is the estimated Gaussian density using a cluster-based
estimate of the asymptotic variance defined in (6.44). The
red lines point to the Monte-Carlo approximation of the real
values with standard deviation. These were computed using
Equation 3.5 in [24], and a simulation study with 10 000 sam-
ples of length 500 000.

the tail-index α, and the random variable A are known. We approximate
true values using Equation 3.5 in [24], and a Monte-Carlo study with 10 000
samples of length 500 000. The obtained values are pointed out in red in
Figure 1. We see that this choice of k yields estimates centered around the
true value.

6.2. Replacing α by α̂. So far we have used known values of α. In this
section, we illustrate that the α−cluster-based estimators perform well in
simulation when we replace α with a Hill-type estimator α̂. We use the
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Figure 2. Heatmap with contour curves of standard devia-
tions and mean squared errors for estimates of the extremal

index k1 = k 7→ θ̂X(k) in (4.21), where we estimate the
tail-index using a Hill-type estimator k2 = k 7→ α̂(k). We
simulate 500 samples (Xt)t=1,...,n of an AR(ϕ) model with ab-
solute value student(α) noise for n = 12 000, ϕ = 0.5, α = 1,
such that θX = 0.5.

bias-correction procedure in [23] and write an estimator of the tail-index as
k′ 7→ α̂(k′) where the tuning parameter k′ is the number of higher order
statistics of (|Xt|) that we use for inference. For consistency of the tail-
index estimator, we must take k′ = k′n satisfying k′ → ∞ and n/k′ → ∞.
Therefore, we recommend choosing the tuning sequence of the tail-index
and of the cluster estimators as (k′n), (kn), respectively, such that k′/k →
∞. Roughly speaking, the cluster statistics capture the block extremal
behavior whereas the tail-index points to an extremal property of margins.
As a consequence, the variance of the Hill procedure should not affect the
variance of the cluster estimates asymptotically. To illustrate this point, we
simulate 500 samples (Xt)t=1,...,n of an AR(ϕ) model with absolute value
student(α) noise for n = 12 000, α = 1 and ϕ ∈ {0.5, 0.7}, and for samples

of Example 5.7. We estimate the extremal index θ̂X(k) as in (4.21) where
we replace α by α̂(k′). Recall that for an AR(ϕ) model the asymptotic
variances of the extremal index estimator are null. We see in Figures 2, 3
and 4 that in practice we have to choose k small to reduce the bias of the
estimator. Moreover, the estimation procedure is robust with respect to k′

therefore we recommend taking k′ large to reduce variance. Similar results
were found for n = 3 000, n = 5 000, and n = 8 000 and these are available
upon request. To conclude, we see in Figures 2, 3 and 4 that standard
deviations are small, and thus the error of cluster inference is mainly due to
bias. We recommend choosing k small and k′ larger in all settings.

6.3. Conclusion. Our main theoretical result in Theorem 3.1 states asymp-

totic normality of α-cluster-based disjoint blocks estimators f̂Qα (k), based on
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Figure 3. Heatmap with contour curves as in Figure 2.
Here we simulate 500 samples (Xt)t=1,...,n of an AR(ϕ) model
with absolute value student(α) noise for n = 12 000, ϕ = 0.7,
α = 1, such that θX = 0.3.

Figure 4. Heatmap with contour curves as in Figure 2.
Here we simulate 500 samples (Xt)t=1,...,n of Example (6.1)
for n = 12 000 such that θX ≈ 0.2792.

k extremal `α-blocks, where α is the tail index of the series. The advan-
tage of α-cluster-based methods is that the choice of k is robust to time

dependencies; see [12] who have shown already consistency of f̂Qα estima-
tors. Equation (3.20) characterizes their asymptotic variance in terms of a
cluster statistic that we can infer. We further show in Section 4 that many
important indices in extremes can be written in terms of an α-cluster statis-
tic, e.g., the extremal index and cluster sizes. Section 5 verifies that our
assumptions hold for numerous models like causal linear models and SRE
solutions under Kesten’s conditions. For linear models, we obtain super-
efficient estimators with null asymptotic variance for classical indices. In
the examples we considered, our estimators have a small variance that can
be easily estimated. To illustrate the performance of our α-cluster inference
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methodology, we run finite-sample simulations in Section 6. In practice, the
main drawback of our estimator is that α needs to be estimated. Our simu-
lations support that replacing α by α̂(k′) as in Section 6.2 does not have a
big impact on the asymptotic variance. This is because k needs to be chosen
small to obtain unbiased estimates, whereas k′ can be chosen larger. Then,
even if we choose k small, the uncertainty of our procedure is well quan-
tified by plugging an estimate of the asymptotic variance in the Gaussian
limit. In the cases where the limit degenerates, further analysis needs to be
investigated to assess the uncertainty.
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Appendix A. Proof of the main result

In the following proofs, we assume the conditions of Proposition 2.3 hold.
In this setting, the time series (Xt) admits a p-cluster Q(p) ∈ ˜̀p and (2.8),
(2.9), hold for (xn). For inference purposes we fix a sequence of block lengths
(bn), and we write mn = bn/bnc, such that bn → ∞,mn → ∞. We assume
that the relation

k := kn =
⌊
mnP(‖B1‖p > xbn)

⌋
(A.45)

∼ n c(p)P(|X0| > xbn), n→∞,(A.46)

holds, where c(p) ∈ (0,∞) are as in (2.8), and we can verify mn/kn →∞.
To state asymptotic normality of the estimator in Equation (1.4), with

thresholds chosen as order statistics of the `p-norms, we study the functional
deterministic threshold estimator defined by

f̃Qp (u) :=
1

kn

mn∑
t=1

f(Bt/u xbn)11(‖Bt‖p > uxbn) , u > 0.(A.47)

In what follows, the sequences (xn), (bn), (mn), (kn), that we consider,
defining the estimator in (A.47), are the ones fixed above.

With this notation, Section A.1 states mixing rates for consistency of
the blocks estimators in (1.4). Section A.2 studies the covariance structure
of the deterministic threshold estimators in (A.47). Finally, the proof of
Theorem 3.1 is deferred to Section A.3.

A.1. Consistency of p-cluster based blocks estimators. The following
Lemma is proven in Section A.5.

Lemma A.1. Let (Xt) be an Rd-valued stationary time series satisfying
RVα. Let p > 0, and assume the conditions of Proposition 2.3 such that (Xt)

admits a p−cluster process Q(p) ∈ ˜̀p. Let f ∈ G+(˜̀p) be a bounded Lipschitz
continuous function. If either (1) or (2) below hold, then the sequences (xbn)
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and (bn) satisfy the relation∣∣E[e{− 1
k

∑m
t=1f(x−1

b Bt)
}
− E

[
e

{
− 1
k

∑bm/kc
t=1 f(x−1

b Bt)
}]k]∣∣ → 0,

n → ∞,(A.48)

where (kn) is chosen as in (A.46).

(1) The ρ−mixing coefficients satisfy

lim
n→+∞

∑blog2(n)c
t=0 ρbn 2t/kn = 0.

(2) There exists a sequence (`n), satisfying `n → ∞, as n → ∞, such
that the β−mixing coefficients satisfy

lim
n→+∞

mnβ`n/kn = lim
n→+∞

`n/bn = 0.

Corollary A.2. Consider the assumptions in Lemma A.1, and assume
either condition (1) or (2) therein hold. Then for any bounded function

f ∈ G+(˜̀p), the p-cluster based blocks estimator in (1.4) satisfies

f̂Qp
P−→ fQp , n→∞.

Proof of Corollary A.2. We applying Theorem 4.1 in [12]. The mixing as-
sumption therein is verified in Lemma A.1 stated above. Therefore, we
deduce the consistency of the blocks estimators and this concludes the
proof. �

A.2. Covariance p-cluster based blocks estimators. We state below
Proposition A.3. This is an intermediate result in the purpose of proving
Theorem 3.1. First, we introduce the next condition on the covariance
structure of the estimators in Equation (A.47).

(C′): Let F ⊆ G+(˜̀p) be the set with two functions: (xt) 7→ f(xt) and
(xt) 7→ 1. Consider the family of deterministic threshold estimators as in
(A.47) defined, for all ε > 0, by

T = {g̃Qp (u)}{g(·/u): u∈[1−ε,1+ε],g∈F}.(A.49)

Assume the asymptotic normality of the finite-dimensional parts of, i.e.,
√
k
(
g̃Qp (u)− u−α gQp

) fi.di.−−−→ G(g(·/u)), g̃Qp (u) ∈ T ,(A.50)

as n→ +∞, where gQp is a cluster statistic as in (1.3), and G is a centered
Gaussian process satisfying

Cov
(
G(g(·/u)),G(h(·/v))

)
=

∫ ∞
u∨v

E[g(yQ(p)/u)h(yQ(p)/v)]d(−y−α),(A.51)

for u, v ∈ [1 − ε, 1 + ε], and g, h ∈ F , such that Q(p) ∈ ˜̀p is the p-cluster
process of the series.

The following Proposition is shown in Section A.4.



ON THE ASYMPTOTICS OF EXTREMAL `p-BLOCKS CLUSTER INFERENCE 25

Proposition A.3. Let (Xt) be a stationary time series satisfying RVα. Let
p > 0, and assume the conditions of Proposition 2.3 such that (Xt) admits

a p−cluster process Q(p) ∈ ˜̀p. Consider fp : ˜̀p → R such that L holds.
Assume also the conditions MX,B,C′, hold. Then,

√
k
(
f̂Qp − fQp

) d−→ N (0,Var(fp(YQ(p))) ) , n→ +∞.(A.52)

where Y is independent of Q(p), and P(Y > y) = y−α, for y > 1. Moreover,
uniform asymptotic normality of the family T holds.

We list a couple of remarks of Proposition A.3 below.

Remark A.4. Concerning condition C′, Proposition A.3 requires that for
fp ∈ F satisfies that u 7→ fp((xt)/u) is a non-increasing function, for all

(xt) ∈ ˜̀p. Then (fp(· /u))u∈[1−ε,1+ε] is a linearly ordered family and thus
it is a VC-class; see Remark 2.11 in [17]. This monotonicity condition is
always satisfied by the indicator functions u 7→ 11(‖xt‖p > u), for p > 0.

It is also the case for functions projecting into the ˜̀p sphere as the cluster
indices studied in [12] (see Examples 4.1, 4.2).

Remark A.5. We interpret the bias condition B in Theorem A.3 as follows.
First, recall from (A.46), k ∼ n c(p)P(|X0| > xb), as n → ∞. Notice that
if we fix n, and let first b→∞, then the desired relations in (3.16), (3.15),
hold. Therefore, we require block lengths bn sufficiently large to guarantee B
holds.

A.3. Proof of Theorem 3.1. In order to prove Theorem 3.1 it is enough to
show that condition C′ in Proposition A.3 holds under the mixing condition
MXβ or MXρ. This is the purpose of the next lemma whose proof is
postponed to Section A.6.

Lemma A.6. Let (Xt) be an Rd-valued stationary time series satisfying
RVα. Let p > 0, and assume the conditions of Proposition 2.3 hold such
that (Xt) admits a p−cluster process Q(p) ∈ ˜̀p. Consider g, h : ˜̀p → R
such that L holds. Assume also the conditions MX,B, and either condition
MXρ, or MXβ hold, then

kCov( g̃Qp (u), h̃Qp (v)) −→ Cov
(
G(g(·/u)),G(h(·/v))

)
,

n→ +∞,
and G is a centered Gaussian process with covariance structure as in (A.51).
Recall the deterministic threshold estimators are defined in (A.47).

Relying on Lemma A.6 and Proposition A.3 we can conclude the proof of
Theorem 3.1.

Proof of Theorem 3.1. Consider the assumptions in Lemma A.6, and as-
sume either condition MXρ, MXβ hold. Consider a function fp : ˜̀p → R
satisfying (L). Recall the family T in (A.49). Asymptotic normality of the
finite-dimensional parts of T hold by Lemma A.6. Indeed, by the Wold
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device it is enough to check that every linear combination of deterministic
threshold estimators in (A.47) is asymptotically normal with Gaussian limit
G and covariance structure as in (A.51). This holds since linear combina-
tions of estimators in (A.47) are again a deterministic threshold estimator
as in (A.47). Finally, this shows that C′ holds. Thus, we can apply Propo-
sition A.3 and this concludes the proof. �

Remark A.7. Concerning condition MX, we require it in Theorem 3.1
to show equicontinuity of the family T in (A.49). Furthermore, to check
condition C′, i.e., to show (A.50) holds with limit Gaussian process G and
covariance (A.51), we require additional mixing conditions: MXρ or MXβ.

A.4. Proof of Proposition A.3.

Proof. Let f ∈ G+(˜̀p) be a fixed bounded function. Recall the set F con-
taining two functions: (xt) 7→ f(xt) and (xt) 7→ 1, and the family T in
(A.53) defined by

T = {g̃Qp (u)}{g(·/u): u∈[1−ε,1+ε],g∈F}(A.53)

for ε > 0 as in (3.16).
We separate the proof in two steps. We start by assuming that the uniform

asymptotic normality of estimators indexed by T holds. We show in this
case that (A.52) holds. In the second part of the proof we will show the
uniformity of the limit Gaussian process indexed by T .

For the first step of the proof, assume that
√
k(g̃Qp (u)− u−αgQp )

d−→ G(g(·/u)), g̃Qp ∈ T ,
as n → ∞ holds uniformly, and G is a Gaussian process with structure as
in (A.51), that we recall below:

Cov(G(g(·/u)),G(h(·/v))) =

∫ ∞
u∨v

E[g(yQ(p)/u)h(yQ(p)/v)]d(−y−α)

= c(g(·/u), h(·/v)),

for g, h ∈ F , and u, v ∈ [1 − ε, 1 + ε]. We also write c(g(·/u), g(·/u)) =
c(g(·/u)) in what follows.

Then, for g ∈ F , u ∈ [1− ε, 1 + ε], we have
√
k(g̃Qp (u)/gQp − u−α)

d−→ G(g(·/u))/gQp , n→∞,

Taking 1 ∈ F to be the constant function one: 1(xt) = 1, yields 1Qp = 1.
Moreover,

√
k(1̃Qp (u)← − (u−α)←)

=
√
k
(
‖B1/xbn‖p,(bkuc) − u−1/α

)
, u ∈ [1− ε, 1 + ε].

Then, by an application of Vervaat’s lemma,
√
k
(
‖B1/xbn‖p,(bkc) − 1

) d−→ −α−1G
(
1(·/1)

)
,
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as n → ∞. In particular, ‖B1‖p,(bkc)/xbn
P−→ 1, and the following joint

convergence holds
√
k
(

(f̃Qp (u), ‖B1‖p,(k)/xb)− (fQp (u), 1)
) d−→

(
G(f(·/u)),−α−1G(1(·/1))

)
,

uniformly for u ∈ [1− ε, 1 + ε], as n→∞. Furthermore,
√
k
(
f̂Qp − fQp

)
=
√
k fQp

(
f̃Qp ( ‖B1‖p,(k)/xbn )/fQp − 1

)
=
√
k fQp

(
f̃Qp (‖B1‖p,(k)/xbn)/fQp − (‖B1‖p,(bkc)/xbn)−α

)
+
√
k fQp

(
(‖B1/xbn‖p,(k) )−α − 1

)
d−→ fQp G(f(·/1)/fQp − 1(·/1))

To sum up,
√
k
(
f̂Qp − fQp

) d−→ N (0,Var(f(YQ(p))), and we recognize that
the variance term in (A.52).

We now turn to the second step to conclude the proof. We must show
√
k(g̃Qp (u)− gQp (u))

d−→ G, g̃Qp (u) ∈ T ,

uniformly as n → ∞. We can replace the expected value of g̃Qp (u) directly

by the limit gQp (u) due to the bias assumption (B). We have assumed
convergence of the finite-dimensional parts of T holds as in (A.50). Then,
it remains to check the asymptotic equicontinuity of the family{√

k(g̃Qp (u)− gQp (u)) : g̃Qp (u) ∈ T
}

as this will yield the uniformity of the Gaussian limit.

Actually, it is enough to check separately equicontinuity on {
√
k(g̃Qp (u)−

gQp (u))}u∈[u0,s0], for each g ∈ F , with u0 = 1 − ε < + < 1 + ε = s0. This
holds since the family F contains only a finite number of functions. Let’s
fix g ∈ F and define the semi-metric d(·, ·) by

d(g(·/u), g(·/s)) := |u−α − s−α|E[g(YQ(p))2], s, u > 0.

Then (g̃Qp (u))u∈[u0,s0] is a totally bounded family for this semi-metric. The
remaining of the proof consists of two steps. First, we show the sequence
(Bt)t=1,...,mn can be replaced by a sequence (B∗t )t=1,...,mn , containing iid
blocks distributed as B1. Second, we show that the conditions (i), (ii), (iii),
of Theorem C.4.5 in [33] hold; see also Theorem 2.3. in [18].
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For the first part, for replacing the sequence (Bt) by (B∗t ) we argue as in
Section 10.6. in [33]. For any δ > 0,

P
(

sup
u,s∈[u0,s0]

d(g(u−1·),g(s−1·))<δ

√
k |g̃Qp (u)− g̃Qp (s)| > δ

)

6 2P
(

sup
u,s∈[u0,s0]

d(g(u−1·),g(s−1·))<δ

√
k |g̃Qp,∗(u)− g̃Qp,∗(s)| > δ/2

)
+ 4mnβbn .

where g̃Qp,∗(u) = 1
k

∑
t=1,...,mn,t even g(B∗t /u xb)11(‖B∗t ‖p > uxb), and the last

bound follows by Lemma 2 in [19].
We are now in the framework of Theorem C.4.5. in [33], and it is enough

to check conditions (i), (ii), (iii) therein. To verify the Lindeberg condition
(i) it suffices to verify that for every η > 0

I =
mn

kn
E[g(B1/u xbn)2 11(g(B1/u xbn) >

√
ηkn)]

→ 0.

Indeed, we have

I 6
mn

kn
E[g(B1/u xbn)2+δ]

2
2+δP(g(B1/u xbn) >

√
ηkn)

δ
2+δ

6 (η kn)
−(2+δ)

2
mn

kn
E[g(B1/u xbn)2+δ] ,

where δ > 0 is as in (3.14). Then, by L we deduce that I → 0.
We now verify (ii) (this is also condition (D1) in [18]). The convergence

of the finite-dimensional distributions of T yields, for s > u,

kE[ (g̃Qp,∗(u)− g̃Qp,∗(s))2 ]

−→ c(g(·/u)) + c(g(·/s))− 2c(g(·/u), g(·/s))

=

∫ +∞

1
(u−α + s−α) g(yQ(p))2 − 2s−αg(yQ(p))g((s/u) yQ(p))d(−y−α).

Since v 7→ g(·/v) is a non-increasing function, then we have

lim
k→+∞

kE[ (g̃Qp,∗(u)− g̃Qp,∗(s))2 ] 6 |u−α − s−α|E[g(YQ(p))2]

= d(g(·/u), g(·/s)).
To sum up we have shown that under the bias conditions the following limit
holds.

lim
δ↓0

lim sup
n→+∞

sup
u,s∈[u0,s0]

d(g(·/t),g(·/s))<δ

kE[ (g̃Qp,∗(u)− g̃Qp,∗(s))2 ] = 0.

Thus, from this we conclude that (ii) holds. Finally, the entropy condition
in (iii) holds with respect to the random metric (dn, (g(·/u))u∈[u0,s0]) defined
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by(
dn(g(·/u), g(·/s))

)2
=

1

k

mn∑
t=1

(
g(B∗t /(uxb))11(‖B∗t ‖p > uxb)− g(B∗t /(s xb))11(‖B∗t ‖p > sxb))

2.

Indeed, the family of functions (g̃Qp (t))t∈[t0,s0] is linearly ordered thus it forms
a VC(2)-class (cf. [17], Remark 2.11 and the discussion on condition (D3)
in [18]). We conclude the uniform asymptotic normality of the estimators
indexed by T and Theorem A.52 follows. �

A.5. Proof of Lemma A.1.

Condition (1) =⇒ (A.48). We start by denoting disjoint blocks as

Bt := X(t−1)b+[1,b], B∗t := X∗(t−1)b+[1,b],(A.54)

t = 1, . . . ,m , such that (B∗t )t=1,...,m is a sequence of iid blocks, distributed
as B1, independent of (Bt)t=1,...,m Then, the mean value theorem entails
|e−x − e−y| 6 |x− y|, thus∣∣E[ exp

{
− 1

k

∑m
t=1f(x−1

b Bt)
}]
− E

[
exp

{
− 1

k

∑m
t=1f(x−1

b B
∗
t )
}]∣∣2

6 E
[(

1
k

∑m
t=1f(x−1

b Bt)−
1
k

∑m
t=1 f(x−1

b B
∗
t )
)2]

= I.

The term I can be controlled using the correlation coefficients (ρh), defined
in Section 2.1. It follows from stationarity and an application of Theorem 1
in [47] that there exists a constant c > 0 such that

I 6 2 c m
k2
E
[
f(x−1

b Bt)
2
]

exp
{
c
∑blog2(n)c

t=0 ρb 2t
}

Moreover, by (2.9), for any function g ∈ G+(˜̀
p),

|mk E[g(x−1
b B1)]−

∫∞
0 g(yQ(p))d(−y−α)| → 0, n→∞.

Hence, if exp
{∑blog2(n)c

t=0 ρb 2t
}
/k → 0 as n → ∞, (A.48) holds. Thus, since

k → +∞ we deduce that condition (1) in Lemma A.1 implies (A.48) and
this concludes the proof.

(2) =⇒ (A.48). Consider a sequence ` := `n → ∞. We denote disjoint
blocks as

Bt,` := X(t−1)b+[1,b−`], t = 1, . . . ,m.

such that for ` = 0 we keep the notation in (A.54). Notice that for all δ >

0, ε > 0, and for every bounded Lipschitz-continuous function f ∈ G+(˜̀p) it
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holds∣∣E[ exp
{
− 1

k

∑m
t=1f(x−1

b Bt)
}]
− E

[
exp

{
− 1

k

∑m
t=1f(x−1

b Btε)
}]∣∣

6 E
[∣∣ 1
k

∑m
t=1f(x−1

b Bt)−
1
k

∑m
t=1f(x−1

b Btε)
∣∣]

6 E
[

1
k

∑m
t=1

∣∣f(x−1
b Bt)− f(x−1

b Btε)
∣∣]

= o
(
mP(‖B1/xb

ε‖p > δ)/k
)

This term vanishes by condition CSp. Moreover, define

I =
∣∣E[ exp

{
− 1

k

∑m
t=1fε(x

−1
b Bt)

}]
− E

[
exp

{
− 1

k

∑m
t=1fε(x

−1
b Bt,`)

}]∣∣,
where fε(xt) := f(xtε). Then, there exists a constant c > 0 such that

I 6 c
1

k
P
(

max
16j6m

max
16i6`

|X(j−1)b−i+1| > εxb
)

6 c
m

k
P(‖B1,`‖∞ > εxb)

6 c
m`

k
P(|X0| > εxb) ∼ `/b (c ε−α/c(p)) = O(`/b).

Thus, we conclude that limn→+∞ `n/bn = 0 is a sufficient condition yielding
I → 0 as n→∞. Furthermore, recall the definition of the mixing coefficients
(βh) in Section 2.1. Then,∣∣E[ exp

{
− 1

k

∑m
t=1fε(x

−1
b Bt,`)

}]
− E

[
exp

{
− 1

k

∑m
t=1fε(x

−1
b B

∗
t )
}]∣∣

6
m

k
‖f‖∞2 dTV

(
L(Bt,l)⊗ L(X1)⊗ · · · ⊗ L(X1)︸ ︷︷ ︸

` times

, L(Bt)
)

6
m

k
‖f‖∞ 2β`n → 0, n→∞.

We use first the definition of the total variation distance, and second a
reformulation of the distance in terms of the mixing coefficients (βh). Hence
we deduce that (2) in Lemma A.1 implies (A.48).

A.6. Proof of Lemma A.6. To prove Lemma A.6 we will use the following
Lemma.

Lemma A.8. Let (Xt) be an Rd-valued stationary time series satisfying
RVα. For p > 0, assume the conditions of Proposition 2.3 such that (Xt)

admits a p−cluster process Q(p) ∈ ˜̀p. Consider functions g, h : ˜̀p → R
satisfying L. Assume that one of the two conditions below holds:

(1) The coefficients (ρt) satisfy ρt → 0, as t→∞, and (3.19) holds.
(2) There exists a sequences (`n), satisfying `n →∞, and

lim
n→+∞

mnβ`n/kn = lim
n→+∞

`n/bn = 0.

Then, for all t = 2, 3, . . . , the relation below holds

lim
n→∞

m

k
Cov( g(x−1

b B1)h(x−1
b Bt) ) = 0.(A.55)
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Proof of Lemma A.8. We assume with no loss of generality that the func-
tions g, h : ˜̀p → R satisfying L take non-negative values. Notice that for all
t > 0

m

k
Cov(g(x−1

b B1)h(x−1
b Bt)) =

m

k
E[g(x−1

b B1)h(x−1
b Bt)] + o(1),(A.56)

since mE[h2(x−1
b B1)]/k → E[h2(YQ(p))], as n → ∞, by the moment as-

sumption in (3.14). Moreover,

I =
m

k
E[g(x−1

b B1)11(g(x−1
b B1) > η)h(x−1

b Bt)]

6
m

k
E[g(x−1

b B1)211(g(x−1
b B1) > η)]1/2E[h(x−1

b B1)2]1/2

6
m

k
(η)−δ/2E[g(x−1

b B1)2+δ]
1

2+δE[g(x−1
b B1)2+δ]

δ
2(2+δ)E[h(x−1

b B1)2]1/2.

We deduce from Equation (3.14) that I = O(η−δ/2), thus this term is neg-
ligible letting n→∞, and then η →∞. Therefore,

lim
n→∞

m

k
E[g(x−1

b B1)h(x−1
b Bt)]

= lim
η→∞

lim
n→∞

m

k
E[(g ∧ η)(x−1

b B1)(h ∧ η)(x−1
b Bt)].

We conclude that it suffices to establish (A.55) for continuous bounded func-

tions. We consider Lipschitz-continuous bounded functions f, f ′ : ˜̀p → R in
G+( ˜̀p). The extension to continuous bounded functions then holds following
a Portmanteau argument. Now notice
m

k
E[f(x−1

b B1)f ′(x−1
b Bt)]

=
m

k
E[f(x−1

b B1
ε
)f ′(x−1

b Bt)] +
m

k
E[(f(x−1

b B1)− f(x−1
b B1

ε
))f ′(x−1

b Bt)]

For the second term, we rely on condition CSp since f, f ′ are bounded
Lipschitz-continuous functions. In this case, the second term is negligeable
letting first n → ∞ and then ε ↓ 0. Similarly, we deduce from condition
CSp that for t = 2, 3, . . . , and for all ε > 0,

m

k
E[f(x−1

b B1)f ′(x−1
b Bt)]

∼ m

k
E[f(x−1

b B1
ε
)f ′(x−1

b Btε)],(A.57)

if we let n→∞ and then ε ↓ 0. We now consider the cases (1) =⇒ (A.55),
and (2) =⇒ (A.55) separately.
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(1) =⇒ (A.55). If t = 2, we use a telescopic sum decomposition to rewrite
the term in (A.57). Hence for any s > 0,
m

k
E[f(x−1

b B1
ε
)f ′(x−1

b Btε)]

∼
E
[

1
b

∑b
i=s

(
f(x−1

b X[0,i]
ε
)− f(x−1

b X[1,i]
ε
)
)
f ′(x−1

b Xi+(t−1)b+[1,b]
ε
)
]

c(p)P(|X0| > xb)

= I.

Notice the finite terms in s are negligible as n→∞. Then,

|I| 6 ‖f‖∞
E
[
11(|X0| > εxb)

1
b

∑b
i=s f

′
ε(x
−1
b Xbt−1cb+i+[1,b])

]
c(p)P(|X0| > xb)

.

Furthermore, the term I can be bounded in absolute value by decomposing
the function f ′ as a telescopic sum again as follows. We write fε(xt) :=
f(xtε) and f ′ε(xt) := f ′(xtε) to simplify notation. Hence

|I| 6 ‖f‖∞ E
[
11(|X0| > εxb)

×
1
b

∑b
i=s

∑b−1
j=1

(
f ′ε(x

−1
b X(t−1)b+i+[1,j])− f ′ε(x−1

b X(t−1)b+i+[1,j+1])
)]

c(p)P(|X0| > xb)

+‖f‖∞‖f ′‖∞
E[11(|X0| > εxb)× 1

b

∑b
i=s 11(|X(t−1)b+i+1| > εxb)]

c(p)P(|X0| > xb)

6 ‖f‖∞‖f ′‖∞
E
[
11(|X0| > εxb)

1
b

∑b
i=s

∑b−1
j=1 11(|X(t−1)b+i+j | > εxb)

]
c(p)P(|X0| > xb)

+o(1)

= O
(∑tb

i=(t−2)b+sP(|Xi| > εxb | |X0| > εxb))

For t = 2, we can control the last expression using condition (3.19). We let
first n→∞ and then s→∞ which yields |I| → 0. This we conclude (A.55)
holds for Lipschitz-continuous functions, and this shows the case t = 2.

On the other hand, notice that for t = 3, 4, . . . ,
m

k
Cov(g(x−1

b B1)h(x−1
b Bt)]) 6 ρ(t−2)b

m

k

(
E[g(x−1

b B1)2]E[h(x−1
b B1)2]

)1/2
= O(ρ(t−2)b ).

Hence, assuming ρbn → 0, as n→∞, we deduce (A.55) holds for continuous

functions g, h : ˜̀p → R in G+(˜̀p) satisfying the moment assumption in
(3.14), and this concludes the proof of (1) =⇒ (A.55).

(2) =⇒ (A.55). In this case, and arguing as in the first steps of the proof,
it suffices to show that for all t = 2, 3, . . . ,

lim
n→∞

m

k
Cov(fε(x

−1
b B1)f ′ε(x

−1
b Bt)) = 0.

Consider the sequence (`n) satisfying condition (2), and recall the notation
Bt,` = X(t−1)b+[1,b−`]. We can use similar steps as in the proof of Lemma A.1
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and replace B1 by B1,` inside the covariance term. For this step we require
`n/bn → 0 as n→∞. Moreover,

m

k
Cov(fε(x

−1
b B1,`)f

′
ε(x
−1
b Bt)) 6 2‖f‖∞‖f ′‖∞

m

k
β`+(t−2)b.

Finally, this concludes the proof of (2) =⇒ (A.55) since mnβ`n/kn → 0, as
n→∞. �

Proof of Lemma A.6. Let g, h : ˜̀p → R, be two functions verifying (L).
Then,

Cov
(

1
k

∑m
t=1g(x−1

b Bt),
1
k

∑m
t=1h(x−1

b Bt)
)

=
m

k2
Var[g(x−1

b B1)h(x−1
b B1)] +

2

k2

∑
16t<j6mCov

(
g(x−1

b Bt), h(x−1
b Bj)

)
=

(I + II)

k
The second term II can be rewritten in the following way by stationarity:

II = m
k

1
m

∑
16t<j6m Cov(g(x−1

b Bt)h(x−1
b Bj))

= 1
m

∑
16t6m

∑
1<j−t6m−t

m
k Cov(g(x−1

b B1)h(x−1
b Bj−t))

= 1
m

∑
16t6m

∑
1<j6m−t

m
k E[g(x−1

b B1)h(x−1
b Bj)]

= 1
m

∑
1<j6m−1

∑
16t6m−j

m
k Cov[g(x−1

b B1)h(x−1
b Bj)]

=
∑

1<j6m−1

(
1− j

m

)
m
k Cov(g(x−1

b B1)h(x−1
b Bj))

Then, following the lines of Lemma A.8, we conclude that assuming
∑mn

t=1 ρtbn →
0, we deduce II → 0.

Moreover, A direct corollary of Theorem 1.1. in [42], directly stated in
equation (1.12b) therein, yields for j = 3, 4, . . . , and δ > 0,

m
k Cov(g(x−1

b B1)h(x−1
b Bj))

6 2mk β

δ
(2+δ)
(j−2)bn

E[g(x−1
b B1)2+δ]

1
2+δE[h(x−1

b B1)2+δ]
1

2+δ ,

= O((mk β(j−2)bn)
δ

(2+δ) ).

The last equality holds by condition (3.14). Actually, the above inequality
can be extended to bounded random variables letting δ ↑ ∞. Finally, for
j = 2 we use the result in Lemma A.8. To sum up, we have also shown that
if
∑mn

t=1(mnβtbn/kn)δ/(2+δ) → 0 together with (MX) hold, then II → 0 as
n→∞.

To conclude, this shows

I =
m

k
Var(g(x−1

b B1)h(x−1
b B1))

→ c(g, h) :=

∫ ∞
0

g(yQ(p))h(yQ(p))d(−y−α),

and this concludes the proof. �



34 G. BURITICÁ AND O. WINTENBERGER

Appendix B. Proofs of the results of Section 5

Proof of Proposition 5.2. From the discussion in Section 5.1, we can see that
all assumptions in Theorem 3.1 are satisfied. Notice that if p = α, then
|Q(α)| has a deterministic expression in the shift-invariant space. Then, the
index estimators in (4.21), (4.24), and (4.29), with fp : x 7→ ‖x‖α∞/‖x‖αα,
fp : x 7→ ‖x‖α1 /‖x‖αα, and fp : x 7→ (|x|α(j) − |x|

α
(j+1))/‖x‖

α
α, respectively,

satisfy Var(fp(YQ(α))) = 0. Finally, using the change of norms formula

in (2.11), we can also show Var(fp(YQ(p))) = 0, for any p > 0, and this
concludes the proof. �

B.1. Proof of Proposition 5.4. We start by noticing that Equation (5.37)
rewrites as: for all δ > 0,

lim
s→+∞

lim sup
n→+∞

P(
∑n

t=1 |
∑
|j|>s ϕjZt−j/xn|p > δ)

nP(|X1| > x)
= 0.(B.58)

Assuming (5.37) holds, AC and CSp follow straightforwardly since for all

s > 0, the series (X
(s)
t ) is a linear m0−dependent sequence with m0 = 2s+1,

such that X
(s)
t =

∑
|j|6s ϕjZt−j . The former satisfies AC,CSp, for p > α/2,

as in Example 5.1.
We now turn to the verification of Equation (B.58). Actually, by mono-

tonicity of the `p-norms, if (B.58) holds for α/2 < p < α, then it also holds
for p > α. In the following we assume α/2 < p < α.

For p 6 1, the subadditivity property yields

|
∑
|j|>sϕjZt−j |

p 6
∑
|j|>s|ϕjZt−j |

p =: I1,t.

For p > 1, a Taylor decomposition of functional | · |p : R→ R entails, for all
a, b,∈ R,

|a+ b|p = |a|p + p sign(a)|a|p−1b+
p(p− 1)

2
|a|p−2b2 + · · ·+R[p](a, b),

where the remaining term satisfies

R[p] = R[p](a, b) 6
p(p− 1) · · · (p− [p])

[p]!
|b− ξa|p−[p]b[p],

for one ξ ∈ [0, 1]. To simplify notation, in the remaining lines of the proof
we denote (|Zt|) by (Zt). Then, the Taylor expression above yields

|
∑
|j|>sϕjZt−j/xn|

p

6 |ϕsZt−s/xn|p + p |ϕsZt−s/xn|p−1(
∑
|j|>s
j 6=s
|ϕjZt−j/xn|)

+ · · ·+R[p].
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Moreover, to handle the remaining term R[p], we use subadditivity of the

real function x 7→ xp−[p]. Hence,

|
∑
|j|>sϕjZt−j/xn|

p

6 |ϕsZt−s/xn|p + c|ϕsZt−s/xn|p−1
(∑
|j|>s
j 6=s
|ϕj |Zt−j/xn

)
+ · · ·+ c|ϕsZt−s/xn|p−[p]

(∑
|j|>s
j 6=s
|ϕj |Zt−j/xn

)[p]
+c
∑
|j|>s
j 6=s
||ϕj |Zt−j/xn|p−[p]

(∑
|j|>s
j 6=s
|ϕj |Zt−j/xn

)[p]
≤ c (I0,t + I1,t + · · ·+ I[p],t + I[p]+1,t) ,

where c > 0 is a constant of no interest, only depending on p. Relying on the
bound above, we require to control the previous [p]+2 terms. We argue using
a truncation argument. Our goal is to prove that for all l = 0, . . . , [p] + 1,
for all ε, δ > 0

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 Il,t
ε
> δ)

nP(|X1| > xn)
+

P(
∑n

t=1 Il,tε
> δ)

nP(|X1| > xn)
= 0,(B.59)

where the truncated terms are defined as follows: for l = 0, . . . , [p]

Il,t
ε

:= |ϕsZt−s/xn
ε|p−l

(∑
|j|>s
j 6=s
|ϕj |Zt−j/xn

ε)l
,

I[p]+1,t
ε

:=
∑
|j|>s
j 6=s
|ϕjZt−j/xn

ε|p−[p]
(∑
|j|>s
j 6=s
|ϕj |Zt−j/xn

ε)[p]
,

Il,t
ε

:= |ϕsZt−s/xnε|
p−l(∑

|j|>s
j 6=s
|ϕj |Zt−j/xn

ε

)l
,

I[p]+1,t
ε

:=
∑
|j|>s
j 6=s
|ϕjZt−j/xn

ε
|p−[p]

(∑
|j|>s
j 6=s
|ϕj |Zt−j/xn

ε

)[p]
.

To study each term, we write for q ∈ N, J ⊆ N, (ψj) ∈ R|J |,
(
∑

j∈Jψj)
q =

∑
i1,...,iq
ij∈J

ψi1 · · ·ψiq .(B.60)

We start by analyzing the terms corresponding to the truncation from
below. An application of Markov’s inequality together with Equation (B.60)
yield

P(
∑n

t=1 I[p]+1,t
ε
> δ)

6 δ−1nE[I[p]+1,t
ε
]

6 δ−1n
∑

i1,··· ,i[p]+1

|ij |>s
|ϕi1 · · ·ϕi[p] ||ϕi[p]+1

|p−[p]

×E[|Z−i1/xnεϕ−1
i1

| · · · |Z−i[p]/xn
εϕ−1
i[p]

||Z−i[p]+1
/xn

εϕ−1
i[p]+1

|p−[p]].
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Moreover, recall the noise sequence (Zt) are iid random variables satis-
fying RVα. Therefore, for the expectation we can factor the independent
noise terms as the product of at most [p]+1 terms. For each term, the noise
random variable Z−ij will be raised to the power at most p. As p < α, we
can use Karamata’s theorem on each of these terms.

Finally, an application of Karamata’s theorem and Potter’s bound yield
there exists κ > 0, such that for all ε, δ > 0

P(
∑n

t=1 I[p]+1,t
ε
> δ)

nP(|Z1| > xn)
6

α

α− p
O(δ−1 ε−(α−κ) (

∑
|j|>s|ϕj |

α−κ)p).

We conclude that this term is negligible by letting first n → ∞, and then
s→∞.

We can follow similar steps as before to study the truncation from below
terms Il,t, l = 0, . . . , [p]. An application of Markov’s inequality entails there
exists κ > 0 such that

P(
∑n

t=1 Il,tε
> δ)

nP(|Z1| > xn)
6 δ−1

E
[
|ϕsZ1/xnε|

p−l]
P(|Z1| > xn)

E
[(∑

|j|>s
j 6=s
|ϕj |Zt−j/xn

ε

)l]
=

α

α− p+ l
O(δ−1|ϕs|α−κε−(α−κ)(

∑
|j|>s|ϕj |

α−κ)l),

where the last relation holds by Karamata’s theorem and an application of
Potter’s bound. Hence, for l = 0, . . . , [p], [p] + 1, we conclude letting first
n→∞, and then s→∞. To sum up we have shown that

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 Il,tε
> δ)

nP(|X1| > xn)
= 0.

We now turn to the terms relative to the truncation from above. In
this case, the assumption n/xpn → 0, entails nE[Il,t

ε
] → 0, as n → ∞, for

l = 0, . . . , [p], [p] + 1. Therefore, to establish Equation (B.59), it suffices to
check the following relation holds:

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 Il,t
ε − E[Il,t

ε
] > δ)

nP(|X1| > xn)
= 0.(B.61)

We apply Chebychev’s inequality, which together with the stationarity of
the series (Zt), yields

P(
∑n

t=1 Il,t
ε − E[Il,t

ε
] > δ) 6 2 δ−2 n

∑n
t=0Cov(Il,0

ε
, Il,t

ε
)

As in the arguments for the truncation from above, we start by showing that
the term in (B.61) is negligible for l = [p] + 1. This reasoning can again be
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extended for l = 0, . . . , [p]. Computation of the covariances then yields

Cov(I[p]+1,0
ε
, I[p]+1,t

ε
)

=
∑

i1,··· ,i[p]+1

|ij |>s,ij 6=s

∑
`1,··· ,`[p]+1

|`j |>s,`j 6=s
|ϕi1 · · ·ϕi[p] ||ϕi[p]+1

|p−[p]|ϕ`1 · · ·ϕ`[p] ||ϕ`[p]+1
|p−[p]

×Cov(|Z−i1/xn
εϕ−1
i1 · · ·Z−i[p]/xn

εϕ−1
i[p] ||Z−i[p]+1

/xn
εϕ−1
i[p]+1 |p−[p],

|Zt−`1/xn
εϕ−1
`1 · · ·Zt−`[p]/xn

εϕ−1
`[p] ||Zt−`[p]+1

/xn
εϕ−1
`[p]+1 |p−[p]).

Actually, all but a finite number of terms vanish in the previous double sum
because the noise sequence (Zt) are independent random variables. More
precisely,

Cov(I[p]+1,0
ε
, I[p]+1,t

ε
)

=
∑

i1,··· ,i[p]+1

|ij |>s,ij 6=s

∑
`1,··· ,`[p]+1

`j∈{i1−t,...,i[p]+1−t}

×|ϕi1 . . . ϕi[p] ||ϕi[p]+1
|p−[p]|ϕ`1 . . . ϕ`[p] ||ϕ`[p]+1

|p−[p]

×Cov(|Z−i1/xn
εϕ−1
i1 · · ·Z−i[p]/xn

εϕ−1
i[p] ||Z−i[p]+1

/xn
εϕ−1
i[p]+1 |p−[p],

|Zt−`1/xn
εϕ−1
`1 · · ·Zt−`[p]/xn

εϕ−1
`[p] ||Zt−`[p]+1

/xn
εϕ−1
`[p]+1 |p−[p]).

Moreover, regarding the last covariance term, we notice that it is sufficient
to bound the expectation of the product as

Cov(|Z−i1/xn
εϕ−1
i1 · · ·Z−i[p]/xn

εϕ−1
i[p] ||Z−i[p]+1

/xn
εϕ−1
i[p]+1 |p−[p],

|Zt−`1/xn
εϕ−1
`1 · · ·Zt−`[p]/xn

εϕ−1
`[p] ||Zt−`[p]+1

/xn
εϕ−1
`[p]+1 |p−[p]).

6 E[|Z−i1/xn
εϕ−1
i1 · · ·Z−i[p]/xn

εϕ−1
i[p] ||Z−i[p]+1

/xn
εϕ−1
i[p]+1 |p−[p]

×|Zt−`1/xn
εϕ−1
`1 · · ·Zt−`[p]/xn

εϕ−1
`[p] ||Zt−`[p]+1

/xn
εϕ−1
`[p]+1 |p−[p]].

Since (Zt) are iid random variable, the expectation term above can be writ-
ten as the product of expectations as follows

|ϕi1 . . . ϕi[p] ||ϕi[p]+1
|p−[p]|ϕ`1 . . . ϕ`[p] ||ϕ`[p]+1

|p−[p]

E(|Z−i1/xn
εϕ−1
i1 | · · · |Z−i[p]/xn

εϕ−1
i[p] ||Z−i[p]+1

/xn
εϕ−1
i[p]+1 |p−[p]

×|Zt−`1/xn
εϕ−1
`1 | · · · |Zt−`[p]/xn

εϕ−1
`[p] ||Zt−`[p]+1

/xn
εϕ−1
`[p]+1 |p−[p]).

=
∏
γ1+···+γr=p,
γ′1+···+γ′

r′=p
|ϕiγj |

γj |ϕiγj−t|
γ′jE[|Z0/xn

εϕ−1
iγj |γj |Z0/xn

εϕ−1
iγj−t |γ

′
j ],
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where γj , γ
′
j ∈ {0, 1, . . . , [p]}, γr, γ′r′ ∈ {0, p − [p], p − [p] + 1, . . . , p} and

1 6 r, r′ 6 [p] + 1. The product above is a factorization with respect to
independent noise terms. We have also used the stationarity of (Zt). The
new indices γ1, . . . , γr are defined recursively in terms of the sequence (it).
Similarly, we define γ′1, . . . γ

′
r′ from (`t). To define γ1, first we count the

number of times the index i1 appears in I = {i1, . . . , i[p]}. If i1 6= i[p]+1,
we put γ1 equal to this count, otherwise, we set γ1 equal to this count plus
p − [p]. Then, we look for the next index different than i1, say ij , and set
γ2 as the number of repetitions of ij in I plus p − [p] if ij 6= i[p]+1. We
continue in this way until the indices ir and γr are defined as previously.
We stop as we recognize that all the indices ir, ir+1, · · · , i[p]+1 have already
been considered. Therefore, γ1 + · · · + γr = p. In an identical fashion, we
define γ′1, . . . γ

′
r′ from (`t). Moreover, notice that for every γ ∈ {γ1, . . . , γr}

and γ′ ∈ {γ′1, . . . , γ′r}

|ϕiγ |γ |ϕiγ−t|γ
′
E[|Z0/xn

εϕ−1
iγ |γ |Z0/xn

εϕ−1
iγ−t |γ′ ]

6 (|ϕiγ |2γ |ϕiγ−t|2γ
′
E[|Z0/xn

εϕ−1
iγ |2γ ]E[|Z0/xn

εϕ−1
iγ−t |2γ′ ])1/2.

6 (|ϕiγ |2pE[|Z0/xn
εϕ−1
iγ |2p])γ/2p (|ϕiγ−t|2pE[|Z0/xn

εϕ−1
iγ−t |2p])γ′/2p.

The key property γ1 + · · ·+ γr + γ′1 + · · ·+ γ′r = 2p yields

P(Z0 > xn) =
∏

γ1+···+γr=p
γ′1+···+γ′

r′=p
(P(Z0 > xn))(γ+γ′)/2p .

In this case, we can apply Karamata’s Theorem to each one of the expecta-
tion terms. Readily,∑n

t=1Cov(I[p]+1,0
ε
, I[p]+1,t

ε
)/P(Z0 > xn)

6
∑n

t=1

∑
i1,··· ,i[p]+1

|ij |>s,ij 6=s

∑
`1,··· ,`[p]+1

`j∈{i1−t,...,i[p]+1−t}

∏
γ1+···+γr=p
γ′1+···+γ′

r′=p

(|ϕiγ |2pE[|Z0/xn
εϕ−1
iγ |2p])γ/2p (|ϕiγ−t|2pE[|Z0/xn

εϕ−1
iγ−t |2p])γ′/2p

(P(Z0 > xn))(γ+γ′)/2p

6 c
∑

i1,··· ,i[p]+1

|ij |>s,ij 6=s

∑
`1,··· ,`[p]+1

`j∈{i1−t,...,i[p]+1−t}

∑n
t=1∏

γ1+···+γr=p
γ′1+···+γ′

r′=p
|ϕiγ |γ(α−κ)|ϕiγ−t|γ

′(α−κ).

= c
∑

i1,··· ,i[p]+1

|ij |>s,ij 6=s

∑
`1,··· ,`[p]+1

`j∈{i1−t,...,i[p]+1−t}

∑n
t=1|ϕij |

(α−κ)|ϕ`j−t|
(α−κ).

6 c (p+ 1)(
∑
|i|>s |ϕi|

(α−κ))p(
∑

j∈Z|ϕj |
(α−κ))p.

where c > 0, is a constant of no interest. We conclude by letting s → ∞
that (B.61) holds for l = [p] + 1. Similarly, this arguments can be extended
for l = 1, . . . , [p]. Overall, this shows (B.59) holds, and this concludes the
proof. �
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B.2. Proof of Theorem 5.6. For p > α/2, we aim to apply Theorem 3.1.
First, notice condition i) yields ‖ϕt‖p < ∞. For all κ > 0, consider a

sequence (xn) such that xn ∈ (nκ+1/(p∧α),+∞). Proposition 5.4 implies
then that conditions AC, CSp, hold, and nP(|X0| > xn) → 0, as n → ∞.

Fix κ > 0, and xn = O(nκ+1/(p∧α)).
To apply Theorem 3.1 it suffices to verify the β-mixing conditions MX

and MXβ. As for (3.17), an application of Proposition 5.5 yields

mnβbn = O(mnb
1− (ρ−1)(α−κ)

1+α−κ
n )

= O(n b
− (ρ−1)(α−κ)

1+α−κ
n ),

then ii) yields mnβbn → 0, as n→∞. This shows MX holds.
Next, we show MXβ also holds. Choose (kn) as in (A.45). Then, there

exists ε, ε′ > 0, and a constant c > 0, such that

mn/kn = 1/(c(p)bnP(|X0| > xbn))(B.62)

6 c x
(α+ε)
bn

/bn = c b
−1+

α
α∧p+

ε
α∧p+κ(α+ε)

n

6 c b
−1+

α
p∧α+ε′

n .

This follows using Potter’s bounds. Let `n = b
(1−ε)
n such that `n/bn → 0.

Finally, applying Proposition 5.5, we can find ε′ > 0 such that the relation
below holds

mnβ`n/kn = O(b
− (ρ−1)α

1+α +
α
α∧p+ε′

n ).

Then, taking ρ > 1 + 1+α
α∧p + ε yields mnβ`n/kn → 0. In this argument,

we can choose ε′ > 0 to be arbitrarily small. Then, assuming i) entails
mnβ`n/kn → 0.

Moreover, let δ > 0 be as in (3.14). Since ρ > 2
δ (1 + 1

α) + 3 + 2
α , equa-

tion (5.38) yields
∑∞

t=1 β
δ/(2+δ)
t < ∞. In this case, there exist ε > 0 such

that
mn∑
t=1

(mnβtbn/kn)
δ

2+δ = O(b
(− (ρ−1)α

1+α +
α
α∧p+ε)

δ
(2+δ)

n ).

Furthermore, for p > α/2, notice ρ > 3 + 2/α > 1 + (1 + α)/(α ∧ p). Sim-
ilarly as before, notice ε > 0 can be made arbitrarily small. Putting every-
thing together, we conclude that (3.18) holds. This completes the proof that
MXβ holds. Since both MX and MXβ hold we can apply Theorem 3.1.
Finally, in our setting notice that the sequence (kn) satisfies

kn ∼ c(p)nP(|X0| > xbn) = o(n b
− α
p∧α

n ).

This follows using Potter’s bounds. This concludes the proof of Theorem 5.6.
�
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B.3. Proof of Proposition 5.8. Let (Xt) be the stationary solution to
the SRE (5.39) as in Example 5.7, satisfying RVα, for α > 0. Then, (Xt)
admits the causal representation in (5.42), where ((At,Bt)) is a sequence of
iid innovations. Then, backward computations yield

Xt = ΠtX0 +Rt, t > 1,(B.63)

where for 1 6 i 6 t

Πi,t := Ai · · ·At, Rt :=
t∑

j=1

Πj+1,tBj ,(B.64)

with the conventions: Π1,t = Πt, and Πt+1,t = Id. Notice that the remaining
term Rt is measurable with respect to σ

(
(Ai,Bi)16i6t

)
, and is independent

of the sigma-field σ
(
(Xt)t60

)
.

Condition AC has been shown for Theorem 4.17 in [38]. We focus on
showing CSp holds for p ∈ (α/2, α).

To begin, note condition CSp was borrowed from Equation (5.2) in [12].
For p ∈ (0, α), and sequences (xn) such that n/xpn → 0, as n → ∞, we
have nE[|X0/xn|p] → 0, thus our condition CSp and Equation (5.2) in [12]
coincide. More precisely, we show

lim
ε↓0

lim
n→∞

P
(∣∣‖X[1,n]/xn

ε‖pp − E[‖X[1,n]/xn
ε‖pp
∣∣ > δ

)
nP(|X1| > xn)

= 0.(2.65)

For this reason, we focus on showing (2.65) holds. Actually, we show be-
low that, for (xn) as in Proposition 5.8, condition CSp holds over uniform
regions Λn = (xn,∞) in the sense of (2.70). Further, for the purposes of
completeness, we show (2.70) holds generally for sequences (xn) such that
nP(|X0| > xn)→ 0, as n→∞ in the setting of Example 5.7.

Let p ∈ (α/2, α), and consider a sequence (xn) satisfying the assumptions
of Proposition 5.8. Consider the region Λn = (xn,∞), and consider x ∈ Λn.
An application of Chebychev’s inequality yields

P
(∣∣‖X[1,n]/x

ε‖pp − E[‖X[1,n]/x
ε‖pp
∣∣ > δ

)
6 2n δ−2

n∑
t=0

It ,(2.66)

such that we denote It = Cov(|X0/x
ε|p, |Xt/x

ε|p).
Let (Πt) and (Rt) be as in (B.64) such that (Xt) satisfies Equation (5.42).

We define a new Markov chain (X′t)t>0 satisfying

X′t := ΠtX
′
0 +Rt ,(2.67)

with X′0 independent of (Xt) and identically distributed as X0. We can
see (X′t) as the solution of the SRE (5.39) for the sequence of innovations(
(A′t,B

′
t)
)

where (A′t,B
′
t) = (At,Bt) for t 6 0 and (A′t,B

′
t)t>1 is an iid

sequence independent of (At,Bt), distributed as the generic element (A,B).
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Then, following the notation in (2.66), we can rewrite It as

It = E
[
|X0/x

ε|p|Xt/x
ε|p
]
− E

[
|X0/x

ε|p|X′t/x
ε|p
]

6 E
[
|X0/x

ε|p
(
|Xt/x

ε|p − |X′t/x
ε|p
)

+

]
6 E

[
|X0/x

ε|p
(
|Xt/x|p − |X′t/x|p

)
+

11(|Xt/x| 6 ε)11(|X′t/x| 6 ε)
]

+E
[
|X0/xn

ε|p |Xt/x
ε|p11(|X′t/x| > ε)

]
= It,1 + It,2.

We show that It,1 is negligible letting first n→∞, and then ε ↓ 0. For this,
we consider two cases. First, assume p > 1. Then, for the first term It,1, a
Taylor decomposition yields

It,1

6 pE
[
|X0/x

ε|p|X′t/x−Xt/x
2 ε||X′t/x

ε
+ ξ
(
X′t/x−Xt/x

2ε)|p−1
]

= pE
[
|X0/x

ε|p|ΠtX′0/x−ΠtX0/x
2 ε|

×|X′t/x
ε

+ ξ
(
ΠtX′0/x−ΠtX0/x

2ε)|p−1
]
,

for some random variable ξ ∈ (0, 1) a.s. In the last equality, we have used
the definition of (X′) in (2.67). Moreover, we can bound It,1 by

It,1 6 p20∨(p−1) E
[
|X0/x

ε|p|ΠtX′0/x−ΠtX0/x
2 ε||X′t/x

ε|p−1
]

+ p20∨(p−1) E
[
|X0/x

ε|p|ΠtX′0/x−ΠtX0/x
2 ε|p

]
Now, an application of Jenssen’s inequality, Potter’s bounds, and Kara-
mata’s theorem, yield

It,1 6 cE
[
|X0/x

ε|2p]1/2E
[
|ΠtX′0/x

4 ε|2p
]1/2

6 c
(
E
[
|X0/x

ε|2p]E
[
|Πt|α−δop

]
P(|X0| > x)

)1/2
.

= O
((
ε2p−αE[|Πt|α−δop

])1/2P(|X0| > x)
)
, xn > x0,

for constants c > 0, x0 > 0. Moreover, under the assumptions of Example 5.7
we have E[|Πt|α−δop ] < 1 for t sufficiently large. Thereby, we conclude

lim
ε↓0

lim sup
n→∞

n∑
t=1

It,1/P(|X0| > x) = 0.(2.68)

We now come back to the case where p < 1. In this case we can use
a subadditivity argument and we conclude by similar steps that relation
(2.68) holds for all p ∈ (α/2, α).
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Now, concerning the second term It,2 we have

It,2 := E
[
|X0/x

ε|p |Xt/x
ε|p11(|X′t/x| > ε)

]
6 E

[
|X0/x

ε|p |ΠtX0/x
ε|p11(|X′t/x| > ε)

]
+E
[
|X0/x

ε|p |Rt/x
ε|p11(|X′t/x| > ε)

]
+E
[
|X0/x

ε|p 11(|ΠtX0/x| > ε)11(|X′t/x| > ε)
]

= O(E
[
|X0/x

ε|p
]
E
[
|Rt/x

ε|p11(|X′t/x| > ε)
]
) .

Therefore we have,
n∑
t=1

It,2/P(|X0| > x) = O
(
nE
[
|X0/x

ε|p
])
.

Assume (xn) is such that there exists κ > 0 satisfying n/x
p∧(α−κ)
n → 0, as

n→∞. Then,

lim
ε↓0

lim
n→∞

sup
x∈Λn

P
(∣∣‖X[1,n]/x

ε‖pp − E[‖X[1,n]/x
ε‖pp
∣∣ > δ

)
nP(|X1| > x)

= 0.(2.69)

Moreover, if n/xpn → 0 then E[‖X[1,n]/x
ε‖pp] → 0 for p ∈ (α/2, α). In this

case, CSp holds uniformly over the region Λn.
On the other hand, note that we also have It = O(βt). Therefore, if we

consider a sequence (`n) such that `n →∞, n→∞, then we can have

P
(∣∣‖X[1,n]/xn

ε‖pp − E[‖X[1,n]/xn
ε‖pp
∣∣ > δ

)
/nP(|X0| > xn)(2.70)

6 2n δ−2(

`n∑
t=0

It +
n∑

t=`n+1

It)/nP(|X0| > xn).

6 O(`nE[|X0/xn
ε|p] +

n∑
t=`n+1

It/P(|X0| > xn))

6 O(`nE[|X0/xn
ε|p] +

n∑
t=`n+1

βt/P(|X0| > xn) ) = J1 + J2.(2.71)

where in the last bound we use the covariance inequality for the (βt) mix-
ing coefficients. Furthermore, the bound in (2.70) consists of two terms
as (2.70) 6 J1 + J2. If we want J1 to go to zero as n → ∞ we can

choose `n := xp−δn , for some δ > 0. Now, for the second term J2, we
first note that it is null if `n > n by convention. Otherwise we recall that
the mixing-coefficients (βt) have a geometric decaying rate. Thereby, there
exists ρ ∈ (0, 1) such that we can bound the second term J2 by

J2 = O
(∑n

t=`n+1ρ
t/P(|X0| > xn)

)
= O(ρ`n/P(|X0| > xn))

6 O(ρ`nx(α+δ)
n ).
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Therefore, J2 → 0 as n→∞ by plugging in the value we set for `n. Overall,
we conclude that for all sequences (xn) such that nP(|Xn| > xn) → 0,
then limn→∞ (2.70) = 0 and this shows (2.65). Moreover, we also saw this
convergence holds over uniform regions Λn = (xn,∞), in the sense (2.69), if

we assume in addition n/x
p∧(α−κ)
n → 0, as n→∞. Finally, this shows that

CSp holds and this concludes the proof of Proposition 5.8.

2.4. Proof of Theorem 5.10. Our goal it to verify that we can apply
Theorem 3.1 as we combine Proposition 5.8 and 5.9. First, notice for all
κ > 0, if we consider a sequence (xn) such that xn ∈ (nκ+1/(p∧α),+∞), then
conditions AC, CSp hold thanks to Proposition 5.8. Since c(p) < ∞ in
(2.8), Proposition 2.3 holds and the time series admits a p−cluster process

Q(p). Fix κ > 0, and xn = O(nκ+1/(p∧α)).
We focus now on the verification of the mixing condition MX and MXβ

in Theorem 3.1. Applying Proposition 5.9, there exists ρ ∈ (0, 1) such that
the coefficients (βt) satisfy βt = O(ρt). Therefore,

mnβbn = O(mnρ
bn) = O(nρbn/bn),

and an application of assumption i) yields MX. Moreover, if we choose (kn)
according to (A.45) as in the linear model case then there exists ε, ε′ > 0,
and a constant c > 0, such that

mn/kn 6 c b
−1+

α
p∧α+ε′

n ,

and thus
∑mn

t=1(mnβbn/kn)δ/(2+δ) = O(ρbnδ/(2+δ)(bn)ε), which goes to zero as
n→∞. Moreover, for all η ∈ (0, 1), choosing `n = bηn, we have mnβ`n/kn →
0, bn/`n → 0, as n → 0. Therefore, we have verified MXβ holds. This
concludes the proof of Theorem 5.10 since all assumptions of Theorem 3.1
are verified. �
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