Explaining Robust Classification Through Prime Implicants - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Explaining Robust Classification Through Prime Implicants

Résumé

In this paper, we investigate how robust classification results can be explained by the notion of prime implicants, focusing on explaining pairwise dominance relations. By robust, we mean that we consider imprecise models that may abstain to classify or to compare two classes when information is insufficient. This will be reflected by considering (convex) sets of probabilities. By prime implicants, we understand a minimal number of attributes whose value needs to be known before stating that one class dominates/is preferred to another.
Fichier principal
Vignette du fichier
SUM22___Explaining_robust_classification_through_prime_implicants-1.pdf (417.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03895975 , version 1 (13-12-2022)

Identifiants

Citer

Hénoïk Willot, Sébastien Destercke, Khaled Belahcene. Explaining Robust Classification Through Prime Implicants. 15th International Conference Scalable Uncertainty Management (SUM 2022), Oct 2022, Paris, France. pp.361-369, ⟨10.1007/978-3-031-18843-5_25⟩. ⟨hal-03895975⟩
37 Consultations
73 Téléchargements

Altmetric

Partager

More