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Heudiasyc, Université de Technologie de Compiègne, France
{henoik.willot, sebastien.destercke, khaled.belahcene}@hds.utc.fr

Abstract. In this paper, we investigate how robust classification re-
sults can be explained by the notion of prime implicants, focusing on
explaining pairwise dominance relations. By robust, we mean that we
consider imprecise models that may abstain to classify or to compare
two classes when information is insufficient. This will be reflected by
considering (convex) sets of probabilities. By prime implicants, we un-
derstand a minimal number of attributes whose value needs to be known
before stating that one class dominates/is preferred to another.

1 Introduction

Two important aspects of trustworthy AI are the ability to provide robust and
safe inferences or predictions, and the ability to be able to provide explanations
as of why those have been made.

Regarding explainability, the notion of prime implicants corresponds to pro-
vide minimal sufficient condition to make a given prediction, e.g., the attributes
that need to be instantiated to make a classification. They have been success-
fully proposed as components of explanations for large classes of models such as
graphical ones [12], with very efficient procedure existing for specific structures
such as the Naive one [11]. In contrast with other methods such as SHAP [6] that
tries to compute the average influence of attributes, prime implicants have the
advantage to be well-grounded in logic, and to provide certifiable explanation
(in the sense that the identified attributes are logical, sufficient reasons).

However, explainable AI tools have been mostly if not exclusively applied
to precise models, at least in the machine learning domain (this is less true,
e.g., in preference modelling [4]). Yet, in some applications involving sensitive
issues or where the decision maker wants to identify ambiguous cases, it may
be preferable to use models that will return sets of classes in some cases where
information is missing rather than always returning a point-valued prediction.
Several frameworks such as conformal prediction [3], indeterminate classifiers [9]
or imprecise probabilistic models [7] have been proposed to handle such issue.

The later have the interest that they are direct extensions and generalisations
of probabilistic classifiers, hence one can directly try to transport well-grounded
explanation principles existing for precise probabilistic classifier to this setting.
This is what we intend to do in this paper for prime implicant explanations.
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We will start by introducing how the idea of prime implicants can be adapted
to classifiers considering sets of probabilities as their uncertainty models. This
will be done in Section 2. As the formulated problem is likely to be computa-
tionally challenging for generic models, we focus in Section 3 on the naive credal
classifier, that generalise the naive Bayes classifier. We show that for such a
model, computing and enumerating prime implicants can be done in polynomial
time, thanks to its independence assumption and decompositional properties.
We also provide an example illustrating our approach.

2 Setting and general problem formulation

In this section, we lay down our basic notations and provide necessary reminders
about imprecise probabilities. We also introduce the idea of prime implicants
applied to classifiers, and particular to imprecise probabilistic classifiers.

2.1 Robust classification: setting

We consider a usual discrete multi-class problem, where we must predict a vari-
able Y taking values in Y = {y1, . . . , ym} using n input variables X1, . . . , Xn that
respectively takes values in Xi = {x1

i , . . . , x
ki
i }. We note X = ×n

i=1Xi and x ∈ X
a vector in this space. When considering a subset E ⊆ {1, . . . , n} of dimensions,
we will denote by XE = ×i∈EXi the corresponding domain, and by xE the values
of a vector on this sub-domain. We will also denote by −E := {1, . . . , n} \E all
dimensions not in E, with X−E ,x−E following the same conventions as XE ,xE .
We will also denote by (xE ,y−E) the concatenation of two vectors whose values
are given for different elements.

When considering precise probabilistic classifiers, a class y is said to weakly
dominate1 y′, written y ⪰p y′, upon observing a vector x when the condition2

p(y|x)
p(y′|x)

≥ 1 (1)

is met, or in other words when p(y|x) ≥ p(y′|x). However, probabilistic classifiers
can be deceptively precise, for instance when only a small number of data are
available to estimate them, or when data become imprecise.

This is why, in this paper, we consider generalised probabilistic settings,
and more specifically imprecise probability theory, where one considers that the
probability p belongs to some subset P, often assumed to be convex (this will
be the case here). One then needs to extend the relation ⪰p to such a case, and
a common and robust way to do so is to require ⪰p to be true for all elements

1 We work in a non cost-sensitive framework, but most of our discussion easily transfer
to such cases.

2 Using dominance expressed this way will be useful in the sequel.
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p ∈ P. In this case, y is said to robustly dominate y′, written y ⪰P y′, upon
observing a vector x when the condition

inf
p∈P

p(y|x)
p(y′|x)

≥ 1 (2)

is met, or in other words when p(y|x) ≥ p(y′|x) for all p ∈ P. Note that the
relation ⪰P can be a partial pre-order with incomparabilities, whereas ⪰p is a
pre-order.

2.2 Explaining robust classification through prime implicants

Explaining the conclusion or deduction of an algorithm, and in particular of a
learning algorithm, has become an important issue. A notion that can play a
key role in explanation mechanisms is the one of prime implicants, i.e., which
elements are sufficient before drawing a given conclusion. When observing a
vector xo and making a prediction about whether y dominates y′, the idea of
prime implicant roughly translates as the values of xo that are sufficient to know
to state that y dominates y′, and that are minimal with this property.

With this idea in mind, we will say that a subset E ⊆ {1, . . . , n} of attributes
(where E are the indices of the considered attributes) is an implicant of y ⪰P y′

iff

inf
p∈P,xa

−E∈X−E

p(y|(xo
E ,x

a
−E))

p(y′|(xo
E ,x

a
−E))

≥ 1, (3)

that is if dominance holds for any values of attributes whose indices are outside
E, and any probability p ∈ P. This means that knowing xo

E alone is sufficient
to deduce y ⪰P y′. A set E is a prime implicant iff we satisfy (3) and for any
i ∈ E, we have

inf
p∈P,xa

−E∪{i}∈X−E∪{i}

p(y|(xo
E\{i},x

a
−E∪{i}))

p(y′|(xo
E\{i},x

a
−E∪{i}))

≤ 1, (4)

that is if removing any attribute from E makes our deduction invalid, so that E
is a minimal sufficient condition for y ⪰P y′ to hold. In the sequel, it will prove
useful to consider the function ϕ(E) that associates to each possible subset the
value

ϕ(E) := inf
p∈P,xa

−E∈X−E

p(y|(xo
E ,x

a
−E))

p(y′|(xo
E ,x

a
−E))

. (5)

ϕ(E) being inclusion-monotonic (for E ⊆ F , ϕ(E) ≤ ϕ(F )), it can be seen as
a value function associated to E, and finding a prime implicant can then be
seen as the task of finding a minimal "bundle of items"3 E such that ϕ(E) ≥ 1,
therefore allowing us to map the finding of robust prime implicants to an item
selection problem. Also note that, in general, ϕ(E) will not be additive, as we
will not have ϕ(E ∪ {i}) = ϕ(E) + ϕ({i}).
3 Each index of an attribute being associated to an item.
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Note that when sets P reduce to singletons, that is when we consider precise
classifiers instead of robust ones, then our notion of prime implicant reduces to
previously proposed ones [11], and our approach is therefore a formal generali-
sation of those.

3 The case of the Naive credal classifier

We now study the specific case of the Naive classifier, and show that in this
case, computing prime implicants become easy, as such a computation can be
brought back to selecting items with an additive value functions, or equivalently
to a very simple knapsack problem.

3.1 Generic case

The basic idea of the Naive classifier is to assume that attributes are independent
of each other given the class. This modelling assumption means that

p(y|x) =
∏n

i=1 pi(xi|y)× pY (y)

p(x)

once we apply the Naive assumption and Bayes rule. This means in particular
that

p(y|x)
p(y′|x)

=
pY(y)

pY(y′)

n∏
i=1

pi(xi|y)
pi(xi|y′)

with every pi(|y) independent of pi(|y′), and every pi(|y), pj(|y) independent for
i, j. When switching to credal models, one has sets of conditional distributions
Pi(|y) and a set PY of priors.

Let us now see how Equation (3) transform in this case. We do have

inf
p∈P

xa
−E∈X−E

p(y|(xo
E ,x

a
−E))

p(y′|(xo
E ,x

a
−E))

=

inf
p∈P

xa
−E∈X−E

pY(y)

pY(y′)

∏
i∈E

pi(x
o
i |y)

pi(xo
i |y′)︸ ︷︷ ︸

PartA

∏
i̸∈E

pi(x
a
i |y)

pi(xa
i |y′)︸ ︷︷ ︸

PartB

. (6)

In Equation (6), we can treat the minimization problem of parts A and B com-
pletely separately, due to two principal observations. First, the sets Pi(|y) are
all independent when i (the attribute) or y (the conditioning element) changes.
This implies that part A and B are minimised over independent convex sets of
probabilities (as they are over distinct i’s), and that the numerator and denomi-
nators of each fraction within the two parts can also be treated separately (being
conditioned on different y, y′). Second, E and −E are disjoint, which means that
the value xa

−E for which part B is minimised only depends on part B, hence in
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this case it makes sense to define a unique "worst case" vector xa∗ which min-
imises part B for any E. Also, since conditional laws with different conditional
classes are independent, we get that Equation (6) becomes

inf
pY∈PY

pY(y)

pY(y′)

∏
i∈E

p
i
(xo

i |y)
pi(x

o
i |y′)

inf
xa
−E∈X−E

∏
i ̸∈E

p
i
(xa

i |y)
pi(x

a
i |y′)

. (7)

where p(x) = infp∈P p(x) and p(x) = supp∈P p(x). If we consider the vector xa∗
−E ,

we finally have

inf
p∈P

xa
−E∈X−E

p(y|(xo
E ,x

a
−E))

p(y′|(xo
E ,x

a
−E))

= inf
pY∈PY

pY(y)

pY(y′)

∏
i∈E

p
i
(xo

i |y)
pi(x

o
i |y′)

∏
i ̸∈E

p
i
(xa∗

i |y)
pi(x

a∗
i |y′)

(8)

Let us now go back to our idea of selecting minimal bundle of items (or attribute)
making ϕ(E) > 1 or equivalently log ϕ(E) > 0. Let us first note by

C = log inf
pY∈PY

pY(y)

pY(y′)

∏
i∈{1,...,n}

p
i
(xa∗

i |y)
pi(x

a∗
i |y′)

(9)

the value of log ϕ(∅), and by

Gi = (log p
i
(xo

i |y)− log pi(x
o
i |y′))− (log p

i
(xa∗

i |y)− log pi(x
a∗
i |y′)) (10)

the positive4 gain obtained by adding element i to E. Developing Equation (7),
one can check that

log ϕ(E) = C +
∑
i∈E

Gi

has an additive form. Finding a smallest prime implicant is then computationally
easy, as it amounts to order the G′

is in decreasing order, and add them until∑
i∈E Gi ≥ −C. The whole procedure is summarised in Algorithm 1.
The complexity of Algorithm 1 is obviously linear over the ordered contribu-

tions, in number of attributes. Computing the contributions remains easy as the
only complexity is to compute the "worst case" vector xa∗, whose components
xa∗
i requires |Xi| = ki evaluations on each dimensions. As sets P are typically

polytopes defined by linear constraints, finding the values p and p amounts to
solve linear programs, something that can be done in polynomial time. For some
specific cases such as probability intervals [8] (induced, e.g., by the classical Im-
precise Dirichlet Model [5]), this can even be done in linear time. Therefore, the
overall method is clearly polynomial, with a linear pre-treatment over the sum
of ki’s, followed by a sorting algorithm, after which Algorithm 1 is linear over
the number of attributes.

4 As log p
i
(xa∗

i |y)− log pi(x
a∗
i |y′) < log p

i
(xo

i |y)− log pi(x
o
i |y′) by definition.



6 H. Willot et al.

Algorithm 1: Compute first available prime implicants explanation
Input: C : log(ϕ(∅)); G : Contributions of criteria in decreasing order;
Output: Xpl = (E,xE): explanation in terms of attribute

1 Order G in decreasing order, with σ the associated permutation
2 i← 1
3 while ϕ(E) + C < 0 do
4 i← i+ 1
5 E ← E ∪ {σ−1(i)}
6 ϕ(E)← ϕ(E) +Gσ(i)

7 Xpl← (E,xo
E)

8 return (Xpl)

3.2 Illustrative case

We will present a small illustrative example using categorical data and proba-
bility intervals. Those later could, for instance, be obtained through the use of
the classical Imprecise Dirichlet Model [5], possibly with some regularisation to
avoid zero probabilities, or in the case of continuous variable, by parametric [1]
or non-parametric models [10].

In this example we want to predict the class of animal from its physical
characteristics. We have data concerning the set Y = {D(og), C(at), H(orse),
B(unny)} of animals and observe the length of their X ={E(ars), T(ail), H(air)}.
Each of these criteria can have a value in {L(ong), A(verage), S(hort)}. To iden-
tify easily variables in the example, we will use the notation LE for long ears,
and similarly for all other attribute combinations. The prior probabilities are
presented in table 1 and the conditioned probabilities in table 2, 3 and 4.

Dog Cat Horse Bunny

[0.25, 0.26] [0.29, 0.31] [0.20, 0.22] [0.25, 0.26]

Table 1: Probability intervals of each animal class

Assume that we observe the vector xo = (Long Ear, Short Tail, Long Hair)
or (LE,ST,LH) for short. As we are using an imprecise classification model,
the predicted classes will correspond to the non dominated classes, and our
explanations will mostly be used to understand why we rejected the other classes.
For every pair (y,y’) of animals we compare infp∈P

p(y|x)
p(y′|x) to 1 to build the partial

order between them. In our specific case, this comes down to compare

log p(y)− log p(y′) +

3∑
i=1

log p(xo
i | y)−

3∑
i=1

log p(xo
i | y′)
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Animal
Dog Cat Horse Bunny

Long [0.33,0.40] [0.02,0.08] [0.10,0.19] [0.58,0.65]
Length Average [0.30,0.37] [0.55,0.61] [0.66,0.75] [0.26,0.33]

Short [0.30,0.37] [0.37,0.43] [0.15,0.23] [0.09,0.16]

Table 2: Conditional probabilities of the length of the ears knowing the animal

Animal
Dog Cat Horse Bunny

Long [0.54,0.61] [0.31,0.37] [0.66,0.75] [0.02,0.09]
Length Average [0.23,0.30] [0.61,0.67] [0.23,0.32] [0.30,0.37]

Short [0.16,0.23] [0.02,0.08] [0.02,0.10] [0.61,0.69]

Table 3: Conditional probabilities of the length of the tail knowing the animal

Animal
Dog Cat Horse Bunny

Long [0.40,0.47] [0.46,0.52] [0.23,0.32] [0.02,0.09]
Length Average [0.26,0.33] [0.17,0.22] [0.10,0.19] [0.19,0.26]

Short [0.26,0.33] [0.31,0.37] [0.58,0.66] [0.72,0.79]

Table 4: Conditional probabilities of the length of hair knowing the animal
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to 0. As we have probability intervals, the bound p (resp. p) can be read directly
from the tables. Taking the pair (Dog, Horse) or (D,H) as an example, we have

log p(D)− log p(H) +

3∑
i=1

log p(xo
i | D)−

3∑
i=1

log p(xo
i | H) = 0.58 > 0

We then have that D ⪰P H. Repeating this for all pairs, we obtain the partial
order in Figure 1. The cautious prediction will be {D,B}, and each arc of Figure
1 can be explained with prime implicants.

D

H C

B

Fig. 1: Class dominance for prediction of xo = (LE, ST, LH)

We detail the computation only for D ⪰P H. First we need to compute the
worst opponent xa that minimises log p(xa∗

i | D)−log p(xa
i | H) for each variable

i. We obtain xa∗ = (AE,AT, SH). Applying Equation (9), we obtain

C = log p(D)− log p(H) +

3∑
i=1

log p(xa∗
i | D)− log p(xa∗

i | H) = −0.90

The contributions of the criteria required by Algorithm 1 are :

Gi = log p(xo
i | D)− log p(xo

i | H)− (log p(xa∗
i | D)− log p(xa∗

i | H))

GEars = log(0.33)− log(0.19)− (log(0.30)− log(0.75)) = 0.65

GTail = log(0.16)− log(0.10)− (log(0.23)− log(0.32)) = 0.33

GHair = log(0.40)− log(0.32)− (log(0.26)− log(0.66)) = 0.50

We can now apply Algorithm 1 and we obtain the explanation {(Ears, Long),
(Hair, Long)} as (0.65 + 0.50) - 0.90 > 0, but with an enumeration algorithm
we would find a second prime implicant explanation with {(Ears, Long), (Tail,
Short)}, as (0.65+0.33) -0.90 > 0, that is less important in terms of gain, but
maybe intuitively more satisfying. Similarly we can compute explanations for
other dominances, like {(Ears, Long), (Tail, Short)} for Dog ⪰P Cat, {(Ears,
Long), (Tail, Short)} for Bunny ⪰P Cat and {(Ears, Long), (Tail, Short)} for
Bunny ⪰P Horse.

4 Conclusion

This paper proposes to explain robust classification by prime implicants, extend-
ing notions proposed so far in the precise setting. We show that, as for the precise
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case, this task is easy for the Naive classifier. To our knowledge, this is the first
attempt to combine imprecise probabilistic classification with explanation.

In the future, we would like to focus on various questions not investigated
here, such as: does enumerating all prime implicants remain easy for the naive
credal classifier? For which robust models (e.g., including some dependence state-
ments) do computations remain tractable? What happens with interaction be-
tween attributes ? Can we explain incomparabilities with similar notions? When
trying to explain the complete partial order, should we use pairwise or holistic
(i.e., prime implicants explaining the non-dominated classes at once) explana-
tions? There are also several other explanation mechanisms we could consider [2].
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