A robust Bayesian estimation approach for the imprecise Plackett-Luce model - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A robust Bayesian estimation approach for the imprecise Plackett-Luce model

Résumé

Learning to rank has become an important part in the fields of machine learning and statistical learning. Rankings are indeed present in many applications, including cognitive psychology, recommender systems, sports tournament or automated algorithm choices. Rankings are however prone to subjectivity (when provided by users) and to incompleteness (when a contestant is missing, or users only report partial preferences). Robust or cautious approaches may overcome such issues. In this paper, we develop a Bayesian robust approach for a commonly used parametric model, the Plackett-Luce (PL) model. This allows us to obtain interval-valued parameter estimates for the strength parameter of the Plackett-Luce model. We illustrate our method with both synthetic and real data to show the usefulness of skeptic inference.
Fichier principal
Vignette du fichier
Robust_Bayesian_approach_for_imprecise_Plackett_Luce_model-5.pdf (338.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03895745 , version 1 (13-12-2022)

Identifiants

Citer

Tathagata Basu, Sébastien Destercke, Benjamin Quost. A robust Bayesian estimation approach for the imprecise Plackett-Luce model. 19th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022), Jul 2022, Milan, Italy. pp.757-769, ⟨10.1007/978-3-031-08971-8_61⟩. ⟨hal-03895745⟩
21 Consultations
89 Téléchargements

Altmetric

Partager

More