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Abstract. Learning to rank has become an important part in the fields
of machine learning and statistical learning. Rankings are indeed present
in many applications, including cognitive psychology, recommender sys-
tems, sports tournament or automated algorithm choices. Rankings are
however prone to subjectivity (when provided by users) and to incom-
pleteness (when a contestant is missing, or users only report partial pref-
erences). Robust or cautious approaches may overcome such issues. In
this paper, we develop a Bayesian robust approach for a commonly used
parametric model, the Plackett-Luce (PL) model. This allows us to ob-
tain interval-valued parameter estimates for the strength parameter of
the Plackett-Luce model. We illustrate our method with both synthetic
and real data to show the usefulness of skeptic inference.

Keywords: preference learning, Plackett-Luce model, Bayesian analysis, impre-
cise probability.

1 Introduction

Dealing with preferences and rankings is an old topic in both statistics, AI and
machine learning. They are present in cognitive psychology [12], recommender
systems [7] or automated algorithm choices [11]. However, it always had an im-
portant role in sports or related events, where rankings or pairwise comparisons
of participants are commonly used. One of the earliest works (dating back to
the 30’s) on pairwise comparisons [13] laid the foundations of the Bradley-Terry
model [2]. When multiple comparisons are involved, this model naturally extends
to the Plackett-Luce model, which is based on (and named after) the works of
Plackett [10] and Luce [9].

Several estimation strategies were proposed for both models. In particular,
Hunter [8] provided a class of minorisation-maximisation (or simply MM) algo-
rithms, which are iterative optimisation methods to estimate the strength param-
eters of generalised Bradley-Terry models. Later on, several Bayesian methods
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were introduced, such as the expectation propagation method for the Plackett-
Luce model [6], a latent variable approach for the generalised Bradley-Terry
models [3], etc. However, such strategies rely on a number of assumptions, and
provide precise estimates whatever the amount and quality of available data.

In presence of limited information, however, it seems preferable to estimate
a cautious ranking model, which would provide sets of possible rankings as out-
puts, or even abstain from making a prediction. Such a lack of information can
occur in many different scenarios. For instance, we might have very little infor-
mation before initialising a recommender system, or we may only observe partial
rankings (eg, pairwise comparisons or top-k rankings). Moreover, rank data, es-
pecially those obtained by user feedback, can be subjective and uncertain, and
should be treated accordingly. Therefore, it seems beneficial to carry on within
a cautious framework such as described above.

Note that there exist a couple of existing such frameworks for the PL model.
For instance, Cheng et al [4] propose to threshold pairwise ranking probabil-
ities to obtain partial rankings, but are still based on a precise estimate and
all the biases that can come with it. In Adam et al [1], an imprecise Plackett-
Luce model was proposed for rank data; the α-cut of the contour likelihood was
used to obtain robust estimates. This latter approach has the advantage that
cautiousness directly depends on the lack of information; however, it has the
drawbacks of likelihood-based approaches, notably a high sensitivity to the data
at hand (especially for small sample sizes). In this paper, we consider using im-
precise probabilities to develop a robust Bayesian PL model, where the imprecise
posterior inference is the consequences of considering a set of possible priors.

The rest of the paper is organised as follows. In Section 2, we discuss our
robust Bayesian approach for imprecise label ranking. Section 3 presents the
proposed maximum a posteriori estimation strategy of the model. In Section 4,
we illustrate our method on synthetic and real data, and we compare our strategy
with other methods. Finally, we conclude this paper in Section 5.

2 Our robust PL model

This section introduces the model, and shows how we can perform robust Bayesian
inference over such a model.

2.1 The Plackett-Luce model

Assume we want to learn a probabilistic model over rankings of p objects. A naive
computation of the empirical frequencies of the rankings at hand is doomed to
fail, since although the initial space is discrete, its size is factorial in p. The re-
course to a parametric model seems therefore desirable. We consider the Plackett-
Luce (PL for short) model, which relies on the Luce choice axiom for choosing
an item from a subset of a set of items. The axiom states that the probability
of selecting one object over another from an urn containing many objects is not
affected by the presence or absence of other objects in the urn [9]. Therefore,
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this axiom allows us to define a probabilistic model over the total order of the
labels.

Let there be a total of p horses participating to n different races. Then, the
PL model [10] can be defined in the following way:

P (X | λ) =
n∏

i=1

pi−1∏
j=1

λxij∑pi

m=j λxim

. (1)

where pi ≤ p is the number of horses in the i-th race, λ := (λ1, · · · , λp) is the
vector of strength parameters and X := [xij ] is the n× p matrix containing the
rankings (i.e., xij is the rank of the jth object/participant in the ith observed
ranking, i = 1, . . . , n, j = 1, . . . , p). Sometimes, Eq. (1) is also called the Plackett-
Luce distribution because of its probabilistic formulation.

Example 1. Consider the following ranking data from n = 2 races involving
p = 4 different horses ‘A’, ‘B’, ‘C’ and ‘D’. For instance, we have x12 = 1 and
x11 = 4 (B and A have rank 1 and 4 in the first observation).

1 2 3 4

1 B D C A
2 B A C –

Table 1. A toy example

Then, the PL model is given by

P (X | λ) =
[

λB

λB + λD + λC + λA
· λD

λD + λC + λA
· λC

λC + λA

]
·
[

λB

λB + λA + λC
· λA

λA + λC

]
. (2)

We then use this expression to estimate the strength parameters. For instance,
we can empoly the MM algorithm by Hunter [8] to compute the maximum
likelihood estimates.

We also have a Thurstonian interpretation for the PL model. A Thurstonian
model considers a random score variable for each label. Drawing from the score
distributions, and sorting based on these sampled scores, gives a sample ranking:
that is, a distribution over the scores leads to a distribution over the rankings.
Yellott [12] showed that a score distribution boils down to the PL model if and
only if the scores follow a Gumbel distribution with fixed shape parameter.

2.2 Hierarchical model

For the robust Bayesian analysis, we adopt the latent variable model suggested
by Caron and Doucet [3]. The latent variable Zij in the data augmentation
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process stands for the arrival time of the j-th item in the i-th race; it is assumed
to be exponential:

Zij
ind∼ Exp

 pi∑
m=j

λxim

 .

Then, a natural choice for prior distribution over the strength parameters is the
(conjugate) Gamma distribution, which ensures that λk > 0 for all k = 1, · · · , p.
This gives the following hierarchical model (assuming X are i.i.d. observations):

X | λ ∼
n∏

i=1

pi−1∏
j=1

λxij∑pi

m=j λxim

, (3)

Z | X,λ ∼
n∏

i=1

pi−1∏
j=1

 pi∑
m=j

λxim

 exp

−Zij

pi∑
m=j

λxim

 , (4)

λ ∼
p∏

k=1

bak

k λak−1
k e−bkλk

Γ (ak)
, (5)

where ak > 0 and bk > 0.
In this paper, we will partially specify the prior parameters ak by intervals

[ak, ak], in order to perform robust Bayesian analysis. This can also be seen as a
scaled bound of the prior expectation of the k-th strength parameter. Therefore,
for very limited information, we can simply consider a wider interval for ak to
perform a near-vacuous analysis.

3 Parameter Estimation

For parameter estimation, we need to investigate the posterior distributions of
the strength parameters. The use of conjugate priors allows us to obtain analytic
expressions of the full conditional as well as of the posteriors. However, the
sensitivity analysis over ak increases the computation cost. Therefore, we only
compute the maximum a posteriori (MAP) estimates of the strength parameters
instead of the full posterior analysis. We will see that this allows us to have
efficient estimation procedures.

3.1 Maximum a posteriori estimation

We typically obtain MAP estimates by maximizing the posterior distribution
P (λ | X) with respect to λ, using an EM procedure. We first compute the com-
plete log-likelihood which includes the latent variables in the likelihood function.
From Eq. (1) and Eq. (4), we get

ℓ(λ) := logP (X,Z|λ) =
n∑

i=1

pi−1∑
j=1

log(λxij)− Zij

pi∑
m=j

λxim

 . (6)
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Computing the log-posterior from the log-prior defined above and this complete
log-likelihood gives

log(P (λ | X,Z)) = ℓ(λ) + log(P (λ)) + T (7)

where T is an additive constant independent of λ — and therefore irrelevant for
computing the MAP estimate. Therefore, for this latter purpose, following [3],
we apply the EM algorithm [5] to ℓ(λ) + log(P (λ)).

E-step: In the E-step, we compute the expectation of ℓ(λ) + log(P (λ)) with
respect to the latent variables Z, conditional on observing the data X and a
current estimate λ∗ for λ. This gives us a function of λ and λ∗:

Q(λ, λ∗) = EZ|X,λ∗ [ℓ(λ)] + log(P (λ)),

= EZ|X,λ∗

 n∑
i=1

pi−1∑
j=1

log(λxij)− Zij

pi∑
m=j

λxim

+ log(P (λ)),

=

n∑
i=1

pi−1∑
j=1

log(λxij)− EZ|X,λ∗(Zij)

pi∑
m=j

λxim

+ log(P (λ));

since Zij follows an exponential distribution, we have

=

n∑
i=1

pi−1∑
j=1

[
log(λxij)−

∑pi

m=j λxim∑pi

m=j λ
∗
xim

]
+ log(P (λ));

now, from Eq. (5), we have

=

n∑
i=1

pi−1∑
j=1

[
log(λxij)−

∑pi

m=j λxim∑pi

m=j λ
∗
xim

]
+

p∑
k=1

[(ak − 1) log(λk)− bkλk] + C,

where C is additive constant independent of λ. Therefore,

Q(λ, λ∗) ≡
n∑

i=1

pi−1∑
j=1

[
log(λxij)−

∑pi

m=j λxim∑pi

m=j λ
∗
xim

]
+

p∑
k=1

[(ak − 1) log(λk)− bkλk] .

(8)

M-step: In the M-step, we need to differentiate the functionQ(λ, λ∗) with respect
to each λk to obtain the iterative formulation.

∂Q

∂λk
=

∂

∂λk

[
n∑

i=1

pi−1∑
j=1

[
log(λxij)−

∑pi
m=j λxim∑pi
m=j λ

∗
xim

]
+

p∑
k=1

[(ak − 1) log(λk)− bkλk]

]
,

=

[
n∑

i=1

Ik∈{xi1,··· ,xi(pi−1)} + ak − 1

]
∂ log(λk)

∂λk
−

[
n∑

i=1

pi−1∑
j=1

Ik∈{xij ,··· ,xipi
}∑pi

m=j λ
∗
xim

+ bk

]
∂λk

∂λk
,
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=
1

λk

[
n∑

i=1

Ik∈{xi1,··· ,xi(pi−1)} + ak − 1

]
−

[
n∑

i=1

pi−1∑
j=1

Ik∈{xij ,··· ,xipi
}∑pi

m=j λ
∗
xim

+ bk

]
.

Computing the MAP estimate requires to set this derivative to zero, which gives

λk =
ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ∗

xim

, (9)

where wk =
∑n

i=1 Ik∈{xi1,··· ,xi(pi−1)} and δijk = Ik∈{xij ,··· ,xipi
}. Now, to show

that Eq. (9) gives a maximum for Q(λ, λ∗), we investigate the Hessian matrix

HQ =


−a1+w1−1

λ2
1

0 · · · 0

0 −a2+w2−1
λ2
2

· · · 0

...
...

...
...

0 · · · 0 −ap+wp−1
λ2
p

 . (10)

Assuming that a horse does not come last in every race (wk ≥ 1, for all k),
HQ is negative definite for all values of λ. Therefore, the Q function attains its
maximum when Eq. (9) is satisfied. This gives us the following iterative formula
to obtain an approximate solution for λ:

λ
(t)
k =

ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(t−1)
xim

. (11)

3.2 Imprecise MAP estimation

Remark that after Eq. (11), we have

λ
(t)
k ∝ ak and λ

(t)
k ∝

pi∑
m=j

λ(t−1)
xim

;

Therefore, bounds on the parameter value λ
(t)
k estimated in the t-th iteration

can be computed as

λ
(t)
k =

ak + wk − 1

bk +

n∑
i=1

pi−1∑
j=1

δijk∑pi

m=j λ
(t−1)
xim

, λ
(t)

k =
ak + wk − 1

bk +

n∑
i=1

pi−1∑
j=1

δijk∑pi

m=j λ
(t−1)

xim

. (12)

To show that these bounds reflect epistemic uncertainty (i.e., the larger the
dataset, the closer the bounds are to each other), we make the following simple
but necessary assumption.

Assumption 1 (Boundedness of λk) There exists a global bound M < ∞
such that 0 < λ

(t)
k ≤ λ

(t)

k ≤ M for each parameter k and all iteration t.
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Note that this assumption is not very limiting, as in practice we will start from
bounded initial estimates, and (12) will not diverge. Given this assumption is
satisfied, we can show that our estimates become more and more precise as data
are gathered.

Theorem 1 (Convergence of imprecision). Let ∆
(t)
k (n) := λ

(t)

k −λ
(t)
k denote

the imprecision in the k-th strength parameter estimated at the t-th iteration. Let
p ≥ maxi{pi}, and let λ(0) = (1/p, · · · , 1/p) be the initial guess of the strength

parameter vector. Then, as n → ∞, we have ∆
(t)
k (n) → 0 for each parameter k

and all iteration t.

Proof. Since we obtain the lower and upper estimates by an iterative algorithm,
we will prove the theorem by induction.

For t = 1 From Eq. (12), we have

∆
(1)
k (n) =

ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j 1/p

−
ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j 1/p

=
ak − ak

bk + p
∑n

i=1

∑pi−1
j=1

δijk
pi+1−j

Note that by construction, we have wk =
∑n

i=1 Ik∈{xi1,··· ,xi(pi−1)} and δijk =

Ik∈{xij ,··· ,xipi
}. Then there exists a sequence of numbers {ks}∞, and a sequence

{jks
|jks

< pks
,∀ks ∈ {ks}∞}∞, such that

∆
(1)
k (n) =

ak − ak

bk +
∑

i∈{ks}∞
∑ji

j=1
p

pi+1−j

.

As n → ∞, we have
∑

i∈{ks}∞
∑ji

j=1
p

pi+1−j → ∞, and therefore ∆
(1)
k (n) → 0.

For t = 2 As previously, we have

∆
(2)
k (n) =

ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

−
ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

=
ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

−
ak + wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j

(
λ
(1)
xim

−∆
(1)
xim

(n)
)

= δ
(2)
k (n) + S

(2)
k (n),

where

δ
(2)
k (n) =

 ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

−
ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j

(
λ
(1)
xim

−∆
(1)
xim

(n)
)


(13)
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S
(2)
k (n) =

 wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

− wk − 1

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j

(
λ
(1)
xim

−∆
(1)
xim

(n)
)
 .

(14)

To show limn→∞ ∆
(2)
k (n) → ∞, we need that both δ

(2)
k (n) → 0 and S

(2)
k (n) → 0

as n → ∞. Due to space limitations, we will only provide details for the former.
Now, from Eq. (13), we have

lim
n→∞

δ
(2)
k (n) = lim

n→∞

[
ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

−
ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j

(
λ
(1)
xim

−limn→∞ ∆
(1)
xim

(n)
)
]
.

Since ∆
(1)
k (n) → 0 as n → ∞, we have

lim
n→∞

δ
(2)
k (n) = lim

n→∞

 ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

−
ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim


= lim

n→∞

 ak − ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j λ

(1)
xim

 .

From the boundedness assumption on λk, we have

lim
n→∞

δ
(2)
k (n) ≤ lim

n→∞

 ak − ak

bk +
∑n

i=1

∑pi−1
j=1

δijk∑pi
m=j M


which becomes, after applying previous arguments,

≤ lim
n→∞

[
ak − ak

bk + 1
Mp

∑
i∈{ks}∞

∑ji
j=1

p
pi+1−j

]
.

Since Mp is finite and the term
∑

i∈{ks}∞
∑ji

j=1
p

pi+1−j diverges to ∞ as n → ∞,
we therefore have

lim
n→∞

δ
(2)
k (n) = 0. (15)

Coupled with the same result for S
(2)
k (n), we get ∆

(2)
k (n) → 0 as n → ∞.

Now, by mathematical induction, we can assume that limn→∞ ∆
(t)
k (n) → 0

for t = 1, 2, · · · , r. Using the same reasoning as above (which is not detailed
here, due to the lack of place), we can show that this holds for t = r+1 as well,
which proves our theorem.
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4 Illustration

For the illustration of our method, we use both synthetic and real-life datasets.
We show that as we accumulate more data or ignore sparse information, our
method gives us a more precise answer. To do so, we first define completeness as

Completeness =
nb observed comparisons

nb possible comparisons
. (16)

Here, for two strength parameters λi and λj , we consider that λi > λj if

inf
a1,··· ,aP

{λi(a1, · · · , aP )− λj(a1, · · · , aP )} > 0; (17)

note that if λi ̸> λj and λj ̸> λi, we call the objects (drivers) incomparable.

4.1 Synthetic Dataset

For the synthetic dataset, we set λk = (81−k) for 1 ≤ k ≤ 80. We then use these
fixed values of λ to generate 10000 observations of rankings. We also add some
noise in the data by adding 100 observations obtained by using a different set of
λk such that λk = (21− k) for 1 ≤ k ≤ 20 and λk ∼ U(0, 1) for 21 ≤ k ≤ 80.

To perform our analyses, we consider two different settings. In one case,
we consider the completeness of our estimate for different top k-rankings and
in the other case, we consider the completeness against the total number of
observations.

In the Fig. 1, we show these analyses of completeness averaged over 10 replica-
tions. We start our analyses with 20 observations and keep adding 5 observations
in each step. We notice that the estimates become more complete as we increase
the number of observations. It tends to be monotone except for few cases. This
happens as in the new observations, a parameter may perform unexpectedly bet-
ter/worse and force the estimates to be more imprecise. We also check this for
4 different values of top k-ranks. In one case, we consider all the rankings and
the completeness is equal to 1 even after repeating for 10 times. But, this value
changes for other cases. It is usually lower for smaller values of k. However, we
notice that for k = 20, this completeness increases faster than the others and at
a certain point the completeness is better than the completeness for k = 40.

4.2 NASCAR Dataset

We use the NASCAR 2002 dataset to illustrate our method with a real dataset.
This dataset contains the results of 2002 season where a total of 36 races took
place. In each race, 43 drivers participate and across the season 87 different
drivers participate. This dataset was studied by Hunter [8] for illustration. Note
that the data are pre-processed so as to eliminate 4 drivers, who always come
last.

We aim at using these data in order to infer a ranking model of the drivers.
More precisely, we aim at showing that as we infer from more complete data (see
below for a definition of completeness), or as we ignore sparse information, our
method results in a more precise ranking model.
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Fig. 1. Completeness of the estimated rankings with respect to different size of obser-
vations and different top k-rankings.

Cautious ranking inference First, we simply estimate the rankings of the drivers.
For this purpose, we consider the whole dataset with 83 drivers. We set a1 =
a2 = · · · = aP = a for near vacuous analysis and consider a ∈ (1/83, 82/83).
We set b1 = b2 = · · · = bP = 1 and perform our robust Bayesian analysis over
a to obtain the bounds for the strength parameters. We display these strength
parameters (in the increasing order) of their lower bounds in Fig. 2.

Note that λi > λj (or ith driver is better than the jth) in the sense of
Equation (17) whenever λi > λj and λi > λj , due to their dependencies to ai
values. We can see that a majority of drivers can be ordered; some of them are
however incomparable, such as for instance driver 58, whose 4th place in one
race led our robust approach to be cautious about its potential strength.

Sensitivity to completeness of training data In a second step, we analyse what
becomes of our predictions if we consider more complete rankings in order to
infer our model. Since all races contain different drivers, we do this in two ways.

First, we consider those drivers that have participated in at least r races.
Obviously, for r = 1, we consider all drivers; by letting r increase, we eliminate
some of them: then, we get more complete information about the remaining
ones. In addition, we consider only the top-k information corresponding to race
outcomes, thereby truncating the observed rankings.

Fig. 3 summarises this analysis, showing that globally, the completeness of
the inferred rankings increases as we get more information. We can see that as
we increase r (required number of races for a driver to be included in the data),
the comparisons become more complete. This is also the case when we use the
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Fig. 2. MAP estimate of λ with 83 drivers
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complete racing outcomes instead of the top k-ranks. In this latter case, since
some drivers may perform well in some races and arrive below the kth position
in others, this selection is likely to change the bounds of the estimated strength
parameters, thus resulting in incomplete comparisons. We also notice that for
smaller values of r, completeness is better for top 15-rankings than for top 20-
rankings. This may seem contradictory, but this behaviour is actually plausible,
since for those particular cases, the refined race results are more consistent for
the first 15 ranks, and therefore the strength parameter bounds are tighter.
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Fig. 3. Completeness of the estimated ranking for different top k-ranks with respect
to minimum number of races

5 Conclusion

In this article, we propose a robust Bayesian approach for the estimation of a
Plackett-Luce model, together with a robust estimation of the strength param-
eters, in order to perform cautious ranking inference. Such a cautious model is
particularly useful for ranking problems where only limited information is avail-
able. We show that our estimation approach is consistent in that it results in
tighter strength estimates as the training sample size grows.

We use a synthetic dataset to show the completeness of our imprecise estima-
tion. We also apply our approach to the well-known NASCAR dataset containing
race information. The experiments confirm that our robust Bayesian approach
tends to be more complete when we have more information, satisfying our the-
oretical result on the imprecision of the posterior estimates.
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We plan to extend our approach in several ways: studying the effect of adding
prior information; using expected estimates rather than MAP ones; extending
our model to mixture of PL, for instance to perform preference clustering.
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