A Nitsche method for the elastoplastic torsion problem - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2023

A Nitsche method for the elastoplastic torsion problem

Résumé

This study is concerned with the elastoplastic torsion problem, in dimension n ≥ 1, and in a polytopal, convex or not, domain. In the physically relevant case where the source term is a constant, this problem can be reformulated using the distance function to the boundary. We combine the aforementioned reformulation with a Nitsche-type discretization as in [Burman, Erik, et al. Computer Methods in Applied Mechanics and Engineering 313 (2017): 362-374]. This has two advantages: 1) it leads to optimal error bounds in the natural norm, even for nonconvex domains; 2) it is easy to implement within most of finite element libraries. We establish the wellposedness and convergence properties of the method, and illustrate its behavior with numerical experiments.
Fichier principal
Vignette du fichier
nitsche_torsion.pdf (7.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03891827 , version 1 (09-12-2022)

Identifiants

Citer

Franz Chouly, Tom Gustafsson, Patrick Hild. A Nitsche method for the elastoplastic torsion problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2023, 57 (3), pp.1731 - 1746. ⟨10.1051/m2an/2023034⟩. ⟨hal-03891827⟩
87 Consultations
42 Téléchargements

Altmetric

Partager

More