Spherical cones: classification and a volume minimization principle
Résumé
Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones.
Origine | Fichiers produits par l'(les) auteur(s) |
---|